Basics in statistical analysis and hypothesis testing for physicists

Michael Winn

Department of Nuclear Physics IRFU/CEA, university Paris-Saclay

DPhN/Irfu, 05/06.12.2023

Outline

Introduction: context and scope

Basic notions of statistical analyses

 parameter estimation and hypothesis testing with maximum likelihood

goodness-of-fits

Introduction: statistics in particle and nuclear physics (I)

Statistical analysis: vast and well studied topic → problems treatable by existing methods

however, time is limited in a PhD thesis

knowledge prior to PhD thesis heterogeneous

knowledge of experienced physicists heterogeneous

standards & sophistication differ between subfields and groups → related to: typical precision, 'known' standard case, typical knowledge on systematic effects, level of industrialisation, group sociology and history

topic often not in the center of interest of students, supervisors

Introduction: statistics in particle and nuclear physics (II)

This situation can lead to:

- \rightarrow not sufficiently advanced or simply wrong methods
- \rightarrow 'over-design': shooting with a bazooka on a fly
- \rightarrow use of previously used code/methods blindly
- \rightarrow trust blindly collaborators/common wisdom of group/collaboration

can lead to wrong parameter/uncertainty estimates or failure to finish

can lead to knowledge gaps after PhD

Introduction: Scope

myself: experimental physicist: ALICE, LHCb, phenomenology

today's audience very broad

• impossible to get very far in 2×1.5 h

► Goals today:

 \rightarrow basics, comments about Frequentist vs. Bayesian

- $\rightarrow \text{useful references}$
- \rightarrow notions of hypothesis testing

► Goals tomorrow: → residual topics of lecture → simple illustrations, just bring a pocket calculator tomorrow and a piece of paper and a pen

 \rightarrow your questions

Take home message

- 1. Take the time to understand the statistics questions that appear in or around your thesis yourself
- 2. Look in the literature, courses
- 3. Decide yourself or follow collaboration reasoning for an appropriate approach
- 4. **Discuss** with your supervisor/colleagues/group about open questions/points **early on!**
- 5. The invested time will pay off for your future: be it in physics or not

Why statistics for physicists?

Broadly speaking: since we want to be quantitative \rightarrow draw reliable conclusions from data

 experimental data: parameter and uncertainty estimation on - yields/rates/cross sections, exclusion limits

- distribution moments/shapes
- > analogue in theory computations or fits to experimental data
- compatibility between different data sets and data combination

Used material

- Statistical methods in particle physics: K. Reygers, R. Stamen, M. Voelkl link, very rich and good lecture series, used for introduction, also good intro to Monte Carlo Method
- Beyond Standard Model physics: elements of statistical analysis (Master 2 NPAC), N. Morange link

very condensed course by Beyond-the-Standard-Model practitioner, used partly, in particular for hypothesis testing

- Statistics for searches at the LHC: G. Cowan arXiv:1307.2487, short summary
- Introduction to Statistics and Data Analysis for Physicists: G. Bohm and G. Zech

link

broad text book tailored to high-energy physics; interesting for example collection $% \left({{{\left[{{{\left[{{{c}} \right]}} \right]}_{i}}}_{i}}} \right)$

Michael Winn (Irfu/CEA), 05/06.12.2023

Further reading

- Asymptotic formulae for likelihood-based tests of new physics. G. Cowan et al., arXiv:1007.1727v3, reference for high-energy physics searches, standard methodology
- 'How good are your fits? Unbinned multivariate goodness-of-fit tests in HEP', Michael Williams, arXiv:1006.3019, interesting compilation of methods for goodness-of-fits
- 'Parameter uncertainties in weighted unbinned maximum likelihood fits'
 C. Langenbruch, arXiv:1911.01303, presense of weights: subtleties
- 'sPlot: a statistical tool to unfold data distributions', M. Pivk, Fr. Le Deberder, link, separate background and signal under independence condition, heavily used in B-physics community
- PDG review on statistics (G. Cowan) https://pdg.lbl.gov/2023/reviews/
- ▶ Pitfalls of Goodness-of-Fit from Likelihood, J. Heinrich arXiv:0310167
- ► Systematic Errros: Facts and Fiction, R. Barlow, not directly related, but very crucial, often most delicate part, arXiv:0207026 → correct as much as possible, often detection of most important effect more crucial than quantifying precisely all effects

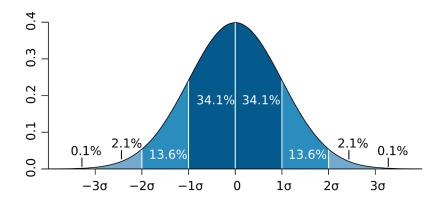
Comment on communities

that I can relate to ...

- unbinned maximum likelihood approaches: vast experience in B-physics community (b-factories, LHCb), also a lot in ATLAS, CMS
- binned maximum likelihood approaches: vast experience in ATLAS, CMS

 material for binned approaches from ATLAS/CMS authors, unbinned
 from LHCb
- Heavy-ion community (ALICE, STAR, PHENIX,..): often large statistics and large backgrounds, χ²-fits frequently used
- High-dimensional binned data to deduce models in theory/phenomenology: parton distribution functions, review; light-flavour baryon spectroscopy, recent review

Basic notions of statistics for physics



Michael Winn (Irfu/CEA), 05/06.12.2023

You will always have uncertainties in measurements

- Underlying theory (quantum mechanics) is probabilistic

 → true randomness
- ► Limited knowledge about the measurement process → present without quantum mechanics

Quantify uncertainty using probabilitiy

Mathematical definition of probability

Let A be an event. Then probability is a number obeying three conditions, the Kolmogorov axioms:

- $P(A) \ge 0$ (non-negative real number)
- P(S) = 1, where S is the set of all A, the sample space
- ▶ $P(A \cup B) = P(A) + P(B)$ for any A, B which are exclusive, i.e. $A \cap B = 0$

From these axioms further properties can be derived, e.g.:

$$P(\overline{A}) = 1 - P(A) \tag{1}$$

$$P(\{\}) = 0$$
 (2)

$$if A \subset B, then P(A) \leq P(B)$$
(3)

But what does P mean?

Interpretations of probability

https://plato.stanford.edu/entries/probability-interpret/

Classical

 \rightarrow Assign equal probabilities based on symmetry of the problem, e.g., rolling dice: P(6)=1/6

Frequentist

→ Let A, B, ... be outcomes of a repeatable experiment: $P(A) = \lim_{n \to \infty} \frac{\text{times outcome is}A}{n}$

▶ Bayesian (subjective probability)
 → A, B, ... are hypotheses (statements that are true or false)
 P(A) = degree of believe that A is true

Bayesian vs Frequentist statistics

Both philosophies coexist:

Bayesian:

 \rightarrow Closer to everyday reasoning, where probability is interpreted as a degree of belief that something will happen, or that a parameter will have a given value.

Frequentist:

 \rightarrow Closer to scientific reasoning, where probability means the relative frequency of something happening. This makes it more objective, since it can be determined independently of the observer, but restricts its application to repeatable phenomena.

So what?

 \rightarrow For practical matters, results tend to be very similar in the asymptotic regime of large numbers

 \rightarrow There exist nonetheless some important differences (coverage, goodness-of-fit...)

Michael Winn (Irfu/CEA), 05/06.12.2023

Bayesian vs Frequentist: take-home messages

"Bayesian address the questions everyone is interested in by using assumptions that no one believes. Frequentists use impeccable logic to deal with an issue that is of no interest to anyone." (Louis Lyons)

Communities tend to lean towards one approach → Cosmology is mostly using Bayesian statistics (there is only 1 universe...)

 \rightarrow High-energy physics is more frequentist

Will use frequentist approach in the following

 by far the most common at the LHC, my background
 short discussion on differences in the following

Conditional probability and independent events

For two events A and B, the conditional probability is defined as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Event A and B independent $\leq P(A \cap B) = P(A) \cdot P(B)$

An Event A is independent of B if P(A|B) = P(A)

Michael Winn (Irfu/CEA), 05/06.12.2023

Definition of conditional probability:

 $P(A|B) = \frac{P(A \cap B)}{P(B)} \text{ and } P(B|A) = \frac{P(B \cap A)}{P(A)}$ $P(A \cap B) = P(B \cap A) \Longrightarrow P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

First published (posthumously) by the Reverend Thomas Bayes (1702-1761), First modern formulation by Pierre-Simon Laplace in 1812

Accepted by everyone also if probabilities are not Bayesian probabilities

A simple example: particle identification

Consider a detector for electron identification

Assume you have the following information based on some calibration data or simulation:

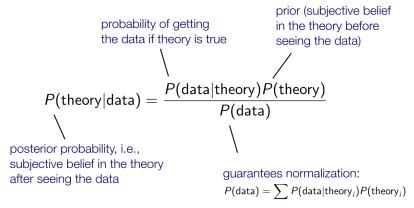
- P(A|electron), i.e., the efficiency to identify the electron
- ▶ *P*(*A*|*notanelectron*), i.e. efficiency for background

Question: Given a sample of tracks S passing selection A, what fraction of them are electrons?

 \rightarrow i.e. what is P(electron|A) ?

Answer: Cannot be determined with the provided information: Need in addition: P(electron), the true fraction of electrons within *S*. Provided this information, Bayes' theorem inverts conditionality: $P(electron|A) = P(A|electron) \cdot P(electron)/P(A)$

Bayesian inference: Degree of believe in a theory given a certain set of data (I)



Addresses question: "What should I believe?"

Bayesian inference: Degree of believe in a theory given a certain set of data (II)

For a continuous parameter λ : $P_{posterior}(\lambda|m) = \frac{f(m|\lambda)P_{prior}(\lambda)}{f_1(m)} \lambda$: true value of a parameter of nature, m: measurement, $f_1(m) = \int f(m|\lambda^*)P(\lambda^*)d\lambda^*$

Problems with Bayesian inference

What functional form to chose for $P_{prior}(\lambda)$

Uniform prior: flat in continuous variable? In which variable, e.g. in λ , λ^2 , $1/\lambda$, ln(λ)

 \rightarrow criticism that can be addressed by 'Jeffrey's prior' constructions (however, does not solve the principle problem of missing knowledge)

Bayesian reply

Choice of prior usually unimportant after a few experiments Not so easy for discovery physics

Are you a Frequentist or a Bayesian?

Suppose mass of a particle is measured with a Gaussian resolution σ and the result is reported as $m\pm\sigma$

Bayesian:

 $P(m|m_{true}) \propto e^{-(m-m_{true})^2/(2\sigma^2)} \rightarrow (\text{flat prior for } m_{true})$ $P(m_{true}|m) \propto e^{-(m-m_{true})^2/(2\sigma^2)}$

Frequentist:

This is a statement about the interval $[m - \sigma, m + \sigma]$. For a large number of hypothetically repeated experiments, the interval would contain the true value in 68% of the cases. In the frequentist approach, a probabilistic statement about the true value is nonesense (the true value is what it is).

Bayesian vs. Frequentist [based on L. Lyons]

	Bayesian	Frequentist
Meaning of probability	degree of belief	frequentist definition
Probability of parameters	yes	anathema
Needs prior	yes	no
Unphysical / empty intervals	excluded by prior	can occur
Final statement	posterior probability distribution	parameter values, hypothesis test (<i>p</i> -value)
Systematics	Integrate over nuisance parameter	Various methods, e.g., profile likelihood, hard
Combination of measurements	can be hard (prior)	ok

Random variables and probability density functions

Random variables:

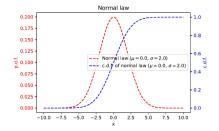
- Variable whose possible values are numerical outcomes of a random phenomenon
- Can be discrete or continuous

Probability density function (pdf) f of a continuous variable: P(x found in [x, x + dx]) = f(x)dxNormalization: $\int_a^b f(x)dx = 1$ It is related to the cumulative function F

F so that
$$F(x_0) = P(x \le x_0)$$

 $\rightarrow F(a) = 0, F(b) = 1$

f(x)dx = F(x+dx) - F(x)

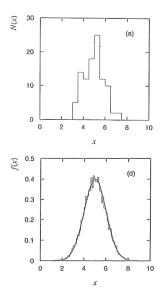


Histograms

Histogram:

- representation of the frequencies of the numerical outcome of a random phenomenon
- pdf = histogram for
 - infinite data sample
 - zero bin width
 - normalized to unit area

 $f(x) = \frac{N(x)}{n\Delta x}$ $n = \text{total number of entries, } \Delta x = \text{bin}$ width



Mean, Median, and Mode

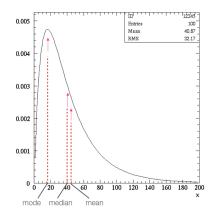
Mean

of a data sample: $\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$ of a pdf: $\mu \equiv \langle x \rangle \equiv \int x P(x) dx$ \equiv expectation value E[x]

Median:

point with 50% probability above and 50% probability below, can define other quantiles analoguously

Mode: the most likely value



Variance, standard deviation, moments

Variance

of a distribution: $V(x) = \int dx P(x)(x-\mu)^2 = E[(x-\mu)^2]$ $V(x) = \langle x^2 \rangle - \mu^2 = \langle x^2 \rangle - \langle x \rangle^2$ Sample variance: $V(x) = \frac{1}{N}\sigma_i(x_i - \bar{x})^2 = \bar{x^2} - (\bar{x})^2$ This formula underestimates the variance of underlying distribution as it uses the mean calculated from data! Use this if you have to estimate the mean from data (**unbiased sample variance**): $\hat{V}(x) = \frac{1}{N-1}\Sigma_i(x_i - \bar{x})^2$ Use this if you know the true mean μ : $V(x) = \frac{1}{N}\sigma_i(x_i - \mu)^2$

• Standard deviation: $\sigma = \sqrt{V(x)}$

• higher moments $(E((X - \mu)^n))$:

 \rightarrow skew (n = 3): left-right asymmetry

 \rightarrow kurtosis (n=4): measures the size of the tails, if positive larger than a Gaussian

Multi-dimensional case

For example: 2 variables x, y with joint pdf f

A marginal pdf is defined as:

$$f_X(x) = \int dy^{n} f(x, y^{n})$$

 f_X is a projection of f, the other variables are integrated.

• A conditional pdf is defined as: $f_C(x, y_0) = f(x, y_0) = \frac{f(x, y_0)}{\int dx^{"}f(x^{"}y_0)}$ f_C is a slice of f

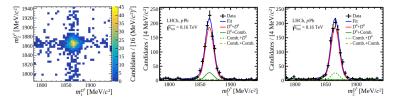


Figure 1: (Left) Two-dimensional invariant-mass distributions of (m_1, m_2) for $D^0 D^0$ pairs and the projections on (middle) m_1 and (right) m_2 with the fit results superimposed. Shown in the projection plots are (points with bars) *p*Pb data, (solid blue) the total fit and its four components.

2D-data, projection of data and marginal fit-pdf from PRL 125 (2020) 212001

Michael Winn (Irfu/CEA), 05/06.12.2023

Independence and correlation

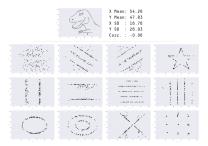
Two variables X and Y are independent if: $f(x, y) = f_X(x)f_Y(y)$

Correlation coefficient between two variables X and Y

$$\rho(X, Y) = \frac{C(X, Y)}{\sigma_X \sigma_Y} \text{ with } C(X, Y) = E((X - \mu_X)(Y - \mu_Y)) = E(XY) - E(X)E(Y)$$

Independent $=> \rho = 0$ The opposite is not true!

https://www.research.autodesk.com/publications/same-stats-different-graphs/



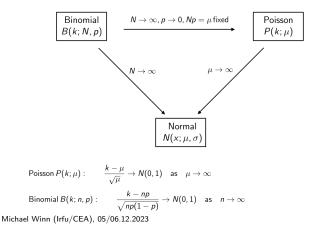
Important distributions

• Poisson:
$$p(k, \mu) = \frac{\mu^k}{k!} e^{-\mu}$$
, $E[k] = \mu$, $V[k] = \mu$

Binomial:

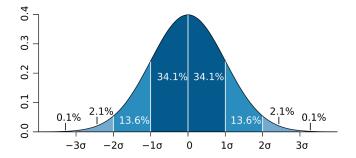
$$f(k, N, p) = \frac{N!}{k!(N-k)!} p^k (1-p)^{N-k}, E[k] = Np, V[k] = Np(1-p)$$

Normal (or Gaussian) distribution: $g(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} exp(-\frac{(x-\mu)^2}{2\sigma^2}), E[x] = \mu, V[x] = \sigma^2$



30 / 60

Deviation in units of σ for a Gaussian



$$P(Z\sigma) = \frac{1}{2\pi} \int_{-Z}^{Z} e^{-x^2/2} dx$$

- 68.27%/95.45%/99.73% of area within $\pm 1/2/3\sigma$
- 90% of area within $\pm 1.645\sigma$
- \blacktriangleright 95% of area within $\pm 1.960\sigma$
- 99% of area within $\pm 2.576\sigma$

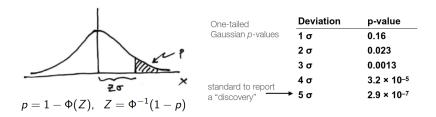
2D gaussian 1σ -ellipse: contains 39%

Michael Winn (Irfu/CEA), 05/06.12.2023

p-value and significance

p-value:

probability that a random process produces a measurement thus far, or further, from the true mean p-value and significance Z (one-tailed):



Φ cumulative Gaussian function.

Why Gaussians are so useful?

Why Gaussians are so useful?

Central limit theorem:

When independent random variables are added, their properly normalized sum tends towards a normal distribution even if the original variables themselves are not normally distributed, but have a finite variance

More specifically:

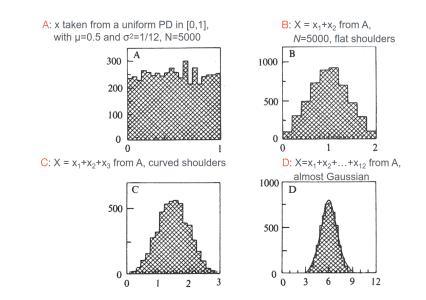
Consider *n* random variables with finite variance σ²_i and arbitrary pdfs:

$$y = \sum_{i=1}^{n} x_i \rightarrow_{n \rightarrow \infty} y$$
 follows Gaussian with $E[y] = \sum_{i=1}^{n} \mu_i$,
 $V[y] = \sum_{i=1}^{n} \sigma_i^2$

Measurement uncertainties are often the sum of many independent contributions. The underlying pdf for a measurement can therefore be assumed to be a Gaussian.

Many convenient features in addition, e.g. sum or difference of two Gaussian random variables is again a Gaussian.

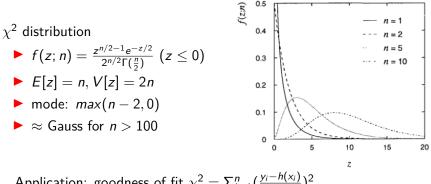
The central limit theorem at work



Michael Winn (Irfu/CEA), 05/06.12.2023

χ^2 -distribution

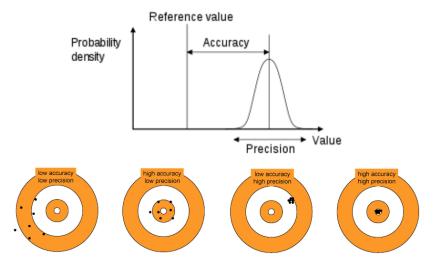
Let x_1 , ..., x_n be n independent standard normal ($\mu = 0, \sigma = 1$) random variables. Then the sum of their squares $z = \sum_{i=1}^{n} x_i^2$ follows a χ^2 distribution with *n* degrees of freedom.



Application: goodness of fit $\chi^2 = \sum_{i=1}^{n} \left(\frac{y_i - h(x_i)}{\sigma_i}\right)^2$

Michael Winn (Irfu/CEA), 05/06.12.2023

Precision and accuracy



Parameter estimation

Suppose we have a model, represented by a pdf f(x|Θ) → x is a random variable → Θ represents parameters that affect the shape of the pdf

- Intend to say something about Θ using the observed data
- An estimator is a function of the data (a statistic) that is used to estimate the value of a parameter:

•
$$t_N(x)$$

• $t_N(x) \rightarrow \Theta$?

Estimator properties

Not all estimators behave the same

X is a random variable of pdf $f(x|\Theta_0)$ with Θ_0 unknown. An estimator t_N of Θ_0 can be:

- unbiased(accuracy): if the bias $b_N = E(t_N) \Theta_0 = 0$
- convergent (or consistent): mathematical convergence towards the true value for large enough N
- efficient(precision): if the variance of the estimator V(t_N) converges towards a minium variance bound
- **optimal**: if t_N minimises the Mean Square Error (MSE): $MSE(t_N) = V(t_N) + b_N^2$

robust: if it does not depend on a hypothesis on the pdf

Usual methods to build estimators

• Moments method \rightarrow e.g. sample mean

Maximum likelihood
 focus on this for hypothesis testing examples

Least squares method

Likelihood function

A random variable x follows a pdf $f(x|\Theta)$ where Θ represents parameter(s).

N independent observations of x are obtained: $x_1, ... x_N$

The joint pdf of the N observations is then: $p(\mathbf{X}|\theta) = \prod_{i=1}^{N} f(x_i|\Theta)$

The likelihood function is this pdf, evaluated with fixed data X and regarded as a function of the parameter Θ only: $L(\Theta) = P(X|\Theta)$ Notes:

- $L(\theta)$ is **NOT** a pdf for Θ . The area under L is **meaningless**
- It is not even normalised to unity. The absolute value of the likelihood is also meaningless

Maximum likelihood estimators

- If the hypothesized ⊖ is close to the true value, then there is a high probability to get data like the observed one.
- The maximum likelihood (ML) estimator(s) are defined as the parameter value(s) for which the likelihood is maximum.
- ▶ In practice, usually $InL(\Theta)$ or $-2InL(\Theta)$ minimized

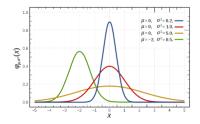
ML estimators are **not** guaranteed to be always unbiased, neither optimal

 \rightarrow however, often method of choice if full pdf available in some analytical or numerical form, see discussion on parameter inference in link as useful guide

Example: estimation of a Gaussian

 Random process following a Gaussian law of unknown mean and variance:

- Example: Invariant mass distribution of Z→e⁺e⁻
- Parameters: $\theta \mapsto \mu$ mean, σ standard error
- Observables: x_i
- PDF: $f \mapsto G(x \mid \mu, \sigma) = 1/\sqrt{(2\pi\sigma^2)} \exp(-(x-\mu)^2/2\sigma^2)$

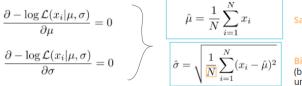


Example: estimation of a Gaussian

- Likelihood function to maximize: $\mathcal{L}(x_i|\mu,\sigma) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}$
- In practice, we minimize the negative log-likelihood:

$$NLL = -\log \mathcal{L}(x_i | \mu, \sigma) = \frac{N}{2} \log(2\pi\sigma^2) + \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2}$$

which yields:



Sample mean !

Biased estimator ! (but asymptotically unbiased)

Coverage probability and confidence interval

Beyond parameter estimation: parameter uncertainty

- ► Frequentists report confidence intervals, which will contain the true value of the parameter \(\Overline\) a certain fraction of the time (called the confidence level)
- Frequentist Principle (Neyman): Construct statements such that a fraction $f \ge 1 \alpha$ of them are true over an ensemble of statements f is called coverage probability 1α is called confidence level

An ensemble of statements that obyes the Frequentists Principle is said to 'cover'

Application of confidence intervals: if we report a confidence interval I and we repeat the experimenta N times, then a fraction f of the intervales I will contain the true value of the parameter

Confidence intervals for Maximum-likelihood estimators

 Finding procedures that give correct coverage (i.e. neither undercoverage nor overcoverage) is not trivial

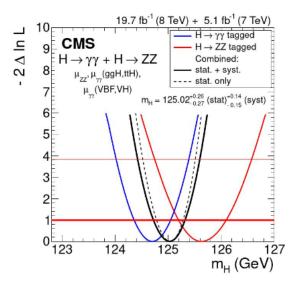
Asymptotic properties of log-likelihoods to the rescue:

 \rightarrow Wald's approximation: the likelihood shape is asymptotically gaussian around its maximum

 \rightarrow Wilk's theorem: $-2 \text{InL}(\Theta)$ asymptotically follows a a χ^2 distribution with d degrees of freedom, where d is the dimensionality of Θ \rightarrow Consequence: Confidence intervals can be obtained from the inverse quantiles of a χ^2 distribution with d degrees of freedom, the so-called likelihood intervals

	$1 - \alpha(\%) =$	N = 1	N = 2	N = 3
Values of $\Delta \chi^2$ or $2\Delta \ln L$	68.27	1.00	2.30	3.53
corresponding to a coverage	90.	2.71	4.61	6.25
probability $1-\alpha$ in the large	95.	3.84	5.99	7.82
data sample limit, for joint	95.45	4.00	6.18	8.03
estimation of N parameters.	99.	6.63	9.21	11.34
	99.73	9.00	11.83	14.16

Example: Higgs mass measurement



Hypotheses and tests

Hypothesis test

- Statement about the validity of a model
- Tells you which of two competing models is more consistent with the data

Simple hypothesis: a hypothesis with no free parameters

Example: the detected particle is an electron; data follow Poissonian with mean 5

Composite hypothesis: contains unspecified parameter(s)

• Example: data follow Poissonian with mean > 5

Null hypothesis H_0 and alternative hypothesis H_1

- ► *H*⁰ often the background-only hypothesis
- ▶ *H*¹ often signal or signal + background hypothesis

Question to be replied by hypothesis test: Can null hypothesis be rejected by the data?

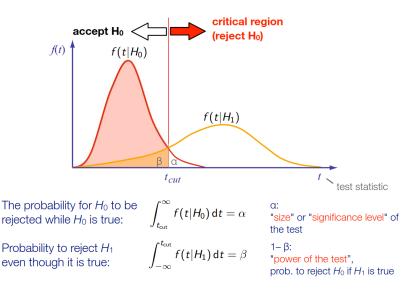
special case 'Goodness-of-fit' test: Can null hypothesis be rejected by the data without specification of alternative H₁?

Hypothesis testing ingredients

We need:

- A test statistic t(x): a (usually scalar) variable which is a function of the the data alone that is used to test the hypothesis x = (x₁,...,x_n): measured features/data
- A critical region w such that the hypothesis H₀ is false (with a given probability) if t in w

Critical region



Type I and Type II errors

Type I error: Null hypothesis is rejected while it is actually true

Type II error: Test fails to reject null hypothesis while it is actually false

Type I and type II errors and their probabilities:

	<i>H</i> ⁰ is true	H_0 is false (i.e., H_1 is true)
H_0 is rejected	Type I error (α)	Correct decision $(1 - \beta)$
H_0 is not rejected	Correct decision $(1-lpha)$	Type II error (β)

Neyman-Pearson lemma

In the comparison of two simple hypothesis H_0 and H_1 , the optimal discriminator is the **likelihood ratio** (LR):

$$t(x) = \frac{L(x|H_1)}{L(x|H_0)}$$
(4)

Notes:

• Optimal: minimizes Type II error for a given Type I level of significance

Valid for monotonic function of t

 \rightarrow Ex: $q(x) = -2 \ln(t(x))$

 \rightarrow Ex: in a counting experiment, number of events

Strictly valid for simple hypotheses only.

 → However, in practice, works well for hypotheses in typical LHC
 applications

Procedure for hypothesis testing

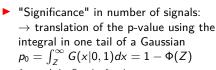
- Specify the null and the alternate hypotheses \rightarrow Ex: H_0 background only, H_1 background and additional resonnace
- Build a test statistics t(x) using e.g. Neyman-Pearson lemma
- Specify the significance of the test (what we accept as a false discovery rate)
 - ightarrow Ex: 2.9 \cdot 10 $^{-7}$ (5 σ) for discovery
 - \rightarrow Ex: 0.05 for exclusion
- See where the measurement is t_{obs}
- Depending on whether t_{obs} is in or out of the critical region: decide on H₀

p-value and significance

p-value: p₀ = p(t ≥ t_{obs}|H₀)
 → Significance level of a test α: chosen prior to look at data
 → p-value: quantity computed when looking at the data

Interpretation:

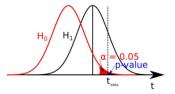
 \rightarrow probability for the test statistic t to be larger than the observed one $t_{obs},$ under the null hypothesis



▶ **NOT!!!** the probability that H₀ is true

 $\Phi :$ cumulative Gaussian function.

Convention: 3 sigma evidence, 5 sigma is discovery



z-value (σ)	p-value	
1.0	0.159	
2.0	0.0228	
3.0	0.00135	
5.0	2.87×10^{-7}	

Spurious exclusion

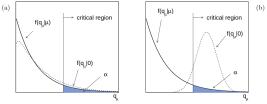


Figure 1: Illustration of statistical tests of parameter values μ for the cases of (a) little sensitivity and (b) substantial sensitivity (see text).

taken from Cowan et al. arXiv:1105.3166

- for a tested very small signal strength, H_0 and H_1 may yield very close test statistics t
- can lead to exclusion of hypotheses for which there is little sensitivity
- \blacktriangleright α for exclusion often set to 0.05, hence in one out of 20 cases, we reject ${\cal H}_0$
- weak sensitivity can be quantified by the power of the test β
- one possible strategy: standard procedure, but only for the power β(μ) larger than a given threshold, otherwise 100% confidence level
 - 'power-constrained' limit, threshold is pure convention
- see for details in arXiv:1105.3166, see application arXiv:2303.1429 Michael Winn (Irfu/CEA), 05/06.12.2023

A word of caveat and the last item of today

methodology can take into account systematic uncertainties as nuisance parameters, see arXiv:1007.1727

maximum-loglikelihood estimators and hypothesis testing makes sense and have good properties:

Assuming that the PDF (the model) is correct

- \rightarrow this is where the physics input is needed
- \rightarrow Pull distributions, Goodness-of-fit-tests

Goodness-of-fit

Test consistency of the model with the data.

Goodness-of-fit for least squares fit (1)

The minimum $\chi^2(\vec{(}\Theta))$ of a least-squares fit is a measure of the level of agreement between the model and the data:

$$\chi^{2}_{min} = \Sigma^{n}_{i=1} \left(\frac{y_{i} - f(x_{i}, \vec{\Theta})}{\sigma_{i}} \right)^{2}$$
(5)

• Large χ^2_{min} : the model can be rejected.

- If the model is correct, then χ²_{min} for repeated experiments follows a χ² distribution f(t, n_{df}), t = χ²_{min} with n_{df} = n − m =number of data points − number of fit parameter
- ▶ N.B.: even if you don't do a least square fit and the property of approaching the χ^2 gets lost, it might be still a useful test depending on the circumstances, see discussion by M. Williams arXiv:1006.3019

Goodness-of-fit for least squares

Expectation value of the χ^2 distribution is n_{df} $\rightarrow \chi^2 \approx n_{df}$ indicates a good fit

Consistency of a model with the data is quantified with the p-value: $p - value = \int_{\chi 2min}^{\infty} f(t; n_{df}) dt$ The p-value is the probability to get a χ^2_{min} as high as the observed one, or higher, if the model is correct. The p-value is **not** the probability that the model is correct

- straight-forward test and method be happy, if it is applicable in your case!
- however, be aware of its applicability bounds (Gaussianity in bins) and limitations (binning sensitivity)

 \rightarrow selection of different useful methods in <code>arxiv:1006.3019</code>

Michael Winn (Irfu/CEA), 05/06.12.2023

Instead of a summary - some advice

no one for all: there is not a single method for everything make it as simple as possible and as complicated as needed

don't trust common wisdom blindly

- **think** about your statistics question and their importance early on
- read the literature, use established methods and codes if adequate, don't reinvent the wheel
- visualise the (test data for blinded analysis) data as much as possible
- do self-consistency checks, bias and convergence tests based on your model (pseudo-experiments)
- **discuss** within your group

Michael Winn (Irfu/CEA), 05/06.12.2023