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Prologue: Visual Representation of Bayes’ Rule (Venn Diagram)

Conditional probability:

p(A|B): probability of A, knowing B

⇔ probability of A, within B (new Universe):

p(A|B) =
(2)

(2) + (3)

=
p(A and B)

p(B)
.

Bayes’ rule (general probability theorem):

By symmetry of A and B:
p(A and B) = p(A|B)p(B)

= p(B|A)p(A)

⇒ p(A|B) =
p(B|A)p(A)

p(B)
.

Example of p(A|B) 6= p(B|A):

p(SNIa|binary) ' 10−12 yr−1 while p(binary|SNIa) = 1.
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Two Conceptions of Probability & Uncertainty

The Bayesian View
There is an objective truth, but our knowledge
is only partial and subjective.

Probability: quantification of the
plausibility of a proposition,
with incomplete knowledge
(subjective point of view).

⇒ probabilities can be assigned to parameters
and hypotheses.

Inference: sample the distribution of
parameters, conditional on
the data (Bayes’ rule):

p(par |data)︸ ︷︷ ︸
posterior

∝ p(data|par)︸ ︷︷ ︸
likelihood

× p(par)︸ ︷︷ ︸
prior

.

Results: the posterior contains all the
relevant information.

⇒ use it to give credible ranges, test
hypotheses, compare models, etc.

The Frequentist View
There is an objective truth, and science should
not deal with subjective notions.

Probability: limit to infinity of the
occurence frequency of an
event, in a sequence of
repeated experiments.

⇒ probabilities can not be assigned to
parameters or hypotheses.

Inference: sample the likelihood,
conditional on the
parameters:

L(par) ≡ p(data|par).

Results: describe how the derived
parameter value would vary if
we were to repeat the
experiment in the same
conditions.
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Comparison of the Two Approaches on a Simple Case

Observations
True flux, F? = 42;

N = 3 observations, Fi ;
Gaussian noise, σF = 14.

⇒ classic solution:

F? '

∑N
i=1 Fi
N

±
σF√
N

= 53.9± 8.1.

Bayesian Solution:

p(F?|Fi ) ∝
∏
i

exp
(
−

(F? − Fi )2

2σ2F

)
×

1︸︷︷︸
prior

MCMC:
F? ' 53.9± 8.1;
95% credible
range:
[37.8, 69.8].

Frequentist Solution:
1 Maximum-likelihood, FML;

2 Sampling Fi ⇒ confidence interval.

Bootstrapping:
F? ' 53.9± 8.1;
95% confidence
interval:
[37.8, 69.8].
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Difference Between the Two Approaches: Using an Informative Prior

Accounting for Additional Information:

Example: the star is in a globular cluster & you know
the distance.

Prior: cluster mass function & mass/luminosity
relation ⇒ luminosity function.

True flux: F? = 42

Frequentist: F? ' 53.9± 8.1

Bayesian: F? ' 47.1± 8.0

Refining the Prior Based on the Observations:

Cumulation of data: if you perform a series of observations in this cluster:

p(F?)︸︷︷︸
new prior

∝ 1︸︷︷︸
initial prior

× p(F (1)
? |F?)× . . .× p(F (N?)

? |F?)︸ ︷︷ ︸
cumulated data

Hierarchical model: consistently perform this process on all the data, at the same time.
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Difference Between the Two Approaches: Lindley’s Paradox

Same Problem with Asymmetric Noise:

Noise: heavily-skewed split-normal
distribution.

Common sense: true flux < minimum measure:
F? . 47.6.

Frequentism: 95% confidence interval: [47.5, 62.5]
⇒ inconsistent solution.

Bayesianism: 95% credible range: [34.6, 47.7]
⇒ consistent solution.

This is an example of the Jeffreys-Lindley’s paradox .

Difficulty of Interpreting Frequentist Results:
The frequentist interpretation leads to irrelevant
interpretations

⇒ question frequentist confidence
intervals & p-values.

Bayesians address the question everyone is inter-
ested in by using assumptions no-one believes,
while Frequentists use impeccable logic to deal
with an issue of no interest to anyone.

(Lyons, 2013)

(Example adapted from Jaynes, 1976)
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Hypothesis Testing: the Limitations of Frequentist p-Values

Bayesian Hypothesis Testing:

p(H1|data)
p(H0|data)︸ ︷︷ ︸
posterior odds

=
p(data|H1)
p(data|H0)︸ ︷︷ ︸

Bayes factor

×
p(H1)
p(H0)︸ ︷︷ ︸
prior odds

Bayes factor Strength of evidence
1 to 3.2 Barely worth mentioning
3.2 to 10 Substantial
10 to 100 Strong
> 100 Decisive

(Jeffreys, 1961)

Frequentist Hypothesis Testing:

H0: the null
hypothesis;

H1: complement.

Commonly:
p < 0.05
⇒ reject H0.

Recent Controversy About the Interpretation & the Significance of p-Values:

2011: concept of p-hacking (Simmons et al., 2011).
2015: Basic & Applied Social Psychology “would no longer publish papers containing

p-values because they were too often used to support lower-quality research”.
2016: statement of the American Statistical Association: “widespread use of

’statistical significance’ (generally interpreted as ’p<0.05’) as a license for
making a claim of a scientific finding (or implied truth) leads to considerable
distortion of the scientific process”

⇒ “post p<0.05 era”.

2018: Political Analysis “will no longer be reporting p-values”.
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Reductio Ad Absurdum (xkcd)

The Bayesian Point of View:

p(nova|2× 6) =
p(2× 6|nova)× p(nova)

p(2× 6)

Laplace’s Law of Succession:

Probability of an event, knowing it happened n
consecutive times = (n + 1)/(n + 2).
The Sun is 5 000 years ⇒ n = 1 826 213
(Bible).
p(nova) = 1− p(sunrise) = 1/1 826 215.

(Essai philosophique sur les probabilités, 1814)

The Bayesian Solution:

p(2× 6) = 1/36
p(2× 6|nova) = 1

p(nova) = 1/1 826 215
⇒ p(nova|2× 6) ' 2× 10−5
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The Bayesian Approach is Holistic: Stein’s Paradox

Prior Depends on Dust Model Parameters:

Intuitive approach: p(Mdust).

Prior Also Includes Ancillary Data:

Holistic approach: p(Mdust,Mgas).
(Galliano, 2018)

⇒ partition of knowledge is statistically inadmissible (Bayesian take on Stein’s paradox).
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Pros & Cons of the Two Approaches

The Bayesian Approach

CON choice of prior is arbitrary.

PRO the posterior makes sense
(conditional on the data) &
is easy to interpret.

PRO probabilistic logic
⇒ continuum between
skepticism & confidence.

CON heavy computation.

PRO works well with small
samples, even with 0 data. . .

PRO master equation ⇒ easier to
teach.

PRO holistic & flexible: can
account for all data &
theories.

PRO conservative.

The Frequentist Approach

PRO likelihood is not arbitrary.

CON samples non-observed data &
arbitrary choice of estimator,
loss functions or p-value.

CON boolean logic ⇒ a
proposition is either true or
false.

PRO fast computation.

CON does not work well with small
samples.

CON difficult to teach (collection
of ad hoc cooking recipes).

CON strict: can account only for
data related to a particular
experiment.

CON can give ridiculous answers.

(cf. reviews by e.g. Jaynes, 1976; Loredo, 1990; Lindley, 1999; Wagenmacker, 2008; Lyons, 2013)
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Outline of the Talk

1 BAYESIANS VS FREQUENTISTS
Epistemological Principles & Comparison
Demonstration on a Simple Example
Limitations of the Frequentist Approach

2 BAYES’ RULE THROUGH HISTORY
Early Development
The Frequentist Winter
The Bayesian Renaissance

3 IMPLICATIONS FOR THE SCIENTIFIC METHOD
Karl Popper’s Logic of Scientific Discovery
Bayesian Epistemology
How Researchers Actually Work

4 SUMMARY & CONCLUSION
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First Formulation by Bayes

Thomas BAYES
('1701–1761)

Intellectual Interests:

Presbyterian reverend from a
nonconformist family.
Read: (1) David HUME (philosophy);
(2) Isaac NEWTON (physics); and
(3) Abraham DE MOIVRE (proabilities).
Published, during his lifetime: (1) a treaty
of theology; and (2) a treaty of
mathematics.

The Discovery of Bayes’ Rule:

Thought Experiment: between 1746 and 1749, he formulates his rule to infer the position of a
ball on a pool table. Prior: position relative to another ball.

Probability of an event: “the ratio between the value at which an expectation depending on the
happening of the event ought to be computed, and the value of the thing
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Laplace: the Probability of Causes of Events (1/2)

Pierre Simon
LAPLACE
(1749–1827)

(Hahn, 2004; English
version in 2005)

Upbringing & Early Career:

He Grew-up near Caen (Normandie), son of a cider producer & small estate owner.
His father pushes him towards a religious career⇒ studies theology at the University of Caen.
Abandons this idea and moves to Paris ⇒ meets d’Alembert in 1769, who helps him to get a
teaching position at the École Royale Militaire.
Applies to the Académie Royale des Sciences ⇒ elected in 1773.
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Laplace: the Probability of Causes of Events (2/2)

Contribution to the Theory of Probabilities:

Read Abraham DE MOIVRE’s memoir ⇒ understood probabilities can be used to quantify
observational errors.
Wrote: Mémoire sur la probabilité des causes par les événements (1774), where he
rediscovered Bayes’ rule.

First application of Bayes’ rule (law of succession) ⇒ should say Bayesian-Laplacian method .
He had not read Bayes memoir ⇒ discovered it in 1781, when Price went to Paris.
Laplace acknowledged Bayes.

Studied demography ⇒ birth rate of males higher than females is a general rule of human
kind.

(...) la théorie des probabilités n’est, au fond, que le bon sens réduit au calcul; elle fait
apprécier avec exactitude ce que les esprits justes sentent par une sorte d’instinct, sans
qu’ils puissent souvent s’en rendre compte.

(Théorie analytique des probabilités, 1812)

Achievements in Celestial Mechanics:

Newton’s geometric approach of
mechanics ⇒ analytic approach.
Origin & stability of the Solar system.
Postulated existence of black holes.

Political Career:

1799: (republic) interior minister.
1808: (empire) Comte d’Empire.
1817: (monarchy) Marquis.

1814-1827: member of parliament.
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After Laplace: Early Frequentist Development

John Stuart MILL
(1806–1873)

Karl PEARSON
(1857–1936)

Rejection of Laplace’s Work:

Mill initiated the frequentist approach 10 years after Laplace’s death.
(...) a very slight improvement in the data, by better observations, or by taking into
fuller consideration the special circumstances of the case, is of more use than the most
elaborate application of the calculus of probabilities founded on the data in their previous
state of inferiority. The neglect of this obvious reflection has given rise to misapplications
of the calculus of probabilities which have made it the real opprobrium of mathematics.

(A System of Logic, 1843)
1 The idea that probability should represent a degree of plausability seemed too vague to be

the foundation for a mathematical theory & no clear way to assign priors.
2 The computation of Bayesian solutions was difficult (no computers).
3 Laplace was despised in England for his Bonapartism.
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The Golden Age of Frequentism (1920–1930)

Karl PEARSON (1857–1936)

He was a social darwinist & eugenist.
The Grammar of Science (1892) influenced
Einstein.
Developed: (1) χ2 test; (2) standard-deviation;
(3) correlation; (4) p-value; (5) P.C.A.
Initiator of the anti-Bayesian current.

Sir Ronald FISHER (1890–1962)

Director of the department of eugenics at UCL.
Developed: (1) maximum likelihood;
(2) F-distribution/F-test; (3) null hypothesis &
p < 0.05 (Statistical Methods for Research
Workers, 1925).
Paid as a consultant by the Tobacco
Manufacturers’ Standing Committee ⇒ publicly
against the 1950 study showing that tobacco
causes lung cancer (“correlation does not imply
causation”; British Medical Journal, 1957).

Jerzy NEYMAN
(1894–1981)

Egon PEARSON
(1895–1980)
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p < 0.05 (Statistical Methods for Research
Workers, 1925).
Paid as a consultant by the Tobacco
Manufacturers’ Standing Committee ⇒ publicly
against the 1950 study showing that tobacco
causes lung cancer (“correlation does not imply
causation”; British Medical Journal, 1957).

Jerzy NEYMAN
(1894–1981)

Egon PEARSON
(1895–1980)

F. Galliano (AIM) Astromind 2019, CEA/Saclay 19 / 36



The Golden Age of Frequentism (1920–1930)

Karl PEARSON (1857–1936)

He was a social darwinist & eugenist.
The Grammar of Science (1892) influenced
Einstein.
Developed: (1) χ2 test; (2) standard-deviation;
(3) correlation; (4) p-value; (5) P.C.A.
Initiator of the anti-Bayesian current.

Sir Ronald FISHER (1890–1962)

Director of the department of eugenics at UCL.
Developed: (1) maximum likelihood;
(2) F-distribution/F-test; (3) null hypothesis &
p < 0.05 (Statistical Methods for Research
Workers, 1925).
Paid as a consultant by the Tobacco
Manufacturers’ Standing Committee ⇒ publicly
against the 1950 study showing that tobacco
causes lung cancer (“correlation does not imply
causation”; British Medical Journal, 1957).

Jerzy NEYMAN
(1894–1981)

Egon PEARSON
(1895–1980)

F. Galliano (AIM) Astromind 2019, CEA/Saclay 19 / 36



Bayes at Bletchley Park

Alan TURING (1912–1954)
Founder of theoretical computer science & artificial intelligence.
Formalised the concepts of algorithm, computability & Turing machine.

The Enigma Code Breaking:

German submarines (U-boats) coded their
communication with cryptographic Enigma
machines.

Turing built a mechanical computer (The
Bomb) which tested the combinations.
He used Bayesian priors to reduce the
number of combinations, looking for
frequent words, such as “ein”, “Heil
Hitler” & meteorological terms.
He developed a unit quantifying the
weight of evidence (Bayes factor), named
the ban, after the city of Banbury, where
punch cards were printed.

The End of the War:

In 1944, Thomas FLOWERS rused
vacuum tubes instead of mechanical parts
⇒ The Colossus computer.
Decodes Hitler’s intentions in case of
landing in Normandie ⇒ shorten the war
by two years (Eisenhower).
The work at Bletchley Park remained
classified until 1973 , to hide that the
British could crack Russian codes
⇒ delayed glory for the Bayesian
approach.

F. Galliano (AIM) Astromind 2019, CEA/Saclay 20 / 36



Bayes at Bletchley Park

Alan TURING (1912–1954)

Founder of theoretical computer science & artificial intelligence.
Formalised the concepts of algorithm, computability & Turing machine.

The Enigma Code Breaking:

German submarines (U-boats) coded their
communication with cryptographic Enigma
machines.

Turing built a mechanical computer (The
Bomb) which tested the combinations.
He used Bayesian priors to reduce the
number of combinations, looking for
frequent words, such as “ein”, “Heil
Hitler” & meteorological terms.
He developed a unit quantifying the
weight of evidence (Bayes factor), named
the ban, after the city of Banbury, where
punch cards were printed.

The End of the War:

In 1944, Thomas FLOWERS rused
vacuum tubes instead of mechanical parts
⇒ The Colossus computer.
Decodes Hitler’s intentions in case of
landing in Normandie ⇒ shorten the war
by two years (Eisenhower).
The work at Bletchley Park remained
classified until 1973 , to hide that the
British could crack Russian codes
⇒ delayed glory for the Bayesian
approach.

F. Galliano (AIM) Astromind 2019, CEA/Saclay 20 / 36



Bayes at Bletchley Park

Alan TURING (1912–1954)
Founder of theoretical computer science & artificial intelligence.

Formalised the concepts of algorithm, computability & Turing machine.

The Enigma Code Breaking:

German submarines (U-boats) coded their
communication with cryptographic Enigma
machines.

Turing built a mechanical computer (The
Bomb) which tested the combinations.
He used Bayesian priors to reduce the
number of combinations, looking for
frequent words, such as “ein”, “Heil
Hitler” & meteorological terms.
He developed a unit quantifying the
weight of evidence (Bayes factor), named
the ban, after the city of Banbury, where
punch cards were printed.

The End of the War:

In 1944, Thomas FLOWERS rused
vacuum tubes instead of mechanical parts
⇒ The Colossus computer.
Decodes Hitler’s intentions in case of
landing in Normandie ⇒ shorten the war
by two years (Eisenhower).
The work at Bletchley Park remained
classified until 1973 , to hide that the
British could crack Russian codes
⇒ delayed glory for the Bayesian
approach.

F. Galliano (AIM) Astromind 2019, CEA/Saclay 20 / 36



Bayes at Bletchley Park

Alan TURING (1912–1954)
Founder of theoretical computer science & artificial intelligence.
Formalised the concepts of algorithm, computability & Turing machine.

The Enigma Code Breaking:

German submarines (U-boats) coded their
communication with cryptographic Enigma
machines.

Turing built a mechanical computer (The
Bomb) which tested the combinations.
He used Bayesian priors to reduce the
number of combinations, looking for
frequent words, such as “ein”, “Heil
Hitler” & meteorological terms.
He developed a unit quantifying the
weight of evidence (Bayes factor), named
the ban, after the city of Banbury, where
punch cards were printed.

The End of the War:

In 1944, Thomas FLOWERS rused
vacuum tubes instead of mechanical parts
⇒ The Colossus computer.
Decodes Hitler’s intentions in case of
landing in Normandie ⇒ shorten the war
by two years (Eisenhower).
The work at Bletchley Park remained
classified until 1973 , to hide that the
British could crack Russian codes
⇒ delayed glory for the Bayesian
approach.

F. Galliano (AIM) Astromind 2019, CEA/Saclay 20 / 36



Bayes at Bletchley Park

Alan TURING (1912–1954)
Founder of theoretical computer science & artificial intelligence.
Formalised the concepts of algorithm, computability & Turing machine.

The Enigma Code Breaking:

German submarines (U-boats) coded their
communication with cryptographic Enigma
machines.

Turing built a mechanical computer (The
Bomb) which tested the combinations.
He used Bayesian priors to reduce the
number of combinations, looking for
frequent words, such as “ein”, “Heil
Hitler” & meteorological terms.
He developed a unit quantifying the
weight of evidence (Bayes factor), named
the ban, after the city of Banbury, where
punch cards were printed.

The End of the War:

In 1944, Thomas FLOWERS rused
vacuum tubes instead of mechanical parts
⇒ The Colossus computer.
Decodes Hitler’s intentions in case of
landing in Normandie ⇒ shorten the war
by two years (Eisenhower).
The work at Bletchley Park remained
classified until 1973 , to hide that the
British could crack Russian codes
⇒ delayed glory for the Bayesian
approach.

F. Galliano (AIM) Astromind 2019, CEA/Saclay 20 / 36



Bayes at Bletchley Park

Alan TURING (1912–1954)
Founder of theoretical computer science & artificial intelligence.
Formalised the concepts of algorithm, computability & Turing machine.

The Enigma Code Breaking:

German submarines (U-boats) coded their
communication with cryptographic Enigma
machines.

Turing built a mechanical computer (The
Bomb) which tested the combinations.
He used Bayesian priors to reduce the
number of combinations, looking for
frequent words, such as “ein”, “Heil
Hitler” & meteorological terms.
He developed a unit quantifying the
weight of evidence (Bayes factor), named
the ban, after the city of Banbury, where
punch cards were printed.

The End of the War:

In 1944, Thomas FLOWERS rused
vacuum tubes instead of mechanical parts
⇒ The Colossus computer.
Decodes Hitler’s intentions in case of
landing in Normandie ⇒ shorten the war
by two years (Eisenhower).
The work at Bletchley Park remained
classified until 1973 , to hide that the
British could crack Russian codes
⇒ delayed glory for the Bayesian
approach.

F. Galliano (AIM) Astromind 2019, CEA/Saclay 20 / 36



Bayes at Bletchley Park

Alan TURING (1912–1954)
Founder of theoretical computer science & artificial intelligence.
Formalised the concepts of algorithm, computability & Turing machine.

The Enigma Code Breaking:

German submarines (U-boats) coded their
communication with cryptographic Enigma
machines.

Turing built a mechanical computer (The
Bomb) which tested the combinations.

He used Bayesian priors to reduce the
number of combinations, looking for
frequent words, such as “ein”, “Heil
Hitler” & meteorological terms.
He developed a unit quantifying the
weight of evidence (Bayes factor), named
the ban, after the city of Banbury, where
punch cards were printed.

The End of the War:

In 1944, Thomas FLOWERS rused
vacuum tubes instead of mechanical parts
⇒ The Colossus computer.
Decodes Hitler’s intentions in case of
landing in Normandie ⇒ shorten the war
by two years (Eisenhower).
The work at Bletchley Park remained
classified until 1973 , to hide that the
British could crack Russian codes
⇒ delayed glory for the Bayesian
approach.

F. Galliano (AIM) Astromind 2019, CEA/Saclay 20 / 36



Bayes at Bletchley Park

Alan TURING (1912–1954)
Founder of theoretical computer science & artificial intelligence.
Formalised the concepts of algorithm, computability & Turing machine.

The Enigma Code Breaking:

German submarines (U-boats) coded their
communication with cryptographic Enigma
machines.

Turing built a mechanical computer (The
Bomb) which tested the combinations.
He used Bayesian priors to reduce the
number of combinations, looking for
frequent words, such as “ein”, “Heil
Hitler” & meteorological terms.

He developed a unit quantifying the
weight of evidence (Bayes factor), named
the ban, after the city of Banbury, where
punch cards were printed.

The End of the War:

In 1944, Thomas FLOWERS rused
vacuum tubes instead of mechanical parts
⇒ The Colossus computer.
Decodes Hitler’s intentions in case of
landing in Normandie ⇒ shorten the war
by two years (Eisenhower).
The work at Bletchley Park remained
classified until 1973 , to hide that the
British could crack Russian codes
⇒ delayed glory for the Bayesian
approach.

F. Galliano (AIM) Astromind 2019, CEA/Saclay 20 / 36



Bayes at Bletchley Park

Alan TURING (1912–1954)
Founder of theoretical computer science & artificial intelligence.
Formalised the concepts of algorithm, computability & Turing machine.

The Enigma Code Breaking:

German submarines (U-boats) coded their
communication with cryptographic Enigma
machines.

Turing built a mechanical computer (The
Bomb) which tested the combinations.
He used Bayesian priors to reduce the
number of combinations, looking for
frequent words, such as “ein”, “Heil
Hitler” & meteorological terms.
He developed a unit quantifying the
weight of evidence (Bayes factor), named
the ban, after the city of Banbury, where
punch cards were printed.

The End of the War:

In 1944, Thomas FLOWERS rused
vacuum tubes instead of mechanical parts
⇒ The Colossus computer.
Decodes Hitler’s intentions in case of
landing in Normandie ⇒ shorten the war
by two years (Eisenhower).
The work at Bletchley Park remained
classified until 1973 , to hide that the
British could crack Russian codes
⇒ delayed glory for the Bayesian
approach.

F. Galliano (AIM) Astromind 2019, CEA/Saclay 20 / 36



Bayes at Bletchley Park

Alan TURING (1912–1954)
Founder of theoretical computer science & artificial intelligence.
Formalised the concepts of algorithm, computability & Turing machine.

The Enigma Code Breaking:

German submarines (U-boats) coded their
communication with cryptographic Enigma
machines.

Turing built a mechanical computer (The
Bomb) which tested the combinations.
He used Bayesian priors to reduce the
number of combinations, looking for
frequent words, such as “ein”, “Heil
Hitler” & meteorological terms.
He developed a unit quantifying the
weight of evidence (Bayes factor), named
the ban, after the city of Banbury, where
punch cards were printed.

The End of the War:
In 1944, Thomas FLOWERS rused
vacuum tubes instead of mechanical parts
⇒ The Colossus computer.

Decodes Hitler’s intentions in case of
landing in Normandie ⇒ shorten the war
by two years (Eisenhower).
The work at Bletchley Park remained
classified until 1973 , to hide that the
British could crack Russian codes
⇒ delayed glory for the Bayesian
approach.

F. Galliano (AIM) Astromind 2019, CEA/Saclay 20 / 36



Bayes at Bletchley Park

Alan TURING (1912–1954)
Founder of theoretical computer science & artificial intelligence.
Formalised the concepts of algorithm, computability & Turing machine.

The Enigma Code Breaking:

German submarines (U-boats) coded their
communication with cryptographic Enigma
machines.

Turing built a mechanical computer (The
Bomb) which tested the combinations.
He used Bayesian priors to reduce the
number of combinations, looking for
frequent words, such as “ein”, “Heil
Hitler” & meteorological terms.
He developed a unit quantifying the
weight of evidence (Bayes factor), named
the ban, after the city of Banbury, where
punch cards were printed.

The End of the War:
In 1944, Thomas FLOWERS rused
vacuum tubes instead of mechanical parts
⇒ The Colossus computer.
Decodes Hitler’s intentions in case of
landing in Normandie ⇒ shorten the war
by two years (Eisenhower).

The work at Bletchley Park remained
classified until 1973 , to hide that the
British could crack Russian codes
⇒ delayed glory for the Bayesian
approach.

F. Galliano (AIM) Astromind 2019, CEA/Saclay 20 / 36



Bayes at Bletchley Park

Alan TURING (1912–1954)
Founder of theoretical computer science & artificial intelligence.
Formalised the concepts of algorithm, computability & Turing machine.

The Enigma Code Breaking:

German submarines (U-boats) coded their
communication with cryptographic Enigma
machines.

Turing built a mechanical computer (The
Bomb) which tested the combinations.
He used Bayesian priors to reduce the
number of combinations, looking for
frequent words, such as “ein”, “Heil
Hitler” & meteorological terms.
He developed a unit quantifying the
weight of evidence (Bayes factor), named
the ban, after the city of Banbury, where
punch cards were printed.

The End of the War:
In 1944, Thomas FLOWERS rused
vacuum tubes instead of mechanical parts
⇒ The Colossus computer.
Decodes Hitler’s intentions in case of
landing in Normandie ⇒ shorten the war
by two years (Eisenhower).
The work at Bletchley Park remained
classified until 1973 , to hide that the
British could crack Russian codes
⇒ delayed glory for the Bayesian
approach.

F. Galliano (AIM) Astromind 2019, CEA/Saclay 20 / 36



The Bayesian Resistance

Sir Harold JEFFREYS (1891–1989)

Geophysicist & mathematician (University of Cambridge).
In 1926, Bayesian analysis of earthquakes (few data) ⇒ liquid Earth core.
Initiated the Bayesian revival (Theory of Probability, 1939).
Popularized the use of Bayes factors.
Opposed to continental drift, though.

Post World War II Era:

Arthur BAILEY applied Bayes’ rule, including the probability of events that had never
happened ⇒ estimate insurance premiums.

Dennis LINDLEY & Jimmy SAVAGE popularised Bayes’ rule (Savage: “Fisher is making
Bayesian omelet without breaking Bayesian eggs”).

Jerome CORNFIELD pioneered in applying Bayes’ rule to epidemiology ⇒ showed link
between smoking & lung cancer (ridiculised Fisher).

Howard RAIFFA & Robert SCHLAIFER taught Bayes’ rule for business & decision-making.
Norman RASMUSSEN estimated the risks of a nuclear incident in the 70s ⇒ possible, but

not necessarily desastrous (cf. Three Mile Island, 1979).
Bayesian Search Algorithm used to find lost nuclear bombs & russian submarines.
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The Great Numerical Leap Forward

Numerical Techniques to solve Bayesian Problems:

1970: First Markov Chain Monte-Carlo (MCMC) method, the Metropolis-Hastings
algorithm (Hastings, 1970).

1984: Most popular MCMC solver, the Gibbs sampling (Geman & Geman, 1984).

⇒ Bayesian techniques became more attractive.

Modern Applications:

1983: NASA estimated the probability of shuttle failure at 1 in 100 000 , with
frequentist methods. An independent Bayesian analysis estimated the odds of
rocket booster failure at 1 in 35 . In 1986, the 28th launch (Challenger) exploded.

1987: explosion of SN1987A, with two dozen neutrinos detected ⇒ Loredo & Lamb
(1989) sucessfully applied Bayesian modelling, while frequentist techniques were
failing to analyze this valuable data (Loredo, 1990, for a review):

(1) very good
agreement with theory of stellar collapse & neutron star formation; (2) upper
limit on the mass of ν̄e .

2003: completion of the Human Genome Project, which used Bayesian techniques.

The Bayesian Foundation of Machine-Learning & A.I.:

Most machine-learning techniques are probabilistic.
Training a neural network ⇔ informing a prior .
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Importance of Bayes’ Rule For Neurosciences

(Lectures given
between 2011 and
2012)
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Optical Illusions: Manifestation of the Brain’s Bayesian Prior

(From Dehaene’s Lecture in College de France, 2011)

Most objects are illuminated from above (sunlight, spots, etc.)

⇒ the visual cortex interprets
shades, using this prior.
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How Does the Brain Learn New Words?

(Tenenbaum et al., 2011)
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Outline of the Talk

1 BAYESIANS VS FREQUENTISTS
Epistemological Principles & Comparison
Demonstration on a Simple Example
Limitations of the Frequentist Approach

2 BAYES’ RULE THROUGH HISTORY
Early Development
The Frequentist Winter
The Bayesian Renaissance

3 IMPLICATIONS FOR THE SCIENTIFIC METHOD
Karl Popper’s Logic of Scientific Discovery
Bayesian Epistemology
How Researchers Actually Work

4 SUMMARY & CONCLUSION
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The Epistemological Debate at the Beginning of the XXth Century

The unity of science consists alone in its method, not in its material.

Karl PEARSON (The Grammar of Science, 1892)

Preliminary Definitions:

Epistemology: the philosophical study of the nature, origin, and limits of human knowledge.
Deduction: inferring the truth of a specific case from general rules.
Induction: inferring a general conclusion based on individual cases.

Scientific Positivism:

Auguste
COMTE
(1798–1857)

Aim at demarcating
itself from theology &
metaphysics.
Renounce to understand
the causes (why), to
focus on the
mathematical laws of
nature (how).

Conventionalism & Verificationism:

Henri
POINCARÉ
(1854–1912)

Human intuitions about
the physical world are
possibly flawed (e.g.
Euclidian geometry).
Abandon rationalism for
empiricism ⇒ a
proposition has a
cognitive meaning only
if it can be verified by
experience.
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Popper’s Criticism of Induction in Empirical Sciences

Karl POPPER
(1902–1994)

Very influential book, still a
reference today (published in
1935; English version in 1959).

The Myth of Induction:

Inductive logic “does not provide a
suitable criterion of demarcation with
metaphysical speculation”.
“The actual procedure of science is to
operate with conjectures: to jump to
conclusions – often after one single
observation”.

⇒ Deductivism: “Hypotheses can only be
emprically tested and only after they have
been advanced”.

Falsifiability, the Criterion of Demarcation:

Criticize conventionalism who “evade
falsification by using ad hoc modifications
of the theory.”
“One must not save from falsification a
theory if it has failed.”

⇒ Falsifiabilism: deductivism & modus tollens.
Modus tollens:

(
(A⇒ B) ∧ B

)
⇒ A.
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Objectivity & Principle of Parsimony (Occam’s Razor)

Objectivity & Reproducibility:

The objectivity of scientific statements lie in the fact that they can be inter-subjectively
tested .
Only repeatable experiments can be tested by anyone ⇒ no coincidence.

Principle of Parsimony:

Simplicity ⇔ degree of falsifiability ⇔ higher prior improbability.
⇒ simpler theories have a higher empirical content.

Popper’s Epistemology has a Frequentist Frame of Mind:

Falsifiability ⇔ p-value to reject the null hypothesis.
Boolean/Platonic logic & reject of probability as quantification of knowledge (no account for its

subjectivity).
Necessary repeatability: no possibility to account for sparse, unique constraints (must first think

about a falsifiable experience).
Parsimony: ad hoc principle.

Opposed to induction: “The logic of probable inference leads to apriorism”.

⇒ It was conceived at the peak of the frequentist winter .
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A Bayesian Alternative to Popper’s Epistemology

(Published in 2003;
dedicated to
Jeffreys)

Edwin Thompson
JAYNES
(1922–1998)
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Falsifiability & the Limits of Platonic Logic

Hempel’s Paradox (Hempel, 1940):

Raven ⇒ Black︸ ︷︷ ︸
proposition

⇔ Not Black ⇒ Not a Raven︸ ︷︷ ︸
contraposition

Thus: ⇒

Carl Gustav
HEMPEL

(1905–1997)

Bayesian Solution to the Paradox:

Raven ⇒ Black ⇔ p(Black|Raven) = 1

p(Not a Raven|Not Black) = 1−
1− p(Black|Raven)

1− p(Black)
p(Raven) 6= p(Black|Raven)

Most importantly: the weight of evidence (Bayes factor) is small for a red apple (Good, 1960).

Popper’s Criterion of Demarcation & Bayesian Epistemology:
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Reproducibility, Parsimony & Accumulation of Knowledge

Reproducibility is Useful, But Not Necessary:
Multiple experiments increasing evidence, but single observations are meaningful.

The Parsimony Principle is Hard-Coded in Bayes Factors:

p(M1|data) =
∫

p(data|x1)× p(x1|M1) dx1

∝ L(x̂1)δx1 ×
1

∆x1
⇒ Bayes factor between models M1 (1 parameter) & M2 (2
parameters):

p(M2|data)
p(M1|data)

∝ L(x̂2)×
(
δx2
∆x2

)
︸ ︷︷ ︸

�1

The Prior Allows Accumulation of Knowledge:

p(par)︸ ︷︷ ︸
new prior

∝ 1︸︷︷︸
initial prior

× p(data(1)|par)× . . .× p(data(N)|par)︸ ︷︷ ︸
cumulated data
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OPERA: an Experiment Refuted by Theory

Oscillation Project with Emulsion-tRacking Apparatus (OPERA):

In 2011, it detected neutrinos appearing 1 + 2× 10−5 times faster than light, at 6σ significance
(frequentist analysis; OPERA coll., 2012).

Strict Popperian/Frequentist:

⇒ reject special relativity.

Bayesian:

p(vν > c)� 1

⇒ check your cables.
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Is Verifying General Relativity Useful?

First Detection of Gravitational Waves:

(LIGO coll., 2015)

First Image of a Black Hole (M87):

(Event Horizon coll., 2019)

Strict Popperian/Frequentist Point of View:

1 Those two experiments are distinct.
2 An absence of detection would not have disproven general relativity

⇒ no falsifiability .

Bayesian Point of View:

Those two experiments, combined, bring a large weight of evidence in favor of general relativity.
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Outline of the Talk

1 BAYESIANS VS FREQUENTISTS
Epistemological Principles & Comparison
Demonstration on a Simple Example
Limitations of the Frequentist Approach

2 BAYES’ RULE THROUGH HISTORY
Early Development
The Frequentist Winter
The Bayesian Renaissance

3 IMPLICATIONS FOR THE SCIENTIFIC METHOD
Karl Popper’s Logic of Scientific Discovery
Bayesian Epistemology
How Researchers Actually Work

4 SUMMARY & CONCLUSION
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Summary & Conclusion

The Opposition Between Bayesianism & Frequentism:

1 There are two competing epistemological conceptions of probability:

Bayesian: probabilities quantify our knowledge;
Frequentist: probabilities represent the frequency of occurence of a repeated event.

2 It appears there are fundamental issues with the frequentist approach:

p-values can lead to inconsistent results;
the method partitions knowledge;
it is less flexible than Bayesianism.

3 After a century of frequentist supremacy, Bayesianism emerged victorious.

Epistemological Insights from Bayesianism:

Popper’s influential scientific method relies on falsifiability & reproducibility . It has a
frequentist frame of mind.

Bayesian alternative addresses the problems of Popper’s epistemology:

No need for falsifiability ⇒ weight of evidence quantifies data relevance;
No need for reproducibility ⇒ can account for sparser, unique constraints;
Parsimony ⇒ Bayes factors;
Allows accumulation of knowledge ⇒ informative prior;
Allows probabilistic induction.

This is already the way we think (at least qualitatively), because it is the way our brain works.
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Allows probabilistic induction.

This is already the way we think (at least qualitatively), because it is the way our brain works.
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Summary & Conclusion

The Opposition Between Bayesianism & Frequentism:
1 There are two competing epistemological conceptions of probability:

Bayesian: probabilities quantify our knowledge;
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