
Basics in statistical analysis and hypothesis
testing for physicists

Michael Winn

Department of Nuclear Physics IRFU/CEA, university Paris-Saclay

DPhN/Irfu, 05/06.12.2023



Outline

I Introduction: context and scope

I Basic notions of statistical analyses

I parameter estimation and hypothesis testing with maximum
likelihood

I goodness-of-fits

Michael Winn (Irfu/CEA), 05/06.12.2023 2 / 60



Introduction: statistics in particle and nuclear physics (I)
I Statistical analysis: vast and well studied topic
→ problems treatable by existing methods

I however, time is limited in a PhD thesis

I knowledge prior to PhD thesis heterogeneous

I knowledge of experienced physicists heterogeneous

I standards & sophistication differ between subfields and groups
→ related to: typical precision, ´known´ standard case, typical knowledge
on systematic effects, level of industrialisation, group sociology and
history

I topic often not in the center of interest of students, supervisors
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Introduction: statistics in particle and nuclear physics (II)

I This situation can lead to:
→ not sufficiently advanced or simply wrong methods
→ ´over-design´: shooting with a bazooka on a fly
→ use of previously used code/methods blindly
→ trust blindly collaborators/common wisdom of group/collaboration

I can lead to wrong parameter/uncertainty estimates or failure to finish

I can lead to knowledge gaps after PhD
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Introduction: Scope

I myself: experimental physicist: ALICE, LHCb, phenomenology

I today´s audience very broad

I impossible to get very far in 2× 1.5 h

I Goals today:
→ basics, comments about Frequentist vs. Bayesian
→ useful references
→ notions of hypothesis testing

I Goals tomorrow: → residual topics of lecture
→ simple illustrations, just bring a pocket calculator tomorrow and a
piece of paper and a pen
→ your questions

Michael Winn (Irfu/CEA), 05/06.12.2023 5 / 60



Take home message

1. Take the time to understand the statistics questions that appear in or
around your thesis yourself

2. Look in the literature, courses
3. Decide yourself or follow collaboration reasoning for an appropriate

approach
4. Discuss with your supervisor/colleagues/group about open

questions/points early on!
5. The invested time will pay off for your future:

be it in physics or not
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Why statistics for physicists?

Broadly speaking: since we want to be quantitative
→ draw reliable conclusions from data

I experimental data: parameter and uncertainty estimation on
- yields/rates/cross sections, exclusion limits
- distribution moments/shapes

I analogue in theory computations or fits to experimental data
I compatibility between different data sets and data combination
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Used material
I Statistical methods in particle physics: K. Reygers, R. Stamen, M. Voelkl

link,
very rich and good lecture series, used for introduction, also good intro to
Monte Carlo Method

I Beyond Standard Model physics: elements of statistical analysis (Master
2 NPAC), N. Morange
link
very condensed course by Beyond-the-Standard-Model practitioner, used
partly, in particular for hypothesis testing

I Statistics for searches at the LHC: G. Cowan
arXiv:1307.2487, short summary

I Introduction to Statistics and Data Analysis for Physicists: G. Bohm and
G. Zech
link
broad text book tailored to high-energy physics; interesting for example
collection
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https://uebungen.physik.uni-heidelberg.de/vorlesung/20212/1422
https://npac.ijclab.in2p3.fr/wp-content/uploads/2022/cours-sem2/BSM-cours2.pdf
https://arxiv.org/abs/1307.2487
http://www-library.desy.de/preparch/books/vstatmp_engl.pdf


Further reading
I Asymptotic formulae for likelihood-based tests of new physics. G. Cowan

et al., arXiv:1007.1727v3, reference for high-energy physics searches,
standard methodology

I ´How good are your fits? Unbinned multivariate goodness-of-fit tests in
HEP´, Michael Williams, arXiv:1006.3019, interesting compilation of
methods for goodness-of-fits

I ´Parameter uncertainties in weighted unbinned maximum likelihood fits´
C. Langenbruch, arXiv:1911.01303, presense of weights: subtleties

I ´sPlot: a statistical tool to unfold data distributions´, M. Pivk, Fr. Le
Deberder, link, separate background and signal under independence
condition, heavily used in B-physics community

I PDG review on statistics (G. Cowan) https://pdg.lbl.gov/2023/reviews/
I Pitfalls of Goodness-of-Fit from Likelihood, J. Heinrich arXiv:0310167
I Systematic Errros: Facts and Fiction, R. Barlow, not directly related, but

very crucial, often most delicate part, arXiv:0207026
→ correct as much as possible, often detection of most important effect
more crucial than quantifying precisely all effects
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https://arxiv.org/abs/1007.1727v3
https://arxiv.org/abs/1006.3019
https://arxiv.org/abs/1911.01303
https://arxiv.org/abs/physics/0402083
https://pdg.lbl.gov/2023/reviews/
https://arxiv.org/abs/physics/0310167
https://arxiv.org/abs/hep-ex/0207026


Comment on communities

that I can relate to ...
I unbinned maximum likelihood approaches: vast experience in B-physics

community (b-factories, LHCb), also a lot in ATLAS, CMS

I binned maximum likelihood approaches: vast experience in ATLAS, CMS
→ material for binned approaches from ATLAS/CMS authors, unbinned
from LHCb

I Heavy-ion community (ALICE, STAR, PHENIX,..): often large statistics
and large backgrounds, χ2-fits frequently used

I High-dimensional binned data to deduce models in
theory/phenomenology:
parton distribution functions, review; light-flavour baryon spectroscopy,
recent review
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Basic notions of statistics for physics
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Sources of uncertainties

You will always have uncertainties in measurements

I Underlying theory (quantum mechanics) is probabilistic
→ true randomness

I Limited knowledge about the measurement process
→ present without quantum mechanics

Quantify uncertainty using probabilitiy
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Mathematical definition of probability

Let A be an event. Then probability is a number obeying three conditions, the
Kolmogorov axioms:

I P(A) ≥ 0 (non-negative real number)
I P(S) = 1, where S is the set of all A, the sample space
I P(A∪B) = P(A) + P(B) for any A, B which are exclusive, i.e. A∩B = 0

From these axioms further properties can be derived, e.g.:

P(A) = 1− P(A) (1)
P({}) = 0 (2)

ifA ⊂ B, thenP(A) 5 P(B) (3)

But what does P mean?
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Interpretations of probability

https://plato.stanford.edu/entries/probability-interpret/

I Classical
→ Assign equal probabilities based on symmetry of the
problem, e.g., rolling dice: P(6) = 1/6

I Frequentist
→ Let A,B, .... be outcomes of a repeatable experiment:
P(A) = limn→∞

times outcome isA
n

I Bayesian (subjective probability)
→ A,B, ... are hypotheses (statements that are true or false)
P(A) = degree of believe that A is true
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Bayesian vs Frequentist statistics
Both philosophies coexist:

I Bayesian:
→ Closer to everyday reasoning, where probability is interpreted as a
degree of belief that something will happen, or that a parameter will have
a given value.

I Frequentist:
→ Closer to scientific reasoning, where probability means the relative
frequency of something happening. This makes it more objective, since it
can be determined independently of the observer, but restricts its
application to repeatable phenomena.

I So what?
→ For practical matters, results tend to be very similar in the asymptotic
regime of large numbers
→ There exist nonetheless some important differences (coverage,
goodness-of-fit...)
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Bayesian vs Frequentist: take-home messages

"Bayesian address the questions everyone is interested in by using
assumptions that no one believes. Frequentists use impeccable
logic to deal with an issue that is of no interest to anyone."
(Louis Lyons)

I Communities tend to lean towards one approach
→ Cosmology is mostly using Bayesian statistics (there is only 1
universe...)
→ High-energy physics is more frequentist

I Will use frequentist approach in the following
→ by far the most common at the LHC, my background
short discussion on differences in the following
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Conditional probability and independent events

For two events A and B, the conditional probability is defined as

P(A|B) = P(A∩B)
P(B)

Event A and B independent <=> P(A ∩ B) = P(A) · P(B)

An Event A is independent of B if P(A|B) = P(A)
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Bayes´ theorem

Definition of conditional probability:

P(A|B) = P(A∩B)
P(B) and P(B|A) = P(B∩A)

P(A)

P(A ∩ B) = P(B ∩ A) => P(A|B) = P(B|A)P(A)
P(B)

First published (posthumously) by the Reverend Thomas Bayes (1702-1761),
First modern formulation by Pierre-Simon Laplace in 1812

Accepted by everyone also if probabilities are not Bayesian probabilities
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A simple example: particle identification

Consider a detector for electron identification

Assume you have the following information based on some calibration data or
simulation:

I P(A|electron), i.e., the efficiency to identify the electron
I P(A|notanelectron), i.e. efficiency for background
I P(notA|electron) = 1− P(A|electron)

P(notA|notanelectron) = 1− P(A|notanelectron)
Question: Given a sample of tracks S passing selection A, what fraction of
them are electrons?
→ i.e. what is P(electron|A) ?
Answer: Cannot be determined with the provided information: Need in
addition: P(electron), the true fraction of electrons within S.
Provided this information, Bayes´ theorem inverts conditionality:
P(electron|A) = P(A|electron) · P(electron)/P(A)
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Bayesian inference: Degree of believe in a theory given a
certain set of data (I)

Addresses question: "What should I believe?"
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Bayesian inference: Degree of believe in a theory given a
certain set of data (II)

For a continuous parameter λ:
Pposterior (λ|m) = f (m|λ)Pprior (λ)

f1(m) λ : true value of a parameter of nature, m : measurement,

f1(m) =
∫

f (m|λ∗)P(λ∗)dλ∗

Problems with Bayesian inference
What functional form to chose for Pprior (λ)
Uniform prior: flat in continuous variable? In which variable, e.g. in λ, λ2, 1/λ, ln(λ)
→ criticism that can be addressed by ´Jeffrey´s prior´ constructions (however, does not solve the principle problem
of missing knowledge)

Bayesian reply
Choice of prior usually unimportant after a few experiments
Not so easy for discovery physics
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Are you a Frequentist or a Bayesian?

Suppose mass of a particle is measured with a Gaussian resolution
σ and the result is reported as
m ± σ

I Bayesian:
P(m|mtrue) ∝ e−(m−mtrue)2/(2σ2) → (flat prior for mtrue)
P(mtrue |m) ∝ e−(m−mtrue)2/(2σ2)

I Frequentist:
This is a statement about the interval [m − σ,m + σ]. For a
large number of hypothetically repeated experiments, the
interval would contain the true value in 68% of the cases. In
the frequentist approach, a probabilistic statement about the
true value is nonesense (the true value is what it is).
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Bayesian vs. Frequentist [based on L. Lyons]
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Random variables and probability density functions

Random variables:
I Variable whose possible values are numerical outcomes of a random

phenomenon
I Can be discrete or continuous

Probability density function (pdf) f of
a continuous variable:
P(x found in [x , x + dx ]) = f (x)dx
Normalization:

∫ b
a f (x)dx = 1

It is related to the cumulative function
F

I F so that F (x0) = P(x ≤ x0)
→ F (a) = 0,F (b) = 1

I f (x)dx = F (x + dx)− F (x)
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Histograms

Histogram:
I representation of the frequencies

of the numerical outcome of a
random phenomenon

pdf = histogram for
I infinite data sample
I zero bin width
I normalized to unit area

f (x) = N(x)
n∆x

n = total number of entries, ∆x = bin
width
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Mean, Median, and Mode

I Mean
of a data sample: x = 1

N ΣN
i=1xi

of a pdf: µ ≡< x >≡
∫

xP(x)dx
≡ expectation value E [x ]

I Median:
point with 50% probability above
and 50% probability below, can
define other quantiles
analoguously

I Mode: the most likely value
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Variance, standard deviation, moments

I Variance
of a distribution: V (x) =

∫
dxP(x)(x − µ)2 = E [(x − µ)2]

V (x) =< x2 > −µ2 =< x2 > − < x >2

Sample variance: V (x) = 1
N σi (xi − x̄)2 = x̄2 − (x̄)2

This formula underestimates the variance of underlying distribution as it
uses the mean calculated from data!
Use this if you have to estimate the mean from data (unbiased sample
variance): V̂ (x) = 1

N−1Σi (xi − x̄)2

Use this if you know the true mean µ: V (x) = 1
N σi (xi − µ)2

I Standard deviation: σ =
√

V (x)
I higher moments (E((X − µ)n)):
→ skew (n = 3): left-right asymmetry
→ kurtosis (n=4): measures the size of the tails, if positive larger than a
Gaussian
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Multi-dimensional case
For example: 2 variables x , y with joint pdf f

I A marginal pdf is defined as:
fX (x) =

∫
dy ”f (x , y ”)

fX is a projection of f , the other variables are integrated.
I A conditional pdf is defined as:

fC (x , y0) = f (x , y0) = f (x,y0)∫
dx”f (x”y0)

fC is a slice of f

2D-data, projection of data and marginal fit-pdf from PRL 125 (2020) 212001
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Independence and correlation
I Two variables X and Y are independent if: f (x , y) = fX (x)fY (y)
I Correlation coefficient between two variables X and Y

ρ(X ,Y ) = C(X ,Y )
σxσy

with
C(X ,Y ) = E((X − µX )(Y − µY )) = E(XY )− E(X)E(Y )

Independent => ρ = 0
The opposite is not true!
https://www.research.autodesk.com/publications/same-stats-different-graphs/
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Important distributions
I Poisson: p(k, µ) = µk

k! e−µ, E [k] = µ,V [k] = µ

I Binomial:
f (k,N, p) = N!

k!(N−k)! p
k (1− p)N−k ,E [k] = Np,V [k] = Np(1− p)

I Normal (or Gaussian) distribution: g(x ;µ, σ) = 1√
2πσ exp(− (x−µ)2

2σ2 ),
E [x ] = µ, V [x ] = σ2
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Deviation in units of σ for a Gaussian

P(Zσ) = 1
2π
∫ Z
−Z e−x2/2dx

I 68.27%/95.45%/99.73% of area within ±1/2/3σ
I 90% of area within ±1.645σ
I 95% of area within ±1.960σ
I 99% of area within ±2.576σ

2D gaussian 1σ-ellipse: contains 39%
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p-value and significance

p-value:
probability that a random process produces a measurement thus
far, or further, from the true mean
p-value and significance Z (one-tailed):

Φ cumulative Gaussian function.
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Why Gaussians are so useful?
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Why Gaussians are so useful?

Central limit theorem:
I When independent random variables are added, their properly

normalized sum tends towards a normal distribution even if
the original variables themselves are not normally distributed,
but have a finite variance

More specifically:
I Consider n random variables with finite variance σ2i and

arbitrary pdfs:
y = Σn

i=1xi →n→∞ y follows Gaussian with E [y ] = Σn
i=1µi ,

V [y ] = Σn
i=1σ

2
i

Measurement uncertainties are often the sum of many independent
contributions. The underlying pdf for a measurement can therefore
be assumed to be a Gaussian.
Many convenient features in addition, e.g. sum or difference of two
Gaussian random variables is again a Gaussian.
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The central limit theorem at work
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χ2-distribution

Let x1, .., xn be n independent standard normal (µ = 0, σ = 1)
random variables. Then the sum of their squares
z = Σn

i=1x2
i

follows a χ2 distribution with n degrees of freedom.

χ2 distribution
I f (z ; n) = zn/2−1e−z/2

2n/2Γ( n
2 ) (z ≤ 0)

I E [z ] = n,V [z ] = 2n
I mode: max(n − 2, 0)
I ≈ Gauss for n > 100

Application: goodness of fit χ2 = Σn
i=1( yi−h(xi )

σi
)2
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Precision and accuracy
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Parameter estimation

I Suppose we have a model, represented by a pdf f (x |Θ)
→ x is a random variable
→ Θ represents parameters that affect the shape of the pdf

I Collect a sample of observed data x = (x1, x2, ..., xN)

I Intend to say something about Θ using the observed data

I An estimator is a function of the data (a statistic) that is used to
estimate the value of a parameter:

I tN(x)
I tN(x)→ Θ ?
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Estimator properties

Not all estimators behave the same

X is a random variable of pdf f (x |Θ0) with Θ0 unknown. An
estimator tN of Θ0 can be:
I unbiased(accuracy): if the bias bN = E (tN)−Θ0 = 0
I convergent (or consistent): mathematical convergence

towards the true value for large enough N
I efficient(precision): if the variance of the estimator V (tN)

converges towards a minium variance bound
I optimal: if tN minimises the Mean Square Error (MSE):

MSE (tN) = V (tN) + b2
N

I robust: if it does not depend on a hypothesis on the pdf
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Usual methods to build estimators

I Moments method
→ e.g. sample mean

I Maximum likelihood
→ focus on this for hypothesis testing examples

I Least squares method
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Likelihood function

A random variable x follows a pdf f (x |Θ) where Θ represents parameter(s).

N independent observations of x are obtained: x1, ...xN

The joint pdf of the N observations is then:
p(X|θ) = ΠN

i=1f (xi |Θ)

The likelihood function is this pdf, evaluated with fixed data X and regarded
as a function of the parameter Θ only:
L(Θ) = P(X|Θ)
Notes:

I L(θ) is NOT a pdf for Θ. The area under L is meaningless
I It is not even normalised to unity. The absolute value of the likelihood

is also meaningless
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Maximum likelihood estimators

I If the hypothesized Θ is close to the true value, then there is
a high probability to get data like the observed one.

I The maximum likelihood (ML) estimator(s) are defined
as the parameter value(s) for which the likelihood is
maximum.

I In practice, usually - lnL(Θ) or −2lnL(Θ) minimized

ML estimators are not guaranteed to be always unbiased, neither
optimal
→ however, often method of choice if full pdf available in some analytical or numerical form, see discussion on

parameter inference in link as useful guide
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Example: estimation of a Gaussian
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Example: estimation of a Gaussian
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Coverage probability and confidence interval

Beyond parameter estimation: parameter uncertainty

I Frequentists report confidence intervals, which will contain the true
value of the parameter Θ a certain fraction of the time (called the
confidence level)

I Frequentist Principle (Neyman): Construct statements such that a
fraction f ≥ 1− α of them are true over an ensemble of statements
f is called coverage probability
1− α is called confidence level
An ensemble of statements that obyes the Frequentists Principle is said to ´cover´

I Application of confidence intervals: if we report a confidence interval I
and we repeat the experimenta N times, then a fraction f of the
intervales I will contain the true value of the parameter

Michael Winn (Irfu/CEA), 05/06.12.2023 45 / 60



Confidence intervals for Maximum-likelihood estimators
I Finding procedures that give correct coverage (i.e. neither undercoverage

nor overcoverage) is not trivial

I Asymptotic properties of log-likelihoods to the rescue:
→ Wald´s approximation: the likelihood shape is asymptotically
gaussian around its maximum
→ Wilk´s theorem: −2lnL(Θ) asymptotically follows a a χ2 distribution
with d degrees of freedom, where d is the dimensionality of Θ
→ Consequence: Confidence intervals can be obtained from the inverse
quantiles of a χ2 distribution with d degrees of freedom, the so-called
likelihood intervals
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Example: Higgs mass measurement
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Hypotheses and tests
Hypothesis test

I Statement about the validity of a model
I Tells you which of two competing models is more consistent with the data

Simple hypothesis: a hypothesis with no free parameters
I Example: the detected particle is an electron; data follow Poissonian with

mean 5
Composite hypothesis: contains unspecified parameter(s)

I Example: data follow Poissonian with mean > 5
Null hypothesis H0 and alternative hypothesis H1

I H0 often the background-only hypothesis
I H1 often signal or signal + background hypothesis

Question to be replied by hypothesis test: Can null hypothesis be rejected by
the data?

I special case ´Goodness-of-fit´ test:
Can null hypothesis be rejected by the data without specification of
alternative H1?
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Hypothesis testing ingredients

We need:
I A test statistic t(~x): a (usually scalar) variable which is a function of the

the data alone that is used to test the hypothesis
~x = (x1, ..., xn): measured features/data

I A critical region w such that the hypothesis H0 is false (with a given
probability) if t in w
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Critical region
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Type I and Type II errors
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Neyman-Pearson lemma

In the comparison of two simple hypothesis H0 and H1, the optimal
discriminator is the likelihood ratio (LR):

t(x) = L(x |H1)
L(x |H0) (4)

Notes:
I Optimal: minimizes Type II error for a given Type I level of significance
I Valid for monotonic function of t
→ Ex: q(x) = −2 ln(t(x))
→ Ex: in a counting experiment, number of events

I Strictly valid for simple hypotheses only.
→ However, in practice, works well for hypotheses in typical LHC
applications
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Procedure for hypothesis testing

I Specify the null and the alternate hypotheses
→ Ex: H0 background only, H1 background and additional resonnace

I Build a test statistics t(x) using e.g. Neyman-Pearson lemma
I Specify the significance of the test (what we accept as a false discovery

rate)
→ Ex: 2.9 · 10−7 (5σ) for discovery
→ Ex: 0.05 for exclusion

I See where the measurement is tobs

I Depending on whether tobs is in or out of the critical region: decide on H0
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p-value and significance

I p-value: p0 = p(t ≥ tobs |H0)
→ Significance level of a test α: chosen
prior to look at data
→ p-value: quantity computed when
looking at the data

I Interpretation:
→ probability for the test statistic t to be
larger than the observed one tobs , under
the null hypothesis

I NOT!!! the probability that H0 is true
I "Significance" in number of signals:
→ translation of the p-value using the
integral in one tail of a Gaussian
p0 =

∫∞
Z G(x |0, 1)dx = 1− Φ(Z)

Φ: cumulative Gaussian function.

I Convention: 3 sigma evidence, 5 sigma
is discovery
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Spurious exclusion

taken from Cowan et al. arXiv:1105.3166
I for a tested very small signal strength, H0 and H1 may yield very close

test statistics t
I can lead to exclusion of hypotheses for which there is little sensitivity
I α for exclusion often set to 0.05, hence in one out of 20 cases, we reject

H0

I weak sensitivity can be quantified by the power of the test β
I one possible strategy:

standard procedure, but only for the power β(µ) larger than a given
threshold, otherwise 100% confidence level

I ´power-constrained´ limit, threshold is pure convention
I see for details in arXiv:1105.3166, see application arXiv:2303.1429
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A word of caveat and the last item of today

I methodology can take into account systematic uncertainties as nuisance
parameters, see arXiv:1007.1727

I maximum-loglikelihood estimators and hypothesis testing makes sense
and have good properties:
Assuming that the PDF (the model) is correct
→ this is where the physics input is needed
→ Pull distributions, Goodness-of-fit-tests
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Goodness-of-fit

Test consistency of the model with the data.
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Goodness-of-fit for least squares fit (1)

The minimum χ2(~(Θ)) of a least-squares fit is a measure of the level of
agreement between the model and the data:

χ2
min = Σn

i=1

(
yi − f (xi , ~Θ)

σi

)2

(5)

I Large χ2
min: the model can be rejected.

I If the model is correct, then χ2
min for repeated experiments follows a χ2

distribution f (t, ndf ), t = χ2
min with ndf = n −m =number of data points

− number of fit parameter
I N.B.: even if you don´t do a least square fit and the property of

approaching the χ2 gets lost, it might be still a useful test depending on
the circumstances, see discussion by M. Williams arXiv:1006.3019
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Goodness-of-fit for least squares

Expectation value of the χ2 distribution is ndf
→ χ2 ≈ ndf indicates a good fit

Consistency of a model with the data is quantified with the p-value:
p − value =

∫∞
χ2min f (t; ndf )dt

The p-value is the probability to get a χ2min as high as the observed
one, or higher, if the model is correct.
The p-value is not the probablity that the model is correct

I straight-forward test and method
be happy, if it is applicable in your case!

I however, be aware of its applicability bounds (Gaussianity in bins) and
limitations (binning sensitivity)

→ selection of different useful methods in arxiv:1006.3019
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Instead of a summary - some advice
I no one for all: there is not a single method for everything

make it as simple as possible and as complicated as needed

I don´t trust common wisdom blindly

I think about your statistics question and their importance early on

I read the literature, use established methods and codes if adequate, don´t
reinvent the wheel

I visualise the (test data for blinded analysis) data as much as possible

I do self-consistency checks, bias and convergence tests based on your
model (pseudo-experiments)

I discuss within your group
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