Electron scattering from unstable nuclei at SCRIT facility

ICR, Kyoto University

Kyo Tsukada

for SCRIT collaboration

Institute for Chemical Research (ICR), Kyoto Univ.

Institute for Chemical Research (ICR), Kyoto Univ.

Institute for Chemical Research (ICR), Kyoto Univ.

KYOTO UNIVERSITY Institute for Chemical Research

Particle Beam Science Lab.

3 staffs 1 technical staff 1 secretay 2~3 students

- Principle study of the SCRIT method was conducted here.
- These accelerators have been shut down for a long time.
- Recovery work is ongoing to begin the nuclear physics research.

Contents

- Introduction to e-RI scattering
 - Motivation
 - Electron scattering
 - SCRIT method
- SCRIT electron scattering facility
 - Facility
 - SCRIT and previous results
- Latest results
 - Years of developments
 - First results of e-RI scattering
 - Isotope, isotone measurements
- Related topics to future of SCRIT method
 - Possibility to access neutron information in nucleus by electron scattering
- Summary

Presented by Wauke-san in the next talk

Contents

• Introduction to e-RI scattering

- Motivation
- Electron scattering
- SCRIT method
- SCRIT electron scattering facility
 - Facility
 - SCRIT and previous results
- Latest results
 - Years of developments
 - First results of e-RI scattering
 - Isotope, isotone measurements
- Related topics to future of SCRIT method
 - Possibility to access neutron information in nucleus by electron scattering
- Summary

Motivation

Electron scattering off unstable nuclei

Direct and unambiguous information for structure study of atomic nuclei:

- Elementary point particle probe
- Well known electromagnetic interaction
 - EM structure of nucleus
 - probing whole volume of nucleus
 - one photon exchange approximation
- Independent variable q and $\boldsymbol{\omega}$

Nuclei studied by electron scattering

Never applied for short-lived exotic nuclei

*KTUY mass formula, Progr.Theoret.Phys. 113(2005) 305

** H. deVries et al., At. Data Nucl. Data Tables 36, 495 (1987)
G. Fricke et al., At. Data Nucl. Data Tables 60, 177 (1995)

Electron scattering for stable nuclei

Elastic electron scattering for spin-less nuclei

- Largest cross section among e-scatterings
- Gross shape of charge distribution $\rho_c(r)$

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot |Fc(q)|^2$$

$$\frac{\sigma}{Mott} = \frac{\sigma}{Mott} \cdot |Fc(q)|^2$$
Form factor
$$Fc(q) = \int \rho_c(\vec{r})e^{i\vec{q}\vec{r}}d\vec{r}$$

$$\frac{\sigma}{Charge density distribution}$$

$$L=10^{27} [cm^{-2}s^{-1}] \text{ is required}$$

L=10²⁷ [cm⁻²s⁻¹] is required to determine the radius and diffuseness of Z~50 medium-heavy nuclei

SCRIT (Self-Confining Radioactive isotope Ion Target)

Contents

- Introduction to e-RI scattering
 - Motivation
 - Electron scattering
 - SCRIT method
- SCRIT electron scattering facility
 - Facility
 - SCRIT and previous results
- Latest results
 - Years of developments
 - First results of e-RI scattering
 - Isotope, isotone measurements
- Related topics to future of SCRIT method
 - Possibility to access neutron information in nucleus by electron scattering
- Summary

SCRIT electron scattering facility at RIKEN RIBF

The world's first and unique facility dedicated to electron scattering off unstable nuclei.

Overview of SCRIT electron scattering facility

Generation, Transportation and Trapping have been developed for the last several years.

e-scattering at the SCRIT facility

Characteristics of the SCRIT system and the transportation have been also studied and developed at these experiments.

SCRIT system

Saclay seminar at 15.Feb.2023

Wises (Window-frame Spectrometer for Electron Scattering)

First physics run at SCRIT facility

K. Tsukada et. al, Phys.Rev.Lett. 118 (2017) 262501

Comparison with calculation

- Recently, *ab initio* calculations for A~130 nuclei become available.
- Calculated Cross sections with NNLO_{sat} chiral interaction almost agree with our results.
- Direct comparison between exp. data and theory can be realized including unstable nuclei near future.

Contents

- Introduction to e-RI scattering
 - Motivation
 - Electron scattering
 - SCRIT method
- SCRIT electron scattering facility
 - Facility
 - SCRIT and previous results
- Latest results
 - Years of developments
 - First results of e-RI scattering
 - Isotope, isotone measurements
- Related topics to future of SCRIT method
 - Possibility to access neutron information in nucleus by electron scattering
- Summary

Presented by Wauke-san in the next talk

Contents

- Introduction to e-RI scattering
 - Motivation
 - Electron scattering
 - SCRIT method
- SCRIT electron scattering facility
 - Facility
 - SCRIT and previous results
- Latest results
 - Years of developments
 - First results of e-RI scattering
 - Isotope, isotone measurements
- Related topics to future of SCRIT method
 - Possibility to access neutron information in nucleus by electron scattering
- Summary

n-th moments of charge distribution (ρ_c) and neutron distribution

based on:

- ➢ H. Kurasawa and T. Suzuki, Prog. Theor. Exp. Phys. (2019) 113D01
- ➢ H. Kurasawa, T. Suda and T. Suzuki, Prog. Theor. Exp. Phys. (2021) 013D02
- H. Kurasawa, T. Suzuki, Prog. Theor. Exp. Phys. (2022) 023D03

Nucleon distribution in Nucleus

Proton and Neutron density distributions : basic information of nuclear structure study

> $\rho_{mp}(r) \sim \rho_c(r)$: precisely determined by e-scat. $\rho_{cn}(r)$: too small $\rho_{mn}(r)$: reaction c.s., p-scat., ...

Nucleon distribution in Nucleus

Proton and Neutron density distribution : basic information of nuclear structure study

> $\rho_{mp}(\mathbf{r}) \sim \rho_c(\mathbf{r})$: precisely determined by e-scat. $\rho_{cn}(\mathbf{r})$: too small

 $\rho_{mn}(r)$: reaction c.s., p-scat., ...

Strong correlation between Neutron skin and symmetry energy of the EOS of nuclear matter.

A less ambiguous method is desired.

Neutron contribution in nucleus

4th moment from ρ_c

Charge density dist. of ²⁰⁸Pb and ^{48,40}Ca are well known by electron scattering.

 $< r_{C}^{4} > = \int r^{4} \rho_{C}(r) d^{3}r$

	Rp [fm]	Rn [fm]	δRn [fm]	δRn [fm]
²⁰⁸ Pb	5.454(0.013)	5.728(0.057)	0.282(0.024)	0.283(0.071)
⁴⁸ Ca	3.378(0.005)	3.597(0.021)	0.219(0.013)	0.121(0.026)
⁴⁰ Ca	3.346(0.002)	3.296(0.002)	-0.050(0.004)	-
	KS-method			CREX, PREX
H. Kurasawa, T. Suda and T. Suzuki, PTEP 2021 (2021) 1, 013D02				

- \blacksquare Precise determination of ρ_{c} is also not easy.
- □ Other targets, especially RI are more hopeless.
 - \rightarrow Direct measurement of $< r_{c}^{4} >$

Direct measurement of 4th moment in low-q

• q-dependence of the cross section,

 $\frac{\mathrm{d}\sigma_{\mathrm{Mott}}}{\mathrm{d}\Omega} \propto 1/q^4 \quad \bigcirc \quad \text{Huge cross section in low-q region}$

• Series expansion

$$F_{C}(q) = \int \rho_{C}(\vec{r})e^{-i\vec{q}\vec{r}}d^{3}r$$

$$\sim 1 - \frac{\langle r_{C}^{2} \rangle}{3!}q^{2} + \frac{\langle r_{C}^{4} \rangle}{5!}q^{4} - \frac{\langle r_{C}^{6} \rangle}{7!}q^{6} + \cdots$$
isotope wanted disregarded shift

Possibility of e-RI scattering with low-luminosity e.g. ¹³²Sn target @SCRIT We already started a feasibility study.

Saclay seminar at 15.Feb.2023

Research Center for ELectron-PHoton Science (ELPH),

Tohoku University

Present status of proton radius puzzle

ULQ2 (Ultra Low-Q²) project

Purpose : Determination of proton radius:

$$r_{\rm p}^2 \equiv -6 \frac{dG_E(Q^2)}{dQ^2} \big|_{Q^2 \to 0}$$

- 1. Extreme low- Q^2 , 0.0003 $\le Q^2 \le 0.008$ (GeV/c)²
- Absolute cross section with 10⁻³ accuracy
 by relative measurement of e+C and e+H with CH₂
- 3. Separation of G_E and G_M by Rosenbluth method \rightarrow Ee = 10-60 MeV, θ = 30-150°

Performance studies are almost finished. Physics RUN will be performed within a year. CD₂ target is also planned.

LEEP (Low Energy Electron scattering for ²⁰⁸Pb) experiment

²⁰⁸Pb(e,e) at the ULQ2 beam line

Ee: 10 – 50 MeV

- θ : 30 150°
- $q : 0.17 0.36 \text{ fm}^{-1}$

Ratio of Cross sections σ(θ)/σ(θ₀) instead of the absolute values
 By changing angle, systematic studies to reduce the error
 Coulomb distortion effect is incorporated by phase shift calculation.

²⁰⁸Pb target and commissioning exp.

²⁰⁸Pb foil made by ourselves at RCNP, Osaka Univ. Target : 25x25x0.01 mm³, >99% enrich

Performance studies of twin spectrometers started last October.
 Precisions of angles, acceptances, ... are ongoing.
 After the feasibility study with ²⁰⁸Pb, ⁴⁸Ca could be the next target if we can get it.

Summary

- We are aiming to perform electron scattering off short-lived unstable nuclei.
- SCRIT electron scattering facility is the world's first facility dedicated for exotic nuclei.
- The first experiment with unstable nucleus, ¹³⁷Cs, was successfully carried out after years of developments.
- The upgrade of the power of ISOL driver and related works will be accomplished in a few years.

- New method for measuring neutron radius by elastic scattering.
 - $< r_{c}^{4} >$ includes the information of neutron radius
 - possible determination of proton and neutron radii by e-RI scattering

SCRIT collaboration

A. Enokizono⁴, M. Hara², T. Hori², S. Ichikawa², K. Kurita⁴, R. Ogawara³, T. Ohnishi²,

S. Sato⁴, T. Suda^{1,2}, S. Takayama¹, D. Taki¹, T. Tamae¹, K. Tsukada^{2,3}, M. Wakasugi^{2,3},

M. Watanabe², H. Wauke¹

¹ELPH, Tohoku University

²RIKEN, Nishina Center

³Kyoto University

⁴Rikkyo University Thank you for your attention!