Status and Recent Highlights of Belle II

Lu Cao

(for the Belle II Collaboration)

CEA (Paris-Saclay), 05-22-2023

Belle II Experiment @ SuperKEKB

- Asymmetric-energy e^+e^- collider operating near $\Upsilon(4S)$ mass peak
- KEKB => **SuperKEKB**; Belle => **Belle II**
- Goal is to collect **50 billion** *BB* **pairs!** \bullet

Belle II Detector

<u>K-Long and muon detector:</u> Resistive Plate Chambers (barrel outer layers); Scintillator + WLSF + SiPMs (endcaps, inner 2 barrel layers)

Particle Identification Time of Propagation TOP (barrel) Proximity focusing Aerogel RICH (fwd)

Systematics

Feature	Belle II
Fast track efficiency	0.3%
Slow track efficiency	2.1%
Electron-ID efficiency	0.5 - 1.5%
Muon-ID efficiency	0.5 - 1.5%
K-ID efficiency	0.8 - 1.0%
π -ID efficiency	0.8 - 1.0%
Photon efficiency	0.3%
π^0 efficiency	3.4 - 7.1%

Status of Belle II Experiment

- Max instantaneous luminosity $L_{\text{peak}} = 4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (world record)
- By summer 2022, $L_{int} = 424 \text{ fb}^{-1}$ accumulated (similar to full dataset of BaBar, ~1/2 of Belle's)
- Ultimate goal: reach 50 ab^{-1} by operating at instantaneous lumi. of $6 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$

Status of Belle II Experiment

- Currently, we are in LS1 (long shutdown 1) starting from summer 2022
- Operation will be resumed in the coming winter

We are working on:

- Replacement of beam pipe
- Replacement of photomultipliers of the central PID detector (TOP)
- Installation of 2-layered pixel vertex detector
- Improvement of data-quality monitoring and alarm system
- Complete transition to new DAQ boards (PCIe40)
- Replacement of aging components
- Additional shielding and increased resilience against beam background

PXD2 assembly completed in April @ KEK

- Higher and more stable beam injection
- Longer beam lifetime and improved stability
- IR radiation shield modification, new collimation scheme and robust collimator head

Belle II is maybe (?) the only experiment that explains how it works via its logo:

Plenty of Puns

- 2) B breaks the symmetry between el le

1) Belle collides electrons and their anti-particle positrons (i.e. between matter and antimatter) 3) Belle investigates beauty quarks, which are of course "belle"

Belle II is maybe (?) the only experiment that explains how it works via its logo:

BEAST

(Beam Exorcism for A STable BELLE Experiment)

The BEAST experiment: a background detector for the commissioning of the BELLE experiment

Plenty of Puns

- 2) B breaks the symmetry between el le

1) Belle collides electrons and their anti-particle positrons (i.e. between matter and antimatter) 3) Belle investigates beauty quarks, which are of course "belle"

Picture: movies.disney.com

Belle II Physics Program

- Many sectors will be explored by analyzing Belle II data
- Unique advantages in inclusive analyses, decays involving multiple neutrals
- Full potential summarized in "Belle II Physics Book" [PTEP 2019 123C01, arXiv:1808.10567]

Belle II Physics Program

- Many sectors will be explored by analyzing Belle II data
- Unique advantages in inclusive analyses, decays involving multiple neutrals
- Full potential summarized in "Belle II Physics Book" [PTEP 2019 123C01, arXiv:1808.10567]

recent highlights covered in today's talk

CKM matrix element Vcb

Inclusive $B \rightarrow X_c \ell \nu$ Decays and q^2 Moments

- Measurement of q^2 moments allows new approach to extract inclusive IV_{cb}I
- Analysis Belle II dataset of 62.8 fb⁻¹ , $\ell = e, \mu$
- Hadronic tagging with Full Event Interpretation algorithm [Comput Softw Big Sci 3, 6(2019)] to reconstruct Btag
 - Reconstruct *B* candidate with all combination of daughters
 - Calculate signal probability with multivariate classifiers

PRD 107, 072002 (2023)

Hadronic FEI

- Over 200 BDTs to reconstruct $\mathcal{O}(10000)$ distinct decay chains
- Efficiency $\epsilon_{B^+} \approx 0.5 \%$, $\epsilon_{B^0} \approx 0.3 \%$ at ~15 % purity

Inclusive $B \rightarrow X_c \ell \nu$ Decays and q^2 Moments

- Measurement of q^2 moments allows new approach to extract inclusive IV_{cb}I
- Analysis Belle II dataset of 62.8 fb⁻¹ , $\ell = e, \mu$

$$\langle q^{2m} \rangle = \frac{C_{\text{cal}} \cdot C_{\text{acc}}}{\sum_{i}^{\text{events}} w(q_i^2)} \times \sum_{i}^{\text{events}} w(q_i^2) \cdot \frac{q_{\text{cal}\,i}^{2m}}{q_{\text{cal}\,i}^{2m}}$$

<u>PRD 107, 072002 (2023)</u>

Inclusive $B \rightarrow X_c \ell \nu$ Decays and q^2 Moments

- Measurement of q^2 moments allows new approach to extract inclusive IV_{cb}I
- Analysis Belle II dataset of **62.8 fb**⁻¹ , $\ell = e, \mu$

$$\langle q^{2m} \rangle = \frac{C_{\text{cal}} \cdot C_{\text{acc}}}{\sum_{i}^{\text{events}} w(q_i^2)} \times \sum_{i}^{\text{events}} w(q_i^2) \cdot \frac{q_{\text{cal}\,i}^{2m}}{q_{\text{cal}\,i}^{2m}}$$

<u>PRD 107, 072002 (2023)</u>

Inclusive
$$B \to X_c \ell \nu$$
 Decays and q^2

Moments

PRD 107, 072002 (2023)

A side remark on Inclusive |V_{cb}| determination

- Belle II & Belle $< q^{2m} >$ results are used in novel approach to extract |V_{cb}| [JHEP 10 (2022) 068]
- Benefit from reduced number of non-perturbative matrix elements
- Obtained consistent |V_{cb}| with previous results using M_X, E_ℓ^B moments

 $|V_{cb}| = (41.69 \pm 0.63) \times 10^{-3}$

$|V_{cb}|$ in $B^0 \rightarrow D^* \ell \nu$ Decay

- Decay chain: $\mathbf{B}^0 \rightarrow \mathbf{D}^{*+} \ell_{\mathcal{V}}, \mathbf{D}^{*+} \rightarrow \mathbf{D}^0 \pi^+_{slow}, \mathbf{D}^0 \rightarrow \mathbf{K}^- \pi^+$
- Untagged strategy (higher efficiency than tagged)
- Select energetic signal lepton $p^{CM} > 1.2 \text{ GeV}$
- 2D binned linkelihood fit on $(\cos\theta_{BY}, \Delta M)$ for each bin of kinematic variables: recoil parameter w, and angles $\cos\theta_{\ell}$, $\cos\theta_{\nu}$, χ
- each fit template

$$\cos \theta_{BY} = \frac{2E_B^{\rm CM} E_Y^{\rm CM} - m_B^2 - m_Y^2}{2|\vec{p}_B^{\rm CM}||\vec{p}_Y^{\rm CM}|}$$

integral projection

$|V_{cb}|$ in $B^0 \rightarrow D^* \ell \nu$ Decay

- Unfold signal yields using singular-value-decomposition (SVD) method within <u>pyRooUnfold</u>, regularization para. optimised for low bias & stable result
- Full post-unfolding stat. & syst. covariance propagated into partial decay rate

Preliminary

$|V_{cb}| \text{ in } B^0 \rightarrow D^* \ell \nu \text{ Decay}$

- Unfold signal yields using singular-value-decomposition (SVD) method within pyRooUnfold, regularization para. optimised for low bias & stable result
- Full post-unfolding stat. & syst. covariance propagated into partial decay rate

Preliminary

Branching fraction extracted by the total rate summing over partial decay rates and averaging all kin. variables

e mode: $\mathcal{B}(\overline{B}^0 \to D^{*+} e^- \bar{\nu}_e) = (4.94 \pm 0.03 \pm 0.22)\%$ mu mode: $\mathcal{B}(\overline{B}^0 \to D^{*+} \mu^- \bar{\nu}_\mu) = (4.94 \pm 0.03 \pm 0.24)\%$

average: $\mathcal{B}(\overline{B}^0 \to D^{*+} \ell^- \bar{\nu}_\ell) = (4.94 \pm 0.02 \pm 0.22)\%$

$|V_{cb}|$ in $B^0 \rightarrow D^* \ell \nu$ Decay

- Include all measured w, $\cos\theta_{\ell}$, $\cos\theta_{v}$, χ to extract form factor & $|V_{cb}|$
- Fit with form factor expansion based on **CLN** & **BGL (truncation tested)**
- Reredundant degrees of freedom removed by using **normalized partial** rates on each variable together with the averaged total rate (ndf = 34+1)

$$\chi^{2} = \sum_{i,j}^{34} \left(\frac{\Delta \Gamma_{i}^{\text{obs}}}{\Gamma^{\text{obs}}} - \frac{\Delta \Gamma_{i}^{\text{pre}}}{\Gamma^{\text{pre}}} \right) C_{ij}^{-1} \left(\frac{\Delta \Gamma_{j}^{\text{obs}}}{\Gamma^{\text{obs}}} - \frac{\Delta \Gamma_{j}^{\text{pre}}}{\Gamma^{\text{pre}}} \right) + \frac{(\Gamma^{\text{obs}} - \Gamma^{\text{pre}})^{2}}{\sigma_{\Gamma}^{2}}$$

$$|V_{cb}|\eta_{\rm EW}\mathcal{F}(1) = \frac{1}{\sqrt{m_B m_D^*}} \left(\frac{|\tilde{b}_0|}{P_f(0)\phi_f(0)}\right)$$

 $|V_{cb}|_{BGL} = (40.9 \pm 0.3 \pm 1.0 \pm 0.6) \times 10^{-3}$

$$V_{cb}|_{\text{CLN}} = (40.4 \pm 0.3 \pm 1.0 \pm 0.6) \times 10^{-3}$$

Slow pion eff. plays leading role in syst. Input from LQCD at zero-recoil F(1)

$|V_{cb}|$ in $B^0 \rightarrow D^* \ell \nu$ Decay

- Include all measured w, $\cos\theta_{\ell}$, $\cos\theta_{\nu}$, χ to extract form factor
- Fit with form factor expansion based on **CLN & BGL (truncation tested)**
- Reredundant degrees of freedom removed by using **normalized partial** rates on each variable together with the averaged total rate (ndf = 34+1)
- Inclusion of LQCD constraint [arxiv:2105.14019] at beyond zero-recoil (w = [1.03, 1.10, 1.17]) in two scenarios

BGL	Constraints on $h_{A_1}(w)$	h_{A_1}	$\begin{array}{c} { m Constra}\ (w),\ R_1 \end{array}$	aints on $(w), R_2$	$_{2}^{1}(w)$
$a_0 \times 10^3$	21.7 ± 1.4		25.7	± 0.8	
$b_0 imes 10^3$	13.20 ± 0.24		13.58	3 ± 0.23	
$b_1 imes 10^3$	-7 ± 7		2	± 6	
$c_1 \times 10^3$	-1.1 ± 0.8		-0.5	± 0.8	
$ V_{cb} \times 10^3$	40.5 ± 1.2		38.6	± 1.1	
χ^2/ndf	40/33	1	74,	/39	
<i>p</i> -value	0.18		0.0	001	

|V_{cb}| shifts when include LQCE full constraints

Consistent with recent Belle (2023) measurement [arXiv:2301.07529] \Rightarrow Both found large disagreements wrt LQCD results on R₂

$$\chi^{2} = \sum_{i,j}^{34} \left(\frac{\Delta \Gamma_{i}^{\text{obs}}}{\Gamma^{\text{obs}}} - \frac{\Delta \Gamma_{i}^{\text{pre}}}{\Gamma^{\text{pre}}} \right) C_{ij}^{-1} \left(\frac{\Delta \Gamma_{j}^{\text{obs}}}{\Gamma^{\text{obs}}} - \frac{\Delta \Gamma_{j}^{\text{pre}}}{\Gamma^{\text{pre}}} \right) + \frac{(\Gamma^{\text{obs}} - \Gamma^{\text{pre}})^{2}}{\sigma_{\Gamma}^{2}}$$

$$+\sum_{ij} (F_i^{\text{LQCD}} - F_i^{\text{exp}}) C_{ij}^{-1} (F_j^{\text{LQCD}} - F_j^{\text{exp}}) C_j^{-1} (F_j^{\text{LQCD}} - F_j^{\text{exp}}) C_j^{-1} (F_j^{\text{LQCD}} - F_j^{\text{exp}}) C_j^{-1} (F_j^{\text{LQCD}} - F_j^{\text{exp}}) C_j^{-1} (F_j^{\text{LQCD}} - F_j^{\text{exp$$

$|V_{cb}| \text{ in } B^0 \rightarrow D^* \ell \nu \text{ Decay}$

- Lepton-flavor-universality tested with separate results on e- & mu-mode
- All in good agreement with SM expectations

Test on branching fraction ratio: $R_{e/\mu} = 1.001 \pm 0.009 \pm 0.021$

$$\begin{split} \textbf{Fest on forward-backward asymmetry:} \\ \mathcal{A}_{FB} &= \frac{\int_{0}^{1} d\cos\theta_{\ell} d\Gamma/d\cos\theta_{\ell} - \int_{-1}^{0} d\cos\theta_{\ell} d\Gamma/d\cos\theta_{\ell}}{\int_{0}^{1} d\cos\theta_{\ell} d\Gamma/d\cos\theta_{\ell} + \int_{-1}^{0} d\cos\theta_{\ell} d\Gamma/d\cos\theta_{\ell}} \\ \Delta\mathcal{A}_{FB} &= \mathcal{A}_{FB}^{\mu} - \mathcal{A}_{FB}^{e} \\ \mathcal{A}_{FB}^{e} &= 0.219 \pm 0.011 \pm 0.020 \,, \\ \mathcal{A}_{FB}^{\mu} &= 0.215 \pm 0.011 \pm 0.022 \,, \\ \Delta\mathcal{A}_{FB} &= (-4 \pm 16 \pm 18) \times 10^{-3} \end{split}$$

CKM matrix element Vub

$|V_{ub}|$ in $B^0 \rightarrow \pi^- \ell^+ \nu$ with Belle II data

- Data set of 189.3 fb⁻¹ with untagged analysis strategy
- Extract signal in beam-constrained mass M_{bc} and energy difference ΔE for each bin of q^2
- $|V_{ub}|$ fitted with BCL expansion including LQCD constraints (FNAL/MILC)

arXiv: 2210.04224

$$\frac{\sqrt{s}}{2}\right)^2 - |\vec{p}_B^*|^2$$

 $|V_{ub}| = (3.55 \pm 0.12_{\text{stat}} \pm 0.13_{\text{syst}} \pm 0.17_{\text{theo}}) \times 10^{-3}$

dominated by background modelling (continuum, $B \rightarrow \rho \ell \nu$)

Ultimate Precision with Belle II

- UT lengths and angles can be explored with coming largest B dataset \bullet
- High statistics will shrink experimental uncertainties in global UT fit
- Many CKM measurements ($|V_{xb}|$, $\phi_{1,2,3}$) with Belle II data are on the way

Projection to Belle II 50 ab⁻¹ based on WA 2017

Light-lepton universality test in $B \to X \ell \nu$

Measurement of $R(X)_{e/\mu}$

- Use 189 fb⁻¹ dataset with hadronic tagging strategy
- Extract signal events above $p_{\ell}^{B} > 1.3$ GeV simultaneously for e- and μ -mode
- Calculate branching fraction ratio

$$R(X)_{e/\mu} = \frac{\mathscr{B}(B \to Xe\nu)}{\mathscr{B}(B \to X\mu\nu)}$$

arXiv:2301.08266 (accepted by PRL)

Measurement of $R(X)_{e/\mu}$

- Use 189 fb⁻¹ dataset with hadronic tagging strategy
- Extract signal events above $p_{\ell}^{B} > 1.3$ GeV simultaneously for e- and μ -mode
- Calculate branching fraction ratio

$$R(X)_{e/\mu} = \frac{\mathscr{B}(B \to Xe\nu)}{\mathscr{B}(B \to X\mu\nu)}$$

• Most precise *B* based LFU test in semileptonic B decays to date

• World first inclusive measurement

• Consistent with SM expectation within 1.2σ

• $R(X)_{\ell/\tau}$ is on the way

 $R(X)_{e/\mu} = 1.033 \pm 0.010_{\text{stat}} \pm 0.019_{\text{syst}}$

 $R(X|p_{\ell}^{B} > 1.3 \text{ GeV})_{e/\mu} = 1.031 \pm 0.010_{\text{stat}} \pm 0.019_{\text{syst}}$

Lifetime measurements of Λ_c^+ and Ω_c^0

Measurement of Λ_c^+ Lifetime

- Collision data of 207.2 fb⁻¹ is used to reconstruct Λ_c^+
- mode for signal shape)
- Decay time *t* calculated using displacement of Λ_c^+ decay vertex projected on its flying direction

PRL 130, 071802 (2023)

$$\rightarrow pK^{-}\pi^{+}$$

Performed simultaneous fit to signal region and sidebands to better constrain bkg (Gaussian + Johnson functions with a common

Measurement of Λ_c^+ Lifetime

- Unbinned likelihood fit to (t, σ_t) to extract lifetime
- CLEO's result [PRL 86,2232(2001)]

 $\tau(\Lambda_c^+) = 203.20 \pm 0.89_{\text{stat}} \pm 0.77_{\text{syst}}$ fs

PRL 130, 071802 (2023)

Result consistent with WA and recent LHCb relative measurement [PRD 100, 032001(2019)] while show tension versus

Most precise results to date!

Measurement of Ω_c^0 Lifetime

- Dataset of 207.2 fb⁻¹ is used to reconstruct $\Omega_c^0
 ightarrow \Omega^-$
- Applied unbinned likelihood fit to $m(\Omega^{-}\pi^{+})$
- Derive lifetime from (t, σ_t) fit
- Result consistent with LHCb measurements but leave 3.4σ tension from old WA

$$\pi^+, \Omega^- \to \Lambda^0 K^-, \Lambda^0 \to p \pi^-$$

PRD 107, L031103 (2023)

Lepton-flavor-violating $\tau \rightarrow \ell + \alpha$ decay

Search for LFV $\tau^- \rightarrow \ell^- + \alpha$

- Use dataset of 62.8 fb⁻¹ and tagged by $\tau \rightarrow h^- h^+ h^- \nu_{\tau}$ ullet
- Probe existence of a long-lived invisible gauge boson α
- ullet
- ullet

$$\mathbf{x}_{\ell} = \frac{E_{\ell}^*}{m_{\tau}c^2/2}$$

<u>PRL 130, 181803 (2023)</u>

Search for LFV $\tau^- \rightarrow \ell^- + \alpha$

- No signal observed
- Set upper limit at 95% C.L. for $\mathscr{B}(\tau \to \ell \alpha)/\mathscr{B}(\tau \to \ell \bar{\nu}_{\ell} \nu_{\tau})$
- World **best** limits to date

PRL 130, 181803 (2023)

Summary & Prospects

- As luminosity frontier project, SuperKEKB/Belle II will search for physics beyond SM with ultimate sensitivity
- By Summer 2022, Belle II has achieved

 $L_{\text{peak}} = 4.7 \times 10^{34} \,\text{cm}^{-2}\text{s}^{-1}$ (world record) $L_{\rm int} = 424 \, {\rm fb}^{-1}$ (similar to BarBar; ~ half of Belle)

- Many exciting physics results are on the way \bullet
 - Benefited by improved detector performance & analysis technique
 - Some of them are already world-leading
- After current shutdown period, we will try to achieve higher luminosity
 - During LS1, many components are to be improved

Observables	Expected the accu-	Expected	Facility (2025)
Observables	racy	exp uncertainty	Pacifity (2020)
UT angles & sides	Tacy	exp. uncertainty	
	***	0.4	Belle II
φ_1 [] ϕ_2 []	**	1.0	Belle II
φ_2 [] ϕ_2 []	***	1.0	LHCb/Belle II
Ψ_3 []	***	1%	Belle II
$ V_{cb} $ excl	***	1.5%	Belle II
$ V_{c0} $ incl	**	3%	Belle II
$ V_{ub} $ excl.	**	2%	Belle II/LHCb
CP Violation			,
$S(B \to \phi K^0)$	***	0.02	Belle II
$S(B \rightarrow \eta' K^0)$	***	0.01	Belle II
$A(B \to K^0 \pi^0) [10^{-2}]$	***	4	Belle II
$\mathcal{A}(B \to K^+\pi^-)$ [10 ⁻²]	***	0.20	LHCb/Belle II
(Semi-)leptonic			,
$\mathcal{B}(B \to \tau \nu) [10^{-6}]$	**	3%	Belle II
$\mathcal{B}(B \to \mu \nu) [10^{-6}]$	**	7%	Belle II
$R(B \rightarrow D\tau\nu)$	***	3%	Belle II
$R(B \to D^* \tau \nu)$	***	2%	Belle II/LHCb
Radiative & EW Penguins			
$\mathcal{B}(B \to X_s \gamma)$	**	4%	Belle II
$A_{CP}(B \to X_{s,d}\gamma) [10^{-2}]$	***	0.005	Belle II
$S(B \to K_S^0 \pi^0 \gamma)$	***	0.03	Belle II
$S(B \to \rho \gamma)$	**	0.07	Belle II
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	**	0.3	Belle II
$\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	***	15%	Belle II
$\mathcal{B}(B \to K \nu \overline{\nu}) [10^{-6}]$	***	20%	Belle II
$R(B \to K^* \ell \ell)$	***	0.03	Belle II/LHCb
Charm			
$\mathcal{B}(D_s \to \mu \nu)$	***	0.9%	Belle II
$\mathcal{B}(D_s \to \tau \nu)$	***	2%	Belle II
$A_{CP}(D^0 \to K_S^0 \pi^0) \ [10^{-2}]$	**	0.03	Belle II
$ q/p (D^0 \to K_S^0 \pi^+ \pi^-)$	***	0.03	Belle II
$\phi(D^0 \to K^0_S \pi^+ \pi^-) \ [^\circ]$	***	4	Belle II
Tau			
$\tau \to \mu \gamma \ [10^{-10}]$	***	< 50	Belle II
$\tau \to e \gamma \ [10^{-10}]$	***	< 100	Belle II
$ au o \mu\mu\mu \ [10^{-10}]$	***	< 3	Belle II/LHCb

THANK YOU

Belle II Collaboration Meeting (February 13-17, 20

> 1100 active members
124 institutes
27 countries

value of $R(X_{e/\mu})$ from the most significant sources.

Source
Sample size
Lepton identification
$X_c \ell\nu$ branching fractions
$X_c\ell\nu$ form factors
Total

arXiv:2301.08266 (accepted by PRL)

Table I: Statistical and systematic uncertainties on the

Uncertainty [%]	
1.0	
1.9	
0.1	
0.2	
2.2	

Measurement of Λ_c^+ Lifetime

Source Ξ_c contamination Resolution model Non- Ξ_c backgrounds Detector alignment Momentum scale Total

Major sources of systematic error:

- $\Xi_{c}^{0/+}$ contamination Ο
- Ο
- Ο estimated using the differences in data-MC.
- Misalignment can can bias the measurement of the decay lengths.

PRL 130, 071802 (2023)

	IIncortainty [fc]
_	Oncertainty [15]
	0.34
	0.46
5	0.20
	0.46
	0.09
	0.77

Resolution Model: Correlations between the decay time and the decay-time uncertainty are neglected.

Background model: Sideband data that differ from the background in the signal region. Systematic is

• *Alignment of the detector:* Periodic calibrations are necessary to account for detector misalignment.

Measurement of Λ_c^+ Lifetime

Fit to (t, σ_{f})

- Unbinned ML fit to (t, σ_t) for candidates in the signal region.
- PDF Model:
 - Signal PDF : 0

$$pdf(t,\sigma_t|\tau, f, b, s_1, s_2) = pdf(t|\sigma_t, \tau, f, b, s_1, s_2) \ pdf(\sigma_t)$$
$$\propto \int_0^\infty e^{-t_{true}/\tau} R(t - t_{true}|\sigma_t, f, b, s_1, s_2) dt_{true} \ pdf(\sigma_t)$$

f is the fraction of events in the Gaussian, and **b** is a mean parameter for a possible bias in t. R is the resolution function as:

 $R(t - t_{true} | \sigma_t, f, b, s_1, s_2) = f G(t - t_{true} | b, s_1 \sigma_t) + (1 - f)G(t - t_{true} | b, s_1 \sigma_$ $s_1\sigma_t$ and $s_2\sigma_t$ are the Gaussian widths.

- Background PDF: 0
 - Empirical model of the sideband data, is the sum of two exponen functions convolved with Gaussian resolution functions.
 - A simultaneous fit to the events in the signal region and sidebands is also performed.

PRL 130, 071802 (2023)

$$G(t - t_{true}|b, s_2\sigma_t)$$

Measurement of Ω_c^0 Lifetime

Source	Uncertainty (fs)
Fit bias	3.4
Resolution model	6.2
Background model	8.3
Detector alignment	1.6
Momentum scale	0.2
Input Ω_c^0 mass	0.2
Total	11.0

Major sources of systematic error are:

- estimated using the differences in data-MC.
- \bullet Gaussian model.
- *Fit Bias:* Due to small sample size.

PRD 107, L031103 (2023)

Background model: Sideband data that differ from the background in the signal region. Systematic is

Resolution model: Simulation shows that the resolution function has tails that are inconsistent with a

Search for LFV $\tau^- \rightarrow \ell^- + \alpha$

TABLE III. Central values with their uncertainties, 95% C.L., and 90% C.L. upper limits (UL) for the branchingfraction ratios $\mathcal{B}_{e\alpha}/\mathcal{B}_{e\bar{\nu}\nu}$ (top) and $\mathcal{B}_{\mu\alpha}/\mathcal{B}_{\mu\bar{\nu}\nu}$ (bottom) for various masses of the α boson. Corresponding absolute upper limits for $\mathcal{B}(\tau^- \to \ell^- \alpha)$, computed using standard-model branching fractions from Ref. [35], are provided in parentheses for convenience.

$M_{\alpha} [{ m GeV}/c^2]$	$\mathcal{B}_{e \alpha} / \mathcal{B}_{e \bar{\nu} \nu}$ (×10 ⁻³)	UL at 95% C.L. $(\times 10^{-3})$	UL at 90% C.L. (×10 ⁻³)
0.0	-8.1 ± 3.9	5.3(0.94)	4.3(0.76)
0.5	-0.9 ± 4.3	7.8(1.40)	6.5(1.15)
0.7	1.7 ± 4.0	9.0(1.61)	7.6(1.36)
1.0	1.7 ± 4.2	9.7(1.73)	8.2(1.47)
1.2	-1.1 ± 2.6	4.5(0.80)	3.7(0.66)
1.4	-0.3 ± 1.0	1.8(0.32)	1.5(0.26)
1.6	0.2 ± 0.5	1.1(0.19)	0.9(0.16)
$M_{\alpha} [{\rm GeV}/c^2]$	$\mathcal{B}_{\mulpha}/\mathcal{B}_{\muar{ u} u}$ (×10 ⁻³)	UL at 95% C.L. (×10 ⁻³)	UL at 90% C.L. (×10 ⁻³)
$\frac{M_{\alpha} \left[\text{GeV}/c^2\right]}{0.0}$	$\mathcal{B}_{\mulpha}/\mathcal{B}_{\muar{ u} u}~(imes 10^{-3}) onumber \ -9.4\pm3.7$	UL at 95% C.L. (×10 ⁻³) 3.4(0.59)	UL at 90% C.L. (×10 ⁻³) 2.7(0.47)
$M_{\alpha} [\text{GeV}/c^2]$ 0.0 0.5	$egin{array}{llllllllllllllllllllllllllllllllllll$	UL at 95% C.L. (×10 ⁻³) 3.4(0.59) 6.2(1.07)	UL at 90% C.L. (×10 ⁻³) 2.7(0.47) 5.1(0.88)
$ \frac{M_{\alpha} [\text{GeV}/c^2]}{0.0} \\ 0.5 \\ 0.7 $	$egin{array}{llllllllllllllllllllllllllllllllllll$	UL at 95% C.L. (×10 ⁻³) 3.4(0.59) 6.2(1.07) 9.0(1.56)	UL at 90% C.L. (×10 ⁻³) 2.7(0.47) 5.1(0.88) 7.8(1.35)
$ \frac{M_{\alpha} [\text{GeV}/c^2]}{0.0} \\ 0.5 \\ 0.7 \\ 1.0 $	$egin{array}{llllllllllllllllllllllllllllllllllll$	UL at 95% C.L. (×10 ⁻³) 3.4(0.59) 6.2(1.07) 9.0(1.56) 12.2(2.13)	UL at 90% C.L. (×10 ⁻³) 2.7(0.47) 5.1(0.88) 7.8(1.35) 10.3(1.80)
$ \frac{M_{\alpha} [\text{GeV}/c^2]}{0.0} \\ 0.5 \\ 0.7 \\ 1.0 \\ 1.2 $	$egin{array}{llllllllllllllllllllllllllllllllllll$	UL at 95% C.L. (×10 ⁻³) 3.4(0.59) 6.2(1.07) 9.0(1.56) 12.2(2.13) 3.6(0.62)	UL at 90% C.L. $(\times 10^{-3})$ 2.7(0.47) 5.1(0.88) 7.8(1.35) 10.3(1.80) 2.9(0.51)
$ \frac{M_{\alpha} [\text{GeV}/c^2]}{0.0} \\ 0.5 \\ 0.7 \\ 1.0 \\ 1.2 \\ 1.4 $	$egin{aligned} \mathcal{B}_{\mulpha}/\mathcal{B}_{\muar{ u} u}~(imes 10^{-3})\ &-9.4\pm3.7\ &-3.2\pm3.9\ &2.7\pm3.4\ &1.7\pm5.4\ &-0.2\pm2.4\ &0.9\pm0.9 \end{aligned}$	UL at 95% C.L. $(\times 10^{-3})$ 3.4(0.59) 6.2(1.07) 9.0(1.56) 12.2(2.13) 3.6(0.62) 2.5(0.44)	UL at 90% C.L. $(\times 10^{-3})$ 2.7(0.47) 5.1(0.88) 7.8(1.35) 10.3(1.80) 2.9(0.51) 2.2(0.38)

