Les sujets de thèses

4 sujets IRFU/DEDIP

Dernière mise à jour :


• Instrumentation nucléaire et métrologie des rayonnements ionisants

• Physique des particules

• Physique nucléaire

 

Caliste-3D CZT: développement d’un spectro-imageur gamma miniature, monolithique et hybride à efficacité améliorée dans la gamme 100 keV à 1 MeV et optimisé pour la détection de l’effet Compton et la localisation sous-pixel

SL-DRF-24-0838

Domaine de recherche : Instrumentation nucléaire et métrologie des rayonnements ionisants
Laboratoire d'accueil :

Département d’Electronique, des Détecteurs et d’Informatique pour la physique (DEDIP)

LAboratoire des SYstèmes de Détection (LASYD)

Saclay

Contact :

Rémy Le Breton

Aline Meuris

Date souhaitée pour le début de la thèse : 01-09-2024

Contact :

Rémy Le Breton
CEA - DRF/IRFU


Directeur de thèse :

Aline Meuris
CEA - DRF/IRFU/DAP/LSAS

01 69 08 12 73

L’observation multi-longueur d’onde des sources astrophysiques est la clé d’une compréhension globale des processus physiques en jeu. En raison de contraintes instrumentales, la bande spectrale de 0,1 à 1 MeV est celle qui souffre le plus d’une sensibilité insuffisante de détection dans les observatoires existants. Ce domaine permet d’observer les noyaux actifs de galaxies les plus enfouis et les plus lointains pour mieux comprendre la formation et l’évolution des galaxies à des échelles cosmologiques. Il relève des processus de nucléosynthèse des éléments lourds de notre Univers et l’origine des rayons cosmiques omniprésents dans l’Univers. La difficulté intrinsèque de la détection dans ce domaine spectral réside dans l’absorption de ces photons très énergétiques après des interactions multiples dans le matériau. Cela requiert une bonne efficacité de détection mais également une bonne localisation de toutes les interactions pour en déduire la direction et l’énergie du photon incident. Ces enjeux de détection sont identiques pour d’autres applications à fort impact sociétal et environnemental : le démantèlement et l’assainissement des installations nucléaires, le suivi de la qualité de l’air, la dosimétrie en radiothérapie.
Cette thèse d’instrumentation a pour objectif de développer un détecteur « 3D » polyvalent, exploitable dans les domaines de l’astrophysique et de la physique nucléaire, avec une meilleure efficacité de détection dans la gamme 100 keV à 1 MeV et des évènements Compton, ainsi que la possibilité de localiser les interactions dans le détecteur à mieux que la taille d’un pixel.
Plusieurs groupes dans le monde, dont le nôtre, ont développé des spectro-imageurs X dur à base de semi-conducteurs haute densité pixélisés pour l’astrophysique (CZT pour NuSTAR, CdTe pour Solar Orbiter et Hitomi), pour le synchrotron (Hexitec UK, RAL) ou pour des applications industrielles (Timepix, ADVACAM). Leur gamme d’énergie reste toutefois limitée à environ 200 keV (sauf pour Timepix) en raison de la faible épaisseur des cristaux et de leurs limitations intrinsèques d’exploitation. Pour repousser la gamme en énergie au-delà du MeV, il faut des cristaux plus épais associés à des bonnes propriétés de transport des porteurs de charge. Cela est actuellement possible avec du CZT, mais nécessite néanmoins de relever plusieurs défis.
Le premier défi était la capacité des industriels à fabriquer des cristaux de CZT homogènes épais. Les avancées dans ce domaine depuis plus de 20 ans nous permettent aujourd’hui d’envisager des détecteurs jusqu’à au moins 10 mm d’épaisseur (Redlen, Kromek).
Le principal défi technique restant est l’estimation précise de la charge générée par interaction d’un photon dans le semi-conducteur. Dans un détecteur pixélisé où seules les coordonnées X et Y de l’interaction sont enregistrées, augmenter l’épaisseur du cristal dégrade les performances spectrales. Obtenir l’information de profondeur d’interaction Z dans un cristal monolithique permet théoriquement de lever le verrou associé. Cela nécessite le déploiement de méthodes expérimentales, de simulations physiques, de conception de circuits de microélectronique de lecture et de méthodes d’analyse de données originales. De plus, la capacité à localiser les interactions dans le détecteur à mieux que la taille d’un pixel contribue à résoudre ce défi.
Vers un detecteur pixel à haute resolution spatiale pour l’identification de particules: contribution de nouveaux détecteurs à la physique

SL-DRF-24-0706

Domaine de recherche : Physique des particules
Laboratoire d'accueil :

Département d’Electronique, des Détecteurs et d’Informatique pour la physique (DEDIP)

DÉtecteurs: PHYsique et Simulation (DEPHYS)

Saclay

Contact :

Nicolas FOURCHES

Date souhaitée pour le début de la thèse : 01-09-2024

Contact :

Nicolas FOURCHES
CEA - DRF/IRFU

0169086164

Directeur de thèse :

Nicolas FOURCHES
CEA - DRF/IRFU

0169086164

Voir aussi : https://doi.org/10.1109/TED.2017.2670681

Les expériences de physique des particules sur les futurs collisionneurs linéaires à e-e+ nécessitent des progrès dans la résolution spatiale des détecteurs de vertex (jusqu’au micron), ceci afin de déterminer précisément les vertex primaires et secondaires pour des particules de grande impulsion transverse. Ce type de détecteur est placé près du point d’interaction. Ceci permettra de faire des mesures de précision en particulier pour des particules chargées de faible durée de vie. Nous devons par conséquent développer des matrices comprenant des pixels de dimension inférieure au micron-carré. Les technologies adéquates (DOTPIX, Pixel à Puit/Point quantique) devraient permettre une avance significative en reconstruction de trace et de vertex. Bien que le principe de ces nouveaux dispositifs ait été étudié à l’IRFU (voir référence), ce travail de doctorat devrait se focaliser sur l’étude de dispositifs réels qui devraient alors être fabriqués garce aux nanotechnologies en collaboration avec d’autres Instituts. Cela requiert l’utilisation de codes de simulation et la fabrication de structures de test. Les applications en dehors de la physique se trouvent pour l’essentiel dans l’imagerie X et éventuellement les cameras holographiques dans le visible.
CONCEPTION D’UN DETECTEUR PIXELISE MONOLITHIQUE A DEBIT ADAPTATIF POUR LA PHYSIQUE DES PARTICULES

SL-DRF-24-0349

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Département d’Electronique, des Détecteurs et d’Informatique pour la physique (DEDIP)

Systèmes Temps Réel, Electronique d’Acquisition et Microélectronique (STREAM)

Saclay

Contact :

Fabrice Guilloux

Stefano PANEBIANCO

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Fabrice Guilloux
CEA - DRF/IRFU/DEDIP/STREAM

33 1 69 08 67 31

Directeur de thèse :

Stefano PANEBIANCO
CEA - DRF/IRFU/DPhN/LQGP

0169087357

Dans les expériences de physique des hautes énergies actuelles et futures (jouvence des grands détecteurs auprès du LHC et expériences sur les futurs collisionneurs), la granularité des détecteurs de particules continue d’augmenter et l’utilisation de circuits intégrés submicroniques multicanaux est devenue un standard.

Cette granularité a été particulièrement poussée dans le domaine des détecteurs de traces pixelisés en technologie “Monolithic Active Pixel Sensor” (MAPS) où la taille des pixels peut être de seulement 10 x 10 µm2. Ces petits pixels permettent d’atteindre des résolutions spatiales record ou d'améliorer grandement la résistance aux radiations du détecteur de trace, au prix d’une très grande quantité des données produite. Cette grande quantité de données est acceptable là où la résolution spatiale doit être maximale mais peut être rédhibitoire quand cela n’est pas nécessaire ou que les contraintes d’espace et de consommation imposent de limiter le nombre de liens rapides de lecture.

Chaque expérience nécessite donc à chaque fois de redéfinir le couple taille de pixel - architecture de l’électronique de lecture intégrée au détecteur pour s’ajuster aux exigences de taux d’occupation de chaque expérience de physique et des possibilités de relecture des détecteurs.

Une innovation majeure dans le développement des détecteurs pixélisés pour la physique des particules est de décorréler la matrice de détection de pixels du débit des données envoyées.

Au sein d’une équipe développant des MAPS depuis 1999, l’objectif pour la thèse est d’étudier dans un premier temps l’architecture existante des détecteurs de traces afin d’en comprendre les limitations en termes notamment de tenue aux radiations. Dans un deuxième temps, la thèse se focalisera sur les options de regroupement d’information, d’évaluer selon ces options l’impact sur la réduction de données mais aussi sur la perte d’information induite.

Cette réflexion sera soutenue par la conception de l'architecture d’un système sur puce incluant l'optimisation d’une matrice de pixels et le traitement numérique, validant dans un circuit intégré le travail réalisé.

Pour ce faire, cette thèse visera spécifiquement une des grandes expériences au Centre Européen pour la Recherche Nucléaire (CERN) : le détecteur « Upstream Tracker » pour l’Expérience du LHC sur le quark beauté (LHCb).
Imagerie avec des détecteurs Micromegas à lecture optique

SL-DRF-24-0102

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Département d’Electronique, des Détecteurs et d’Informatique pour la physique (DEDIP)

DÉtecteurs: PHYsique et Simulation (DEPHYS)

Saclay

Contact :

Thomas PAPAEVANGELOU

Esther FERRER RIBAS

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Thomas PAPAEVANGELOU
CEA - DRF/IRFU/DEDIP/DEPHYS

01 69 08 2648

Directeur de thèse :

Esther FERRER RIBAS
CEA - DRF/IRFU/DEDIP/DEPHYS

0169083852

Page perso : https://irfu.cea.fr/Pisp/esther.ferrer-ribas/

Labo : https://irfu.cea.fr/Phocea/Vie_des_labos/Ast/ast_sstheme.php?id_ast=4218

Des développements récents ont montré que le couplage d'un détecteur gazeux Micromegas sur un substrat en verre avec une anode transparente et une caméra CCD permet la lecture optique des détecteurs Micromegas avec une résolution spatiale impressionnante. Ce test montre que le détecteur Micromegas en verre est bien adapté à l'imagerie. Des tests ont été réalisé avec des photons de rayons X faibles permettant une imagerie résolue en énergie ouvrant la voie à différentes applications. Nous nous concentrerons ici, d'une part, sur l'imagerie neutronique pour l'examen non destructif d'objets fortement émetteurs de rayons gamma, tels que le combustible nucléaire fraîchement irradié ou les déchets radioactifs et, d'autre part, nous aimerions développer un imageur bêta au niveau cellulaire dans le domaine de l'étude des médicaments anticancéreux.
Ces deux applications nécessitent des simulations pour optimiser les rendements lumineux, l'optimisation du mode de fonctionnement de la caméra et la conception des détecteurs compte tenu des contraintes spécifiques du démantèlement des réacteurs et des applications médicales : résolution spatiale et forte suppression des rayons gamma pour l'imagerie neutronique et mesures précises du taux et du spectre d'énergie pour le bêta. L'acquisition des images sera optimisée pour chaque cas et des algorithmes de traitement dédiés seront développés.

 

Retour en haut