Les sujets de thèses

4 sujets IRFU/DEDIP

Dernière mise à jour :


• Astrophysique

• Instrumentation

• Instrumentation nucléaire et métrologie des rayonnements ionisants

• Physique des particules

 

Estimation rapide des paramètres des ondes gravitationnelles pour la mission spatiale LISA

SL-DRF-25-0422

Domaine de recherche : Astrophysique
Laboratoire d'accueil :

Département d’Electronique, des Détecteurs et d’Informatique pour la physique (DEDIP)

Laboratoire ingénierie logicielle et applications spécifiques (LILAS)

Saclay

Contact :

Tobias LIAUDAT

Jérôme BOBIN

Date souhaitée pour le début de la thèse : 01-10-2025

Contact :

Tobias LIAUDAT
CEA - DRF/IRFU/DEDIP

07 83 88 91 52

Directeur de thèse :

Jérôme BOBIN
CEA - DRF/IRFU/DEDIP

0169084591

Page perso : https://tobias-liaudat.github.io

Contexte
En 2016, l'annonce de la première détection directe d'ondes gravitationnelles a ouvert une ère où l'univers sera sondé de manière inédite. Parallèlement, le succès de la mission LISA Pathfinder a permis de valider certaines technologies sélectionnées pour le projet LISA (Laser Interferometer Space Antenna). L'année 2024 a commencé avec l'adoption de la mission LISA par l'Agence spatiale européenne (ESA) et la NASA. Cet observatoire spatial des ondes gravitationnelles sans précédent sera composé de trois satellites distants de 2,5 millions de kilomètres et permettra la détection directe d'ondes gravitationnelles à des fréquences indétectables par les interféromètres terrestres. L'ESA prévoit un lancement en 2035.
Parallèlement aux aspects techniques, la mission LISA présente plusieurs défis en matière d'analyse des données qui doivent être relevés pour assurer le succès de la mission. La mission doit prouver qu'avec des simulations, la communauté scientifique sera en mesure d'identifier et de caractériser les signaux d'ondes gravitationnelles détectés. L'analyse des données comporte plusieurs étapes, dont le pipeline d'analyse rapide, dont le rôle est de détecter de nouveaux événements et de caractériser les événements détectés. Le dernier point concerne l'estimation rapide de la position dans le ciel de la source d'émission des ondes gravitationnelles et de leur temps caractéristique, comme le temps de coalescence pour une fusion de trous noirs.
Ces outils d'analyse constituent le pipeline d'analyse à faible latence. Outre son intérêt pour LISA, ce pipeline joue également un rôle essentiel pour permettre l'astronomie multi-messagers, qui consiste à surveiller rapidement les événements détectés par des observations électromagnétiques (observatoires terrestres ou spatiaux, des ondes radio aux rayons gamma).


Projet de doctorat
Le projet de doctorat se concentre sur le développement d'outils de détection et d'identification d'événements pour le pipeline d'alerte à faible latence (LLAP) de LISA. Ce pipeline sera une partie essentielle du flux de travail d'analyse de LISA, fournissant une détection rapide des binaires de trous noirs massifs, ainsi qu'une estimation rapide et précise des localisations du ciel des sources ainsi que du temps de coalescence. Ces informations sont essentielles pour les suivis multi-messager ainsi que pour l'analyse globale des données de LISA.
Alors que des méthodes d'analyse rapide ont été développées pour les interféromètres terrestres, le cas des interféromètres spatiaux tels que LISA reste un domaine à explorer. Un traitement adapté des données devra prendre en compte la façon dont les données sont transmises par paquets, ce qui rendra nécessaire la détection d'événements à partir de données incomplètes. En utilisant des données entachées d'artefacts tels que des glitchs ou des paquets de données manquants, ces méthodes devraient permettre la détection, la discrimination et l'analyse de diverses sources : fusions de trous noirs, EMRI (binaires spirales avec des rapports de masse extrêmes), sursauts et binaires provenant d'objets compacts. Un dernier élément de complexité crucial est la rapidité d'analyse, qui constitue une contrainte forte pour les méthodes à développer.
A cette fin, les problèmes que nous aborderons au cours de cette thèse seront les suivants :
1. L'inférence rapide des paramètres des ondes gravitationnelles, notamment la position du ciel et le temps de coalescence. Deux des principales difficultés résident dans la multimodalité de la distribution de probabilité a posteriori des paramètres cibles et dans les exigences strictes en matière de temps de calcul. À cette fin, nous envisagerons différentes stratégies d'inférence avancées, notamment
(a) L'utilisation d'algorithmes d'échantillonnage basés sur le gradient comme les diffusions de Langevin ou les méthodes de Monte Carlo Hamiltoniennes adaptées au problème des ondes gravitationnelles de LISA,
(b) l'utilisation de méthodes assistées par l'apprentissage automatique pour accélérer l'échantillonnage (par exemple, les normalising flows),
(c) l'utilisation de techniques d'inférence variationnelle.
2. Détection précoce des fusions de trous noirs.
3. La complexité croissante des données LISA, y compris, entre autres, un bruit réaliste, une réponse réaliste de l'instrument, des glitches, des données manquantes et des sources qui se superposent.
4. Le traitement en ligne des paquets de données de 5 minutes avec le cadre d'inférence rapide développé.
Cette thèse sera basée sur l'application de méthodes bayésiennes et statistiques pour l'analyse des données et l'apprentissage automatique. Cependant, un effort sur la partie physique est nécessaire, à la fois pour comprendre les simulations et les différentes formes d'ondes considérées (avec leurs hypothèses sous-jacentes) et pour interpréter les résultats concernant la détectabilité des signaux de fusion de trous noirs dans le contexte de l'analyse rapide des données LISA.
Développement d'un cadre d'analyse basé sur le ML pour la caractérisation rapide des conteneurs de déchets nucléaires par tomographie muonique

SL-DRF-25-0409

Domaine de recherche : Instrumentation
Laboratoire d'accueil :

Département d’Electronique, des Détecteurs et d’Informatique pour la physique (DEDIP)

DÉtecteurs: PHYsique et Simulation (DEPHYS)

Saclay

Contact :

Hector GOMEZ

David ATTIÉ

Date souhaitée pour le début de la thèse : 01-10-2025

Contact :

Hector GOMEZ
CEA - DRF/IRFU/DEDIP/DEPHYS

0169086380

Directeur de thèse :

David ATTIÉ
CEA - DRF/IRFU/DEDIP/DEPHYS

(+33)(0)1 69 08 11 14

Labo : https://irfu.cea.fr/Phocea/Vie_des_labos/News/index.php?id_news=3388

Voir aussi : https://irfu.cea.fr/en/Phocea/Vie_des_labos/Ast/ast.php?t=fait_marquant&id_ast=4888.

Cette thèse de doctorat vise à développer un cadre d'analyse avancé pour l'inspection des conteneurs de déchets nucléaires à l'aide de la tomographie muonique, et plus particulièrement via la méthode par diffusion des muons. La tomographie muonique, qui exploite les muons naturels issus des rayons cosmiques pour scanner des structures denses, s'est avérée précieuse dans des domaines dans lesquels les méthodes d'imagerie traditionnelles sont inefficaces. Le CEA/Irfu, avec son expertise dans les détecteurs de particules, cherche à exploiter l'intelligence artificielle (IA) et le Machine Learning (ML) pour optimiser l'analyse des données des muons, notamment pour réduire les temps d'exposition et améliorer la fiabilité des images.

Le projet consistera à se familiariser avec les principes de la muographie, à simuler les interactions des muons avec les conteneurs de déchets et à développer des techniques de traitement d'images et d'augmentation de données basées sur le ML. Le résultat devrait aboutir à des outils efficaces permettant d'interpréter les muographies (images de tomographie muonique), d’accélérer l’analyse et de classifier de manière fiable le contenu des conteneurs. L'objectif de la thèse est d'améliorer la sécurité et la fiabilité de l'inspection des déchets nucléaires en produisant des muographies plus nettes, plus rapides et plus interprétables grâce à des méthodes d'analyse innovantes.
Caliste-3D CZT: développement d’un spectro-imageur gamma miniature, monolithique et hybride à efficacité améliorée dans la gamme 100 keV à 1 MeV et optimisé pour la détection de l’effet Compton et la localisation sous-pixel

SL-DRF-25-0081

Domaine de recherche : Instrumentation nucléaire et métrologie des rayonnements ionisants
Laboratoire d'accueil :

Département d’Electronique, des Détecteurs et d’Informatique pour la physique (DEDIP)

LAboratoire des SYstèmes de Détection (LASYD)

Saclay

Contact :

Rémy Le Breton

Aline Meuris

Date souhaitée pour le début de la thèse : 01-09-2025

Contact :

Rémy Le Breton
CEA - DRF/IRFU


Directeur de thèse :

Aline Meuris
CEA - DRF/IRFU/DAP/LSAS

01 69 08 12 73

L’observation multi-longueur d’onde des sources astrophysiques est la clé d’une compréhension globale des processus physiques en jeu. En raison de contraintes instrumentales, la bande spectrale de 0,1 à 1 MeV est celle qui souffre le plus d’une sensibilité insuffisante de détection dans les observatoires existants. Ce domaine permet d’observer les noyaux actifs de galaxies les plus enfouis et les plus lointains pour mieux comprendre la formation et l’évolution des galaxies à des échelles cosmologiques. Il relève des processus de nucléosynthèse des éléments lourds de notre Univers et l’origine des rayons cosmiques omniprésents dans l’Univers. La difficulté intrinsèque de la détection dans ce domaine spectral réside dans l’absorption de ces photons très énergétiques après des interactions multiples dans le matériau. Cela requiert une bonne efficacité de détection mais également une bonne localisation de toutes les interactions pour en déduire la direction et l’énergie du photon incident. Ces enjeux de détection sont identiques pour d’autres applications à fort impact sociétal et environnemental : le démantèlement et l’assainissement des installations nucléaires, le suivi de la qualité de l’air, la dosimétrie en radiothérapie.
Cette thèse d’instrumentation a pour objectif de développer un détecteur « 3D » polyvalent, exploitable dans les domaines de l’astrophysique et de la physique nucléaire, avec une meilleure efficacité de détection dans la gamme 100 keV à 1 MeV et des évènements Compton, ainsi que la possibilité de localiser les interactions dans le détecteur à mieux que la taille d’un pixel.
Plusieurs groupes dans le monde, dont le nôtre, ont développé des spectro-imageurs X dur à base de semi-conducteurs haute densité pixélisés pour l’astrophysique (CZT pour NuSTAR, CdTe pour Solar Orbiter et Hitomi), pour le synchrotron (Hexitec UK, RAL) ou pour des applications industrielles (Timepix, ADVACAM). Leur gamme d’énergie reste toutefois limitée à environ 200 keV (sauf pour Timepix) en raison de la faible épaisseur des cristaux et de leurs limitations intrinsèques d’exploitation. Pour repousser la gamme en énergie au-delà du MeV, il faut des cristaux plus épais associés à des bonnes propriétés de transport des porteurs de charge. Cela est actuellement possible avec du CZT, mais nécessite néanmoins de relever plusieurs défis.
Le premier défi était la capacité des industriels à fabriquer des cristaux de CZT homogènes épais. Les avancées dans ce domaine depuis plus de 20 ans nous permettent aujourd’hui d’envisager des détecteurs jusqu’à au moins 10 mm d’épaisseur (Redlen, Kromek).
Le principal défi technique restant est l’estimation précise de la charge générée par interaction d’un photon dans le semi-conducteur. Dans un détecteur pixélisé où seules les coordonnées X et Y de l’interaction sont enregistrées, augmenter l’épaisseur du cristal dégrade les performances spectrales. Obtenir l’information de profondeur d’interaction Z dans un cristal monolithique permet théoriquement de lever le verrou associé. Cela nécessite le déploiement de méthodes expérimentales, de simulations physiques, de conception de circuits de microélectronique de lecture et de méthodes d’analyse de données originales. De plus, la capacité à localiser les interactions dans le détecteur à mieux que la taille d’un pixel contribue à résoudre ce défi.
Vers un detecteur pixel à haute resolution spatiale pour l’identification de particules: contribution de nouveaux détecteurs à la physique

SL-DRF-25-0509

Domaine de recherche : Physique des particules
Laboratoire d'accueil :

Département d’Electronique, des Détecteurs et d’Informatique pour la physique (DEDIP)

DÉtecteurs: PHYsique et Simulation (DEPHYS)

Saclay

Contact :

NICOLAS FOURCHES

CHARLES RENARD

Date souhaitée pour le début de la thèse : 01-12-2024

Contact :

NICOLAS FOURCHES
CEA - DRF/IRFU/DEDIP

0169086164

Directeur de thèse :

CHARLES RENARD
CNRS - C2N

0170270346

Voir aussi : https://doi.org/10.1109/TED.2017.2670681

Les expériences de physique des particules sur les futurs collisionneurs linéaires à e-e+ nécessitent des progrès dans la résolution spatiale des détecteurs de vertex (jusqu’au micron), ceci afin de déterminer précisément les vertex primaires et secondaires pour des particules de grande impulsion transverse. Ce type de détecteur est placé près du point d’interaction. Ceci permettra de faire des mesures de précision en particulier pour des particules chargées de faible durée de vie. Nous devons par conséquent développer des matrices comprenant des pixels de dimension inférieure au micron-carré. Les technologies adéquates (DOTPIX, Pixel à Puit/Point quantique) devraient permettre une avance significative en reconstruction de trace et de vertex. Bien que le principe de ces nouveaux dispositifs ait été étudié à l’IRFU (voir référence), ce travail de doctorat devrait se focaliser sur l’étude de dispositifs réels qui devraient alors être fabriqués garce aux nanotechnologies en collaboration avec d’autres Instituts. Cela requiert l’utilisation de codes de simulation et la fabrication de structures de test. Les applications en dehors de la physique se trouvent pour l’essentiel dans l’imagerie X et éventuellement les cameras holographiques dans le visible.

 

Retour en haut