

<u>The ²²⁹Thorium Isomer:</u> <u>Doorway to a Nuclear Clock</u>

Peter G. Thirolf, LMU München

- ^{229m}Th properties and prospects
- "Search & Characterization Phase" (nuclear physics driven)
 - experimental approach & setup
 - first identification
 - halflife
 - hyperfine structure
 - excitation energy
- "Consolidation & Realization Phase" (laser driven)
 - ongoing efforts and upcoming next steps
- Summay/Conclusion

What makes a Clock ?

periodic event (oscillation)

counting device

examples:

- rotation of earth, moon phases
- pendulum, spring
- quartz crystal
- atomic transitions
- nuclear transitions ?

examples:

- sun dial
- mechanical clocks
- 'digital' clocks
- microwave, laser

Which Type of Clocks ?

Mechanical clocks

Quartz clocks

Atomic clocks

accuracy: 1s /day world record (NIST): 1s / year

accuracy: 1s / month world record: 10⁻¹²

nuclear clocks ??

229m7

accuracy: 10⁻¹⁴ world record: 2.5 x 10⁻¹⁹

Clock Performance

continuous operation:

- feedback on resonance (e.g. of atomic transition)
- optimum energy transfer at specific excitation frequency f
- Quality factor Q:

best clock:

highest oscillation frequency (f large)
as precise as possible (∆f small)

Applications of Nuclear Clocks

- Improved precision of satellite-based navigation (GPS, Galileo..): m → cm (mm ?)
- Temporal variation of fundamental constants
 - theoretical suggestion: temporal (spatial) variations of fundamental "constants"

 $\dot{\alpha}/\alpha = (1.0. \pm 1.1) \cdot 10^{-18} \text{ yr}^{-1}$

R. Lange et al., arXiv:2010.06620

- enhanced sensitivity by $(10^2 - 10^5)$ of ^{229m}Th expected

Search for Dark Matter

- topological dark matter: clumped to point-like monopoles, 1D strings, 2D 'domain walls'
- use networks of ultra-precise synchronized clocks
- 3D gravity sensor: 'relativistic geodesy'
 - best present clocks: detect gravitational shifts of \pm 1 cm
 - precise, fast measurements of nuclear clock network: monitor volcanic magma chambers, tectonic plate movements

f: clock frequency U: gravitat. potential

PT et al., Annalen d. Physik 531, 1800391 (2019)

→ △E/E ~ 10⁻²⁰: extremely stable nuclear frequency standard: 'nuclear clock'

7 P.G. Thirolf, LMU München

Experimental Approach @ LMU

- **concept:** populate the isomeric state via 2% decay branch in the α decay of ²³³U
 - spatially decouple ^{229(m)}Th recoils from the ²³³U source
 - detect the subsequently occurring isomeric decay

Experimental Setup

MLL located at Maier-Leibnitz Laboratory, Garching:

(Online) Seminar, DPhN/CEA Saclay, 11.12.2020

L. v.d. Wense, B. Seiferle, M. Laatiaoui, PT, EPJ A51, 29 (2015)

10 P.G. Thirolf, LMU München

→ VUV-optical detection system designed, built, commissioned, operated

- Expectation: VUV photonic signal, well separated from background
- But: no UV photons observed from collection surface
- Suspicion: deexcitation occurs predominantly radiationless alternative decay branch ? Internal Conversion ? → search for electrons instead for photons

11 P.G. Thirolf, LMU München

\rightarrow accumulate ^{229(m)}Th ions directly onto MCP surface

Isomer Detection Process

- extracted ^{229(m)}Th³⁺ ions: impinging directly onto MCP surface behind triode exit
 - 'soft landing' on MCP surface: avoid ionic impact signal
 - neutralization of Th ions
 - isomer decay by Internal Conversion: electron emission
 - electron cascade generated,
 - accelerated towards phosphor screen
 - visible light imaged by CCD camera

internal conversion (IC) energetically allowed for neutral thorium:

 $I(Th^+, 6.31 \text{ eV}) < E^*(^{229m}Th, 7.8 \text{ eV})$

- isomer lifetime expected to be reduced by ca. 10⁻⁹ (from ~10⁴ s \rightarrow ~ 10 µs)
- Th^{q+} ions: IC is energetically forbidden, radiative decay branch may dominate
- 13 P.G. Thirolf, LMU München

229mTh3+

14 P.G. Thirolf, LMU München

Halflife of (neutral) 229mTh

- operate segmented RFQ as linear Paul trap: pulsed ion extraction
- ion bunches: width ca. 10 $\mu s,$ ~ 400 $^{229(m)}Th^{2+,3+}$ ions/bunch

- charged ^{229m}Th²⁺: $t_{1/2} > 1$ min. (limited by ion storage time in RFQ, i.e vacuum quality)
- after neutralization on MCP surface:

$$t_{1/2} = 7 \pm 1 \ \mu s$$

→ in agreement with expected $\alpha_{IC} = N_e/N_{\gamma} \sim 10^9$

B. Seiferle, L. v.d. Wense, PT, PRL 118, 042501 (2017)

15 P.G. Thirolf, LMU München

double resonance method Dehmelt's 'electron shelving'

- $\rightarrow \omega_1$ out of resonance (~GHz)
- \rightarrow drop in resonance fluorescence

Peik, Tamm, Eur. Phys. Lett. 61 (2003) 181

Collinear Laser Spectroscopy of ²²⁹mTh

Collaboration with PTB Braunschweig: (E. Peik, M. Okhapkin et al.):

isomer beam (LMU) + laser system (PTB) \rightarrow resolve hyperfine structure of ^{229m}Th²⁺

P.G. Thirolf, LMU München

IMU

- laser excitation of ^{229(m)}Th²⁺ ions behind QMS:
 - \rightarrow 3 external-cavity diode lasers
 - ightarrow co- and counter-propagating laser beams
- preparatory experiments on ²²⁹Th at PTB Paul trap

→ sensitive detection of deexcitation photons (fluorescence)
 3. laser beam for normalization

¹⁹ P.G. Thirolf, LMU München

⁽Online) Seminar, DPhN/CEA Saclay, 11.12.2020

Insights from HFS of ^{229m}Th

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Excitation Energy Measurement

Excitation Energy: Analysis

- Experimental challenge:
 - resonant neutralization of ^{229m}Th^{q+} ends in excited atomic state and IC decay leads to excited electronic states

- IC transitions from ≤ 4 excited atomic states could be resolved
- measurement: no steps clearly identified: ≥ 5 initial states must contribute
- 82 states can contribute in relevant energy range (below 20000 cm⁻¹, ≈ 2.5 eV)
- individual population unknown
- 22 P.G. Thirolf, LMU München

atomic calculations: P. Bilous, A. Palffy (MPIK Heidelberg) F. Libisch, C. Lemell (TU Wien) (Online) Seminar, DPhN/CEA Saclay, 11.12.2020

- fit error function to measured data:
 - \rightarrow deflection point E_{defl} = 1.77(3) eV

 \rightarrow E*(iso) = E_{defl} + E₀

 \rightarrow predict E_0 from simulated spectra

$$f(u) = a (1 - erf [(U - E_{defl}) / b])$$

\rightarrow create simulated data from combinations of (N=5) initial atomic states:

Expected IC electron energy spectra 20000 population distributions: any 5 (of 82) E_i to all possible final E_f

Excitation Energy: Analysis

Findings from simulated spectra:

robust position of $E_0 \rightarrow E_0 = 6.51(1) \text{ eV}$

larger N : smaller uncertainty of E₀

→ N=5: conservative estimate of experimental uncertainty

 $\rightarrow E_0 = 6.51 \pm 0.16 \text{ eV}$

First direct measurement:

E*(iso) = 8.28 ± 0.17 eV (= 149.7 ± 3.1 nm)

B. Seiferle, PT et al., Nature 575 (2019)

24 P.G. Thirolf, LMU München

E* = 8.28 ± 0.17 eV $\lambda = 149.7 \pm 3.1 \text{ nm}$ 1990 2000 2010 2020 vear

 \rightarrow clarifies regime of laser technology for optical control (excludes laser crystal approaches)

Existence of ^{229m}Th: first direct detection via IC decay

Half-life of neutral ^{229m}Th: $t_{1/2} = 7 \mu s \rightarrow \alpha_{IC} \sim 10^9$

 \rightarrow via retarding field magnetic bottle electron spectrometer

first direct measurement: Nature 575 (2019)

Achievements in

"Search & Characterization Phase"

Nature 556 (2018)

EPJ A53 (2017)

Nature 533 (2016) PRL 118 (2017)

P.G. Thirolf, LMU München

LMU

UNIVERSITÄT

MLL

120

reported energy [eV]

25

The long way towards the

Nuclear Clock

still to bridge: 14 orders of magnitude:

until 2019 10¹⁵ uncertainty / resolution of Th-229 nuclear clock transition frequency (Hz) Present uncertainty from γ -spectroscopy: 0.5 eV 1014 Achievable uncertainty with γ or e⁻-spectroscopy: **0.17 eV** 10¹³ since 2019 **10**¹² **10**¹¹ Range of isomer shifts and hyperfine structure in different 10¹⁰ electronic environments (ions, molecules, solids) already feasible with Spectral resolution with ns-VUV laser system 10 GHz 10⁹ existing laser technology ~ 40 µeV ~2021 10⁸ concept: 107 L. v.d. Wense, PT et al, 106 PRL 119 (2017) 105 ^{229m}Th nuclear clock applicable for fundamental tests 104 together with other high-accuracy optical clocks 10³ Spectral resolution with single mode ~ kHz of a fs-VUV frequency comb 10² 10¹ Th nuclear clock as a high-accuracy optical clock ~ Hz 10⁰

• Paradigm:

- direct laser excitation of ^{229m}Th needs improved knowledge on E* and dedicated laser
- since: i) 8.28(17) eV requires at least 0.34 eV to be scanned
 ii) long radiative isomeric lifetime (hours) → long detection times

But:

- probing the laser excitation by exploiting the (fast) Internal Conversion decay channel (τ ~10 µs) allows for using existing (VUV) laser technology
- \rightarrow direct nuclear laser spectroscopy by optical excitation of ^{229m}Th is in reach

Experimental approach:

- trigger the decay electron detection with the laser pulse
- achieve a high signal-to-background ratio
- → corresponding experiment is in preparation (in collaboration with UCLA (USA) & Univ./Laserzentrum Hannover)

L. v.d. Wense et al., PRL 119, 132503 (2017)

27 P.G. Thirolf, LMU München

< 3 days for 1 eV

* S.J. Hanna et al., Int. J. Mass Spectr. 279, 134 (2009)

Eiso: Complementary approach

Superconducting Single Photon Nanowire Detectors (SNSPDs):

- SNSPD: meander-shaped sc wire with bias current
- implant ^{229m}Th on the sc nanowire
- deposited decay energy breaks superconductivity
- measure current
- decay energy spectrum via scanning of bias current
- expected resolution ~ 0.1 eV

measurements are ongoing with first promising results

collaboration with UCLA, NIST/Boulder, TU Wien

29 P.G. Thirolf, LMU München

UDWIG-

MLL

UNIVERSITÄT

IML

Ionic Lifetime Measurement

needs longer storage time (= better vacuum)

- setup of a cryogenic Paul trap
- platform for laser manipulation

Cu basis

- ready for commissioning
- sympathetic laser cooling with ⁸⁸Sr⁺ set up and ready

7th harmonic of VUV frequency comb:

J. Weitenberg, ILT Fraunhofer/ RWTH Aachen & MPQ Garching (Online) Seminar, DPhN/CEA Saclay, 11.12.2020

look back: huge progress in last 4 years:

identification & characterization of the thorium isomer

look ahead: ongoing consolidation & next steps

- excitation energy from complementary techniques
- cryogenic Paul trap, sympathetic (Sr⁺) laser cooling
- ^{229m}Th ionic lifetime
- determine sensitivity enhancement for a
- doped-crystal approach: radiative, IC branches
- Iaser spectroscopy: resonance search

ambitious, exciting, important research topic:

- excite for the first time ever the nuclear transition by laser
- build clocks based on completely new principles
- ability to drastically improve sensitivity to new physics
- ability to search for dark matter candidates not accessible by any other means

the door is open for the realization of a nuclear clock ...

LMU

UNIVERSITÄT

Thank you for your attention ! (Online) Seminar, DPhN/CEA Saclay, 11.12.2020

erc

