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Overview | What is the InterStellar Medium (ISM)?

ISM: Medium filling the space between the stars in a galaxy.
⇒ Mostly baryonic matter, that is not in stars, compact objects & their immediate

surroundings.

PARSEC SCALE (e.g. Horsehead nebula) KILOPARSEC SCALE (e.g. NGC 628)

Observatory: Euclid (visible range).
Credit: ESA/Euclid/Euclid

Consortium/NASA.

Observatory: JWST (mid-infrared range).
Credit: Williams et al. 2022.
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Overview | Inventory of ISM’s Microphysical Constituents

BARYONIC MATTER

Atoms

Including fully ionized
nuclei & free e−.

Molecules

Free-flying or frozen
on grains.

Dust grains

Small solids with radii
≳ 3 Å and ≲ 0.3 µm.

Cosmic rays

Relativistic nuclei &
e− (106 − 1020 eV).

PERMEATED BY FIELDS

Electromagnetic

From γ-rays to decametric.

Magnetic

⇒ MHD required.

Gravitational

Including dark matter parti-
cles.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 5 / 53



Overview | Inventory of ISM’s Microphysical Constituents

BARYONIC MATTER

Atoms

Including fully ionized
nuclei & free e−.

Molecules

Free-flying or frozen
on grains.

Dust grains

Small solids with radii
≳ 3 Å and ≲ 0.3 µm.

Cosmic rays

Relativistic nuclei &
e− (106 − 1020 eV).

PERMEATED BY FIELDS

Electromagnetic

From γ-rays to decametric.

Magnetic

⇒ MHD required.

Gravitational

Including dark matter parti-
cles.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 5 / 53



Overview | Inventory of ISM’s Microphysical Constituents

BARYONIC MATTER

Atoms

Including fully ionized
nuclei & free e−.

Molecules

Free-flying or frozen
on grains.

Dust grains

Small solids with radii
≳ 3 Å and ≲ 0.3 µm.

Cosmic rays

Relativistic nuclei &
e− (106 − 1020 eV).

PERMEATED BY FIELDS

Electromagnetic

From γ-rays to decametric.

Magnetic

⇒ MHD required.

Gravitational

Including dark matter parti-
cles.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 5 / 53



Overview | Inventory of ISM’s Microphysical Constituents

BARYONIC MATTER

Atoms

Including fully ionized
nuclei & free e−.

Molecules

Free-flying or frozen
on grains.

Dust grains

Small solids with radii
≳ 3 Å and ≲ 0.3 µm.

Cosmic rays

Relativistic nuclei &
e− (106 − 1020 eV).

PERMEATED BY FIELDS

Electromagnetic

From γ-rays to decametric.

Magnetic

⇒ MHD required.

Gravitational

Including dark matter parti-
cles.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 5 / 53



Overview | Inventory of ISM’s Microphysical Constituents

BARYONIC MATTER

Atoms

Including fully ionized
nuclei & free e−.

Molecules

Free-flying or frozen
on grains.

Dust grains

Small solids with radii
≳ 3 Å and ≲ 0.3 µm.

Cosmic rays

Relativistic nuclei &
e− (106 − 1020 eV).

PERMEATED BY FIELDS

Electromagnetic

From γ-rays to decametric.

Magnetic

⇒ MHD required.

Gravitational

Including dark matter parti-
cles.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 5 / 53



Overview | Inventory of ISM’s Microphysical Constituents

BARYONIC MATTER

Atoms

Including fully ionized
nuclei & free e−.

Molecules

Free-flying or frozen
on grains.

Dust grains

Small solids with radii
≳ 3 Å and ≲ 0.3 µm.

Cosmic rays

Relativistic nuclei &
e− (106 − 1020 eV).

PERMEATED BY FIELDS

Electromagnetic

From γ-rays to decametric.

Magnetic

⇒ MHD required.

Gravitational

Including dark matter parti-
cles.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 5 / 53



Overview | Inventory of ISM’s Microphysical Constituents

BARYONIC MATTER

Atoms

Including fully ionized
nuclei & free e−.

Molecules

Free-flying or frozen
on grains.

Dust grains

Small solids with radii
≳ 3 Å and ≲ 0.3 µm.

Cosmic rays

Relativistic nuclei &
e− (106 − 1020 eV).

PERMEATED BY FIELDS

Electromagnetic

From γ-rays to decametric.

Magnetic

⇒ MHD required.

Gravitational

Including dark matter parti-
cles.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 5 / 53



Overview | Inventory of ISM’s Microphysical Constituents

BARYONIC MATTER

Atoms

Including fully ionized
nuclei & free e−.

Molecules

Free-flying or frozen
on grains.

Dust grains

Small solids with radii
≳ 3 Å and ≲ 0.3 µm.

Cosmic rays

Relativistic nuclei &
e− (106 − 1020 eV).

PERMEATED BY FIELDS

Electromagnetic

From γ-rays to decametric.

Magnetic

⇒ MHD required.

Gravitational

Including dark matter parti-
cles.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 5 / 53



Overview | Inventory of ISM’s Microphysical Constituents

BARYONIC MATTER

Atoms

Including fully ionized
nuclei & free e−.

Molecules

Free-flying or frozen
on grains.

Dust grains

Small solids with radii
≳ 3 Å and ≲ 0.3 µm.

Cosmic rays

Relativistic nuclei &
e− (106 − 1020 eV).

PERMEATED BY FIELDS

Electromagnetic

From γ-rays to decametric.

Magnetic

⇒ MHD required.

Gravitational

Including dark matter parti-
cles.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 5 / 53



Overview | Inventory of ISM’s Microphysical Constituents

BARYONIC MATTER

Atoms

Including fully ionized
nuclei & free e−.

Molecules

Free-flying or frozen
on grains.

Dust grains

Small solids with radii
≳ 3 Å and ≲ 0.3 µm.

Cosmic rays

Relativistic nuclei &
e− (106 − 1020 eV).

PERMEATED BY FIELDS

Electromagnetic

From γ-rays to decametric.

Magnetic

⇒ MHD required.

Gravitational

Including dark matter parti-
cles.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 5 / 53



Overview | A Gallery of Macroscopic Regions of the ISM

TYPICAL INTERSTELLAR REGIONS

Cirrus clouds Reflection nebulae H II regions Molecular clouds

Credit: J.-C. Cuillandre.
Observatory: CFHT / Mega-
cam.

Credit: G. Duchene & G.
Kober.
Observatory: HST.

Credit: M. Pugh &
R. Gendler.
Observatory: HST & Subaru.

Credit: NASA, ESA.
Observatory: HST.

CIRCUMSTELLAR REGIONS

Supernova remnants Planetary nebulae Protostellar objects

Credit: NASA, ESA.
Observatory: HST.

Credit: NASA, ESA.
Observatory: HST.

Credit: NASA, ESA.
Observatory: HST.

⇒ at the interface with the ISM.
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Overview | Dust Extinction & Hydrogen Column Density

Dust extinction

Credit: Barnard 68 (dark nebula); FORS Team, 8.2-meter VLT
Antu, ESO.

⇒ Dust extincts starlight, mainly from the UV
to the mid-IR.

Extinction in magnitude
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Overview | Morphology of the Milky Way

Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

Quantitative information

Full diameter: D25 ≃ 27 kpc.
Position of the Sun: R⊙ ≃ 8.5 kpc.
Disk thickness: h ≃ 500 pc (at 1/2 radius).

→ most of the ISM is in the disk.
Mean distance between stars: d⋆ ≃ 1 pc.

Mean ISM density: nH ≃ 0.3 H/cm3

Man-made ultra-high vacuum ≃ 100 cm−3.

Air density ≃ 1020 cm−3.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 9 / 53

https://www.esa.int/ESA_Multimedia/Images/2018/05/Anatomy_of_the_Milky_Way


Overview | Morphology of the Milky Way

Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

Quantitative information

Full diameter: D25 ≃ 27 kpc.
Position of the Sun: R⊙ ≃ 8.5 kpc.
Disk thickness: h ≃ 500 pc (at 1/2 radius).

→ most of the ISM is in the disk.
Mean distance between stars: d⋆ ≃ 1 pc.

Mean ISM density: nH ≃ 0.3 H/cm3

Man-made ultra-high vacuum ≃ 100 cm−3.

Air density ≃ 1020 cm−3.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 9 / 53

https://www.esa.int/ESA_Multimedia/Images/2018/05/Anatomy_of_the_Milky_Way


Overview | Morphology of the Milky Way

Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

Quantitative information

Full diameter: D25 ≃ 27 kpc.
Position of the Sun: R⊙ ≃ 8.5 kpc.
Disk thickness: h ≃ 500 pc (at 1/2 radius).

→ most of the ISM is in the disk.
Mean distance between stars: d⋆ ≃ 1 pc.

Mean ISM density: nH ≃ 0.3 H/cm3

Man-made ultra-high vacuum ≃ 100 cm−3.

Air density ≃ 1020 cm−3.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 9 / 53

https://www.esa.int/ESA_Multimedia/Images/2018/05/Anatomy_of_the_Milky_Way


Overview | Morphology of the Milky Way

Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

Quantitative information

Full diameter: D25 ≃ 27 kpc.
Position of the Sun: R⊙ ≃ 8.5 kpc.
Disk thickness: h ≃ 500 pc (at 1/2 radius).

→ most of the ISM is in the disk.
Mean distance between stars: d⋆ ≃ 1 pc.

Mean ISM density: nH ≃ 0.3 H/cm3

Man-made ultra-high vacuum ≃ 100 cm−3.

Air density ≃ 1020 cm−3.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 9 / 53

https://www.esa.int/ESA_Multimedia/Images/2018/05/Anatomy_of_the_Milky_Way


Overview | Morphology of the Milky Way

Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

Quantitative information

Full diameter: D25 ≃ 27 kpc.

Position of the Sun: R⊙ ≃ 8.5 kpc.
Disk thickness: h ≃ 500 pc (at 1/2 radius).

→ most of the ISM is in the disk.
Mean distance between stars: d⋆ ≃ 1 pc.

Mean ISM density: nH ≃ 0.3 H/cm3

Man-made ultra-high vacuum ≃ 100 cm−3.

Air density ≃ 1020 cm−3.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 9 / 53

https://www.esa.int/ESA_Multimedia/Images/2018/05/Anatomy_of_the_Milky_Way


Overview | Morphology of the Milky Way

Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

Quantitative information

Full diameter: D25 ≃ 27 kpc.
Position of the Sun: R⊙ ≃ 8.5 kpc.

Disk thickness: h ≃ 500 pc (at 1/2 radius).
→ most of the ISM is in the disk.

Mean distance between stars: d⋆ ≃ 1 pc.

Mean ISM density: nH ≃ 0.3 H/cm3

Man-made ultra-high vacuum ≃ 100 cm−3.

Air density ≃ 1020 cm−3.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 9 / 53

https://www.esa.int/ESA_Multimedia/Images/2018/05/Anatomy_of_the_Milky_Way


Overview | Morphology of the Milky Way

Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

Quantitative information

Full diameter: D25 ≃ 27 kpc.
Position of the Sun: R⊙ ≃ 8.5 kpc.
Disk thickness: h ≃ 500 pc (at 1/2 radius).

→ most of the ISM is in the disk.
Mean distance between stars: d⋆ ≃ 1 pc.

Mean ISM density: nH ≃ 0.3 H/cm3

Man-made ultra-high vacuum ≃ 100 cm−3.

Air density ≃ 1020 cm−3.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 9 / 53

https://www.esa.int/ESA_Multimedia/Images/2018/05/Anatomy_of_the_Milky_Way


Overview | Morphology of the Milky Way

Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

Quantitative information

Full diameter: D25 ≃ 27 kpc.
Position of the Sun: R⊙ ≃ 8.5 kpc.
Disk thickness: h ≃ 500 pc (at 1/2 radius).

→ most of the ISM is in the disk.

Mean distance between stars: d⋆ ≃ 1 pc.

Mean ISM density: nH ≃ 0.3 H/cm3

Man-made ultra-high vacuum ≃ 100 cm−3.

Air density ≃ 1020 cm−3.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 9 / 53

https://www.esa.int/ESA_Multimedia/Images/2018/05/Anatomy_of_the_Milky_Way


Overview | Morphology of the Milky Way

Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

Quantitative information

Full diameter: D25 ≃ 27 kpc.
Position of the Sun: R⊙ ≃ 8.5 kpc.
Disk thickness: h ≃ 500 pc (at 1/2 radius).

→ most of the ISM is in the disk.
Mean distance between stars: d⋆ ≃ 1 pc.

Mean ISM density: nH ≃ 0.3 H/cm3

Man-made ultra-high vacuum ≃ 100 cm−3.

Air density ≃ 1020 cm−3.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 9 / 53

https://www.esa.int/ESA_Multimedia/Images/2018/05/Anatomy_of_the_Milky_Way


Overview | Morphology of the Milky Way

Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

Quantitative information

Full diameter: D25 ≃ 27 kpc.
Position of the Sun: R⊙ ≃ 8.5 kpc.
Disk thickness: h ≃ 500 pc (at 1/2 radius).

→ most of the ISM is in the disk.
Mean distance between stars: d⋆ ≃ 1 pc.

Mean ISM density: nH ≃ 0.3 H/cm3

Man-made ultra-high vacuum ≃ 100 cm−3.

Air density ≃ 1020 cm−3.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 9 / 53

https://www.esa.int/ESA_Multimedia/Images/2018/05/Anatomy_of_the_Milky_Way


Overview | Morphology of the Milky Way

Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

Quantitative information

Full diameter: D25 ≃ 27 kpc.
Position of the Sun: R⊙ ≃ 8.5 kpc.
Disk thickness: h ≃ 500 pc (at 1/2 radius).

→ most of the ISM is in the disk.
Mean distance between stars: d⋆ ≃ 1 pc.

Mean ISM density: nH ≃ 0.3 H/cm3

Man-made ultra-high vacuum ≃ 100 cm−3.

Air density ≃ 1020 cm−3.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 9 / 53

https://www.esa.int/ESA_Multimedia/Images/2018/05/Anatomy_of_the_Milky_Way


Overview | Morphology of the Milky Way

Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

Quantitative information

Full diameter: D25 ≃ 27 kpc.
Position of the Sun: R⊙ ≃ 8.5 kpc.
Disk thickness: h ≃ 500 pc (at 1/2 radius).

→ most of the ISM is in the disk.
Mean distance between stars: d⋆ ≃ 1 pc.

Mean ISM density: nH ≃ 0.3 H/cm3

Man-made ultra-high vacuum ≃ 100 cm−3.

Air density ≃ 1020 cm−3.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 9 / 53

https://www.esa.int/ESA_Multimedia/Images/2018/05/Anatomy_of_the_Milky_Way


Overview | The ISM is Far from Thermal Equilibrium

Mean collision time between two H atoms

Let’s assume that the ISM is only made of H atoms, with nH = 0.3 cm−3 & T = 1000 K.

Collision cross-section between two H atoms, with
rH = 0.5 Å:

σH ≡ π(2rH)2.

Mean free-path:

λH ≡
1

nHσH
≃ 1013 m ≃ 700 a.u.

Mean velocity:

1
2

mHv2
H = 3

2
kT ⇒ vH =

√
3kT
mH

.

Collision time:

τcoll ≡
λH

vH
= λH√

3kT/mH

≃ 2 × 1010 s

≃ 700 yr.

Conditions for Local Thermal Equilibirum (LTE)

Spontaneous transition rate for the first levels of H:

τcool = 1
A (Einstein coefficient)

≃ 10−8 − 10−5 s

⇒ τcool ≪ τcoll

⇒ T is not sufficient to describe the physical state of the ISM (species are usually
in their ground state).
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Overview | Density & Temperature Range of the ISM

(Adapted from Dopita & Sutherland 2003)

Velocity distribution in the ISM

1 Typical scale of interstellar clouds: LISM ≃
1 pc

≫ λH.

2 Typical cloud lifetimes: τcl ≳ 1 Myr

≫
τcoll.

3 Collisions are essentially elastic ⇒ good
thermalization.

⇒ interstellar atoms mostly follow a Maxwell-
Boltzmann distribution:
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Velocity distribution in the ISM
1 Typical scale of interstellar clouds: LISM ≃

1 pc ≫ λH.

2 Typical cloud lifetimes: τcl ≳ 1 Myr ≫
τcoll.

3 Collisions are essentially elastic ⇒ good
thermalization.

⇒ interstellar atoms mostly follow a Maxwell-
Boltzmann distribution:
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Overview | Energetics of the ISM of the Milky Way

Power injection in the ISM

Most ISM phases are at thermal pressure equilibrium: P/k = n.T ≃ 103 − 104 K/cm3.

Radiative power injection Mechanical power injection Radiative cooling
All stars 4 × 1010 L⊙ SNe 2 × 108 L⊙ Dust 1.7 × 1010 L⊙

O, B, A stars 8 × 109 L⊙ Wolf-Rayet 2 × 107 L⊙ Radio 1.5 × 108 L⊙
O, B, A stars 1 × 107 L⊙ [C ii]158µm 5 × 107 L⊙

(Tielens 2005, Chap. 1)

AGB stars 1 × 104 L⊙ γ-rays 3 × 105 L⊙

Rough equipartition of all energy densities

Thermal kinetic energy: Uth =

3
2

P = 0.39 ×
( P/k

3000 K.cm−3

)
eV/cm3 ≃ 0.39 eV/cm3.

Turbulent energy: Uturb =

1
2

ρ⟨v2⟩ = 0.13 ×
( nH

1 cm−3

) (
σ(v)

5 km/s

)2
eV/cm3 ≃ 0.13 eV/cm3.

Magnetic energy: Umagn =

B2

2µ0
= 0.88 ×

( B
0.6 nT

)2
eV/cm3 ≃ 0.88 eV/cm3.

Cosmic microwave background: UCMB =

c
4

σT 4
CMB = 0.26×

( TCMB

2.725 K

)4
eV/cm3 ≃ 0.26 eV/cm3.

Starlight: U⋆ ≃ 0.5 eV/cm3.
Cosmic rays: UCR ≃ 0.8 eV/cm3.

Uth ≃ Uturb ≃ Umagn ≃ UCMB ≃ U⋆ ≃ UCR ≃ 0.3 eV/cm3
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Overview | Interstellar Radiation Fields

(Mathis et al. 1983)
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Overview | The ISM of External Galaxies

Terminology

“The Galaxy” = the Milky Way.
“Galactic” = relative to the Milky Way.

“galaxies” = that are not the Milky Way.

Dwarf / Irregular

Credit: I Zw 18 (Aloisi et al., 2007).

Metallicity: low (≲ 1/50 Z⊙).
Gas fraction: high (≳ 95 %).
SFR/M⋆: high (≳ 10 Gyr−1).

Spiral / Late-Type

Credit: M 33 (Subaru / HST).

Metallicity: av. (≃ Z⊙).
Gas fraction: av. (≃ 30 %).
SFR/M⋆: av. (≃ 0.1 Gyr−1).

Elliptical / Early-Type

Credit: Centaurus A (D. Alemazkour).

Metallicity: high (≳ Z⊙).
Gas fraction: low (≲ 20 %).
SFR/M⋆: low (≲ 0.01 Gyr−1).
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Overview | My Personal Scientific Interests

Scientific Perspective

ISMology: Dust properties in differ-
ent environments.

Polycyclic Aromatic Hy-
drocarbons (PAH), pho-
toelectric heating, dark
gas, etc.

Galaxies: Focus on nearby galax-
ies ⇒ understand galaxy
evolution.

Cosmic dust evolution.

Methodological Approach

Modelling: Spectral Energy Distribution (SED) mod-
elling.

Spectral decomposition.
Bayesian statistics.

Observations: Infrared expertise (ISO, Spitzer, Herschel).

Currently : mm observations @ IRAM-30m.
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Overview | Outline of the Course

LECTURE 1: AN OVERVIEW OF THE ISM AND THE WAY WE STUDY IT
1 Overview: What is the ISM?
2 A Brief History of ISM studies.
3 Methodology: how do we study interstellar media?

LECTURE 2: ATOMS, MOLECULES AND DUST
1 Atoms and ions.
2 Molecules in space.
3 Interstellar dust grains.

LECTURE 3: HEATING AND COOLING - THE PHASES OF THE ISM
1 Cooling and heating of the gas.
2 Radiative transfer.
3 Star-forming regions.

LECTURE 4: THE INTERSTELLAR LIFECYCLE
1 Molecular clouds.
2 The star formation process.
3 Elemental & dust evolution.
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Overview | Recommended Bibliography (1/2)

Textbooks about the ISM
“The Physics and Chemistry of the Interstellar Medium”, by A. G. G. M. Tielens, 2005,
Cambridge University Press.
“Physics of the Interstellar and Intergalactic Medium”, by B. T. Draine, 2011, Princeton
University Press.
“Astrophysics of the diffuse Universe”, by M. A. Dopita & R. S. Sutherland, 2003, Springer,
open text.

Textbooks about an ISM-related Topic
“Astrophysics of gaseous nebulae and active galactic nuclei” by D. E. Osterbrock & G. J. Fer-
land, 2006, University Science Books.
“Radiative processes in astrophysics”, by G. B. Rybicky & A. P. Lightman, 1979, Wiley.
“The physics of interstellar dust”, by E. Krügel, 2003, IoP.

Open Reviews about the Phases of the ISM
“The Three-Phase Interstellar Medium Revisited”, by D. P. Cox, 2005, ARA&A.
“The HI distribution of the Milky Way”, by P. M. W. Kalberla & K. Jürgen, 2009, ARA&A.
“Molecular clouds in the Milky Way”, by M. Heyer & T. M. Dame, 2015, ARA&A.
“Physical processes in the interstellar medium”, by R. S. Klessen & S. C. O. Glover, 2016,
Saas-Fee Advanced Course.
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Open Reviews about Dust
“Interstellar dust grains”, by B. T. Draine, 2003, ARA&A.
“The interstellar dust properties of nearby galaxies”, by F. Galliano, M. Galametz &
A. P. Jones, 2018, ARA&A.
“A nearby galaxy perspective on interstellar dust properties and their evolution”, by F. Galliano,
Habilitation thesis, 2022, Université Paris-Saclay.

Open Reviews about PDRs

“Dense photodissociation regions (PDRs)“, by A. G. G. M. Tielens & D. J. Hollenbach, 1997,
ARA&A.
“Photodissociation and X-Ray-Dominated Regions”, by M. Wolfire, L. Vallini & M. Chevance,
2022, ARA&A.
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Overview | Recommended Videography

2021 International summer school on the ISM of galaxies: videos & slides.
2023 International summer school on the ISM of galaxies: videos & slides.
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Overview | International Summer School on the ISM of Galaxies

Next Galaxies’ ISM Summer School: July 21 – August 1, 2025 – Banyuls-sur-mer France

Scope: theory and observations of the ISM of nearby galaxies, with an emphasis on
modern data analysis methods.

Confirmed speakers: Dalya BARON, Danielle BERG, Pierre CHAINAIS, Emmanuel DARTOIS,
Simon GLOVER, Javier GOICOECHEA, Anna MCLEOD, Adeline PAIEMENT,
Kate PATTLE, Donatella ROMANO, Antoine ROUEFF, Serena VITI.

Registration: January 27 – April 18, 2025.
More info: https://ismgalaxies2025.sciencesconf.org/?lang=en.
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Outline of the Lecture

1 OVERVIEW: WHAT IS THE ISM?
Composition, physical properties, characteristic regions
The Milky Way and the diversity of external galaxies
Recommended bibliography and outline of the course

2 A BRIEF HISTORY OF STUDIES OF THE ISM
Before the XXth Century
From astronomy to astrophysics
The modern era

3 METHODOLOGY: HOW DO WE STUDY INTERSTELLAR MEDIA?
The microphysical components of the ISM
The challenges of studying macroscopic regions
The Sociology of ISMology

4 CONCLUSION
Take-away points
References
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History | Before the First Telescopes

Naked eye observations (Antiquity – Middle Age)

A few fixed clouds were noted by various authors during Antiquity & Middle Age. Among others:
The Milky Way (dark clouds);
M 42 (the Orion nebula, a H ii region);
M 17 (the Omega nebulae, a H ii region);

The Pleiades (reflection nebula);
M 31 (Andromeda galaxy);
The Magellanic Clouds (dwarf galaxies).

Credit: The Milky Way, as seen with a naked eye, © 2013 Alan DYER.
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History | The Advent of the First Telescopes

First studies of the Orion nebula

1609: first telescope pointed toward the sky by Galileo.
1610: first detailed observation of M 42 by Nicolas Claude FABRI

DE PEREISC, as a “small illuminated cloud”.
1659: observations by Christian HUYGENS → reports variability.

1774-1811: observations by William HERSCHEL → refine its structure
and discusses its variability.

(Harrison, 1984)
Galileo GALILEI

(1564–1642)

The Messier catalog (1774–1784)

Charles MESSIER
(1730–1817)

Catalog identifying 110 “nebulae” (i.e. permanent diffuse objects)
⇒ allow identifying comets (i.e. moving diffuse objects).

Restricted to the northern hemisphere.
Mixes indifferently: reflection nebulae, planetary nebulae, H ii regions,
stellar clusters & galaxies.

(Messier, 1781)
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History | The Contributions of William HERSCHEL

William HERSCHEL
(1738–1822)

Pioneering observational techniques

1785: construction of the first large reflecting telescope
(� = 1.26 m), with a speculum (2/3 Cu + 1/3 Sn) mir-
ror.

1800: discovery of infrared radiation, from the Sun, using ther-
mometers

⇒ significant development of astronomical spectrophotom-
etry.

Progressing on nebulae

1785: “a hole in the Heavens” → actually a dark cloud in front
of a rich stellar field (Herschel, 1785).

1791: hypothesize that some nebulae can not be resolved into
individual stars → “a shining fluid, of a nature totally
unknown to us” (Herschel, 1791).

1821: extended catalog of 5000 objects
⇒ distinguish star clusters & nebulae / galaxies
→ basis for the New General Catalog (NGC), compiled by

John DREYER (Dreyer, 1888).

The Inkspot nebula

Credit: Gábor Tóth.
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History | XIXth Century – The Beginning of Astrophotography

Astrophotography: turning astronomy into a reproducible science

1860: first silvered-glass mirrors (by Léon FOUCAULT) better than
speculum mirrors → implemented on large telescopes.

1880: first deep-sky photograph (the Orion nebula) by Henry
DRAPER (Barker, 1888).

1899: Edward BARNARD’s photographs of Ophiucus showed dark
lanes through the nebula (Barnard, 1899).

1903: They were interpreted by Agnes CLERKE, as “glades and
clearing” in the stellar distribution (Clerke, 1903).

1919: Edward BARNARD realized these were “real, obscuring
masses, most probably dark nebulae” (Barnard, 1919).

Photograph of
Orion by Henry
DRAPER.

The development of spectrophotometry

Photography allowed recording spectra of faint objects.
William HUGGINS took the spectra of ≃ 70 nebulae (Huggins & Miller, 1864). Distinguish:

H II regions: bright emission lines;
Reflection nebulae: continuous spectrum (reflected starlight).
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History | Early XXth Century – Some Nebulae are Galaxies

Cepheid stars, a standard candle to estimate large distances

Henrietta SWAN
LEAVITT

(1868–1921)

Cepheid stars: pulsating stars with a period-
luminosity relation.

Discovery of the relation: by Leavitt & Picker-
ing (1912) using 25 Cepheids
in the Small Magellanic Cloud
(SMC).

Distance estimator: period + apparent magni-
tude → distance.

First evidence of extragalactic nebulae: M 31 & M 33 are outside the Milky Way

Edwin HUBBLE
(1889–1953)

Hubble (1925) resolved Cepheids in M 31 &
M 33, with long pauses, at Mount Wilson
Observatory.
Derived their distance, equal to ≃ 285 kpc
(actually 765 & 970 kpc)

⇒ they are outside the Milky Way. Mount Wilson’s 100-
inch reflector.
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History | Quantum Physics: From Astronomy to Astrophysics

The first astrophysical spectrum: the Sun, by Joseph VON FRAUNHOFER (1814)

Quantum Physics: the possibility to study distant matter

Quantum physics → identifying atoms & molecules in distant objects
⇒ measuring their abundance (Payne, 1925), temperature, density, charge + kinematics, mag-

netic field.
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History | 1930–1950: Unveiling the Constituents of the ISM

1930 – First evidence of interstellar dust

1922: Russell (1922) noted the red-
dening of starlight ⇒ produced
mainly by dust particles of ≃
0.03 − 0.1 µm in diameter.

1930: Trumpler (1930) studied 100
open clusters ⇒ diameter dis-
tance < photometric distance

→ effect increases with distance
⇒ selective extinction by fine dust

particles (larger than 2 nm).

1937 – Detection of the first interstellar molecule

1937: identification of a line of CH at λ = 4300 Å by Swings & Rosenfeld (1937).
1963: first detection of a molecular radio line (OH18cm) by Weinreb et al. (1963).

1951 – Detection of interstellar atomic Hydrogen

1945: prediction of the [H i]21 cm line by van de Hulst (1945).
1951: detection of the [H i]21 cm line by Ewen & Purcell (1951).
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History | The Modern Era – Technological Opportunities

Solid-state physics

After World War II: strong impulse → prospective development of electronics (Martin, 2013).
1947: invention of the transistor, at Bell laboratories in New Jersey.

The introduction of computers

1937: principle of the computer laid out by Alan TURING (Turing, 1937).
World War II: first computers developed to break the German encryption codes (e.g. McGrayne

2011).
1950s: first numerical models of stellar structures.
1970: first dust radiative transfer numerical computations, using iterative methods

(Mathis, 1970) & Monte-Carlo methods (Mattila, 1970).

The development of modern detectors

They solved the issues of photography: (i) non-linear response; (ii) restricted dynamic range; (iii)
low detection efficiency; (iv) reciprocity failure; and (v) adjacency effects (Boksenberg, 1982).

1930s: first IR photomultipliers & bolometers → important military applications: night
vision & guiding rockets (Rogalski, 2012).

1969: first Charge-Coupled Device (CCD) invented at Bell laboratories (Amelio et al.,
1970).
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History | Circumventing the Atmospheric Absorption

Balloons & rockets

Credit: PILOT (Bernard et al., 2016).

1 Stratospheric balloons can reach altitudes of ≃ 40 km, above
most water vapor absorption.

2 observe for several days continuously, but landing is haz-
ardous → only a few flights during their lifetime.

1959: first IR balloon launched from Johns Hopkins.
1966: a balloon sent by the Goddard Institute mapped

the sky at λ = 100 µm (Walker, 2000).

Airborne observatories

1 Airplanes can fly up to ≃ 15 km, operate during ≃ 10 hours.
2 perform numerous flights, but telescope motion must be perpen-

dicular to the plane

⇒ flight path has to be adapted.

1974–1995: the Kuiper Airborne Observatory (KAO; ∅ = 0.9 m;
Erickson & Meyer 2013).

2010–2022: the Stratospheric Observatory for Infrared Astron-
omy (SOFIA; ∅ = 2.5 m; Young et al. 2012). Credit: SOFIA; NASA.
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History | The Space Age

1983 – The InfraRed Astronomical Satellite (IRAS; ∅ = 0.57 m; Neugebauer et al. 1984)

First IR observatory to perform an all-sky survey, at λ = 12, 25, 60 and 100 µm (angular
resolution ≃ 0.5′ − 2′).
Discovered more than 300 000 point sources → many were the unexpected starburst galaxies
(Soifer et al., 1987).

New categories: Luminous InfraRed Galaxies (LIRG; 1011 L⊙ < LIR <
1012 L⊙) and UltraLuminous InfraRed Galaxies (ULIRG; LIR > 1012 L⊙).

Dusty disks around stars were also discovered (Beichman, 1987).
Access to cold grain emission ⇒ first reliable dust masses of galaxies & Galactic clouds.
IRAS data shaped modern dust models (Désert et al., 1990) → still used nowadays.

Prominent space observatories aimed at the ISM

In the IR: COBE (1989–1993; Boggess et al. 1992);
ISO (1995–1998; Kessler et al. 1996);
Spitzer (2003–2009; Werner et al. 2004);
Herschel (2009–2013; Pilbratt et al. 2010);
Planck (2009–2013; Tauber et al. 2010);
the JWST (2021–; McElwain et al. 2020).

In the UV: IUE (1978–1996; Boggess et al. 1978); HST
(1990–; Burrows et al. 1991); FUSE (1999–
2007; Moos et al. 2000). Credit: Launch of JWST; artist view; ESA.
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resolution ≃ 0.5′ − 2′).
Discovered more than 300 000 point sources → many were the unexpected starburst galaxies
(Soifer et al., 1987). New categories: Luminous InfraRed Galaxies (LIRG; 1011 L⊙ < LIR <
1012 L⊙) and UltraLuminous InfraRed Galaxies (ULIRG; LIR > 1012 L⊙).
Dusty disks around stars were also discovered (Beichman, 1987).
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IRAS data shaped modern dust models (Désert et al., 1990) → still used nowadays.

Prominent space observatories aimed at the ISM

In the IR: COBE (1989–1993; Boggess et al. 1992);
ISO (1995–1998; Kessler et al. 1996);
Spitzer (2003–2009; Werner et al. 2004);
Herschel (2009–2013; Pilbratt et al. 2010);
Planck (2009–2013; Tauber et al. 2010);
the JWST (2021–; McElwain et al. 2020).

In the UV: IUE (1978–1996; Boggess et al. 1978); HST
(1990–; Burrows et al. 1991); FUSE (1999–
2007; Moos et al. 2000). Credit: Launch of JWST; artist view; ESA.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 32 / 53

https://www.esa.int/Science_Exploration/Space_Science/Webb/Webb_new_target_launch_date


History | The Space Age

1983 – The InfraRed Astronomical Satellite (IRAS; ∅ = 0.57 m; Neugebauer et al. 1984)

First IR observatory to perform an all-sky survey, at λ = 12, 25, 60 and 100 µm (angular
resolution ≃ 0.5′ − 2′).
Discovered more than 300 000 point sources → many were the unexpected starburst galaxies
(Soifer et al., 1987). New categories: Luminous InfraRed Galaxies (LIRG; 1011 L⊙ < LIR <
1012 L⊙) and UltraLuminous InfraRed Galaxies (ULIRG; LIR > 1012 L⊙).
Dusty disks around stars were also discovered (Beichman, 1987).
Access to cold grain emission ⇒ first reliable dust masses of galaxies & Galactic clouds.
IRAS data shaped modern dust models (Désert et al., 1990) → still used nowadays.

Prominent space observatories aimed at the ISM

In the IR: COBE (1989–1993; Boggess et al. 1992);
ISO (1995–1998; Kessler et al. 1996);
Spitzer (2003–2009; Werner et al. 2004);
Herschel (2009–2013; Pilbratt et al. 2010);
Planck (2009–2013; Tauber et al. 2010);
the JWST (2021–; McElwain et al. 2020).

In the UV: IUE (1978–1996; Boggess et al. 1978); HST
(1990–; Burrows et al. 1991); FUSE (1999–
2007; Moos et al. 2000). Credit: Launch of JWST; artist view; ESA.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 32 / 53

https://www.esa.int/Science_Exploration/Space_Science/Webb/Webb_new_target_launch_date


History | The Space Age

1983 – The InfraRed Astronomical Satellite (IRAS; ∅ = 0.57 m; Neugebauer et al. 1984)

First IR observatory to perform an all-sky survey, at λ = 12, 25, 60 and 100 µm (angular
resolution ≃ 0.5′ − 2′).
Discovered more than 300 000 point sources → many were the unexpected starburst galaxies
(Soifer et al., 1987). New categories: Luminous InfraRed Galaxies (LIRG; 1011 L⊙ < LIR <
1012 L⊙) and UltraLuminous InfraRed Galaxies (ULIRG; LIR > 1012 L⊙).
Dusty disks around stars were also discovered (Beichman, 1987).
Access to cold grain emission ⇒ first reliable dust masses of galaxies & Galactic clouds.
IRAS data shaped modern dust models (Désert et al., 1990) → still used nowadays.

Prominent space observatories aimed at the ISM

In the IR: COBE (1989–1993; Boggess et al. 1992);
ISO (1995–1998; Kessler et al. 1996);
Spitzer (2003–2009; Werner et al. 2004);
Herschel (2009–2013; Pilbratt et al. 2010);
Planck (2009–2013; Tauber et al. 2010);
the JWST (2021–; McElwain et al. 2020).

In the UV: IUE (1978–1996; Boggess et al. 1978); HST
(1990–; Burrows et al. 1991); FUSE (1999–
2007; Moos et al. 2000).

Credit: Launch of JWST; artist view; ESA.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 32 / 53

https://www.esa.int/Science_Exploration/Space_Science/Webb/Webb_new_target_launch_date


History | The Space Age

1983 – The InfraRed Astronomical Satellite (IRAS; ∅ = 0.57 m; Neugebauer et al. 1984)

First IR observatory to perform an all-sky survey, at λ = 12, 25, 60 and 100 µm (angular
resolution ≃ 0.5′ − 2′).
Discovered more than 300 000 point sources → many were the unexpected starburst galaxies
(Soifer et al., 1987). New categories: Luminous InfraRed Galaxies (LIRG; 1011 L⊙ < LIR <
1012 L⊙) and UltraLuminous InfraRed Galaxies (ULIRG; LIR > 1012 L⊙).
Dusty disks around stars were also discovered (Beichman, 1987).
Access to cold grain emission ⇒ first reliable dust masses of galaxies & Galactic clouds.
IRAS data shaped modern dust models (Désert et al., 1990) → still used nowadays.

Prominent space observatories aimed at the ISM

In the IR: COBE (1989–1993; Boggess et al. 1992);
ISO (1995–1998; Kessler et al. 1996);
Spitzer (2003–2009; Werner et al. 2004);
Herschel (2009–2013; Pilbratt et al. 2010);
Planck (2009–2013; Tauber et al. 2010);
the JWST (2021–; McElwain et al. 2020).

In the UV: IUE (1978–1996; Boggess et al. 1978); HST
(1990–; Burrows et al. 1991); FUSE (1999–
2007; Moos et al. 2000). Credit: Launch of JWST; artist view; ESA.

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 32 / 53

https://www.esa.int/Science_Exploration/Space_Science/Webb/Webb_new_target_launch_date


History | Contemporary ISMology

Observations – A panchromatic view of the ISM

The ISM of the Milky Way & nearby galaxies have been observed in all spectral windows.
High angular resolution (≃ 1′′) in the visible, near- & mid-IR, & submm-to-cm regimes.
Detection of spectral features in the X-ray (Milky Way).
Probing the ISM content with γ-rays.

Simulations – Intensive computations with detailed microphysics

3D simulations of the ISM down to A.U. scales, implementing: MHD, gravity, turbulence,
realistic heating & cooling, & complex chemistry networks (≃ 1000s of reactions).
3D radiative transfer (lines & dust continuum) with high resolution ⇒ produce realistic
synthetic observables.

Laboratory experiments – Reproducing the conditions in the ISM

Possibility to constrain microphysical properties in the lab (reaction
rates, cross-sections, molecular lines, etc.).
Identification of complex molecules in the ISM: ≃ 300 Complex
Organic Molecules (COMs) & fullerenes.
Analysis of returned samples (spacecraft or meteorites).

Fullerene (C60).
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History | Man-Made Artefacts in the ISM

Voyager 1 & 2

1977: launch. 2012: leaving heliosphere.

Credit: artist concept, NASA / JPL – Caltech
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Outline of the Lecture

1 OVERVIEW: WHAT IS THE ISM?
Composition, physical properties, characteristic regions
The Milky Way and the diversity of external galaxies
Recommended bibliography and outline of the course

2 A BRIEF HISTORY OF STUDIES OF THE ISM
Before the XXth Century
From astronomy to astrophysics
The modern era

3 METHODOLOGY: HOW DO WE STUDY INTERSTELLAR MEDIA?
The microphysical components of the ISM
The challenges of studying macroscopic regions
The Sociology of ISMology

4 CONCLUSION
Take-away points
References
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Methods | The Vectors of Information

How to collect information on the ISM?

We can not study the ISM in situ ⇒ we need to rely on vectors of information.
Photons, observed first by eye, lately with detectors:

Visible, since Antiquity;
Infrared, since 1800;

X-rays, since 1920;
Radio, since 1933.

Cosmic rays: energetic particles (i.e. relativistic protons & nuclei), since 1912.
since 1967, from the Sun & supernovae

→ no relevant application for the ISM.

Interstellar grains, found in the Solar system:

Inclusion in meteorites, since 1987;
Collected in the Solar system, by spacecrafts, since 2003.

space-time perturbations originating in cataclysmic events, detected since 2015

→ no relevant application for the ISM.
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Methods | Cosmic Rays (CRs) in the Interstellar Medium

The Relevance of Cosmic Rays for the ISM

Pressure:

nCR︸︷︷︸
≃10−10 cm−3

× TCR︸︷︷︸
large, non-thermal

.

Heating: dominant in dense cores.
Chemistry: ionizing molecules, processing

grains.
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Methods | Collecting Interstellar Grains in the Solar System

Grain-collecting spacecrafts

Heliosphere moves at ≃ 26 km/s

⇒ flow of interstellar grains in the Solar system.

Since the 2000s → several grain collecting spacecrafts (Ulysses, Galileo, Cassini, Startdust)

⇒ possibility to identify interstellar grains.

Aerogel honeycomb matrix

Credit: Stardust, NASA / JPL.

Aerogel dust track

Credit: Stardust, NASA / JPL.

X-ray imaging of a grain

Credit: A. Butterworth.

Interstellar grains locked in meteorites

Primitive meteorites contain pre-Solar grains ⇒ of interstellar origin.
⇒ Possibility to identify and study them (e.g. Hoppe & Zinner 2000).
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Methods | Collecting Interstellar Grains on Earth

Credit: collecting micrometeorites in Antartica (Dome C, 2002; CNRS).

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 41 / 53

https://www.cnrs.fr/en/press/more-5000-tons-extraterrestrial-dust-fall-earth-each-year


Methods | Collecting Interstellar Grains on Earth

Credit: collecting micrometeorites in Antartica (Dome C, 2002; CNRS).

F. Galliano (CEA Paris-Saclay) ISM lecture 1 (ISYA 2024, Algiers) September 23, 2024 41 / 53

https://www.cnrs.fr/en/press/more-5000-tons-extraterrestrial-dust-fall-earth-each-year


Methods | The Challenges of Studying Extended Regions

ISM targets are usually diffuse & extended

ISM pervades everything ⇒ large fraction of the sky & low-surface brightness.
⇒ need sophisticated methods to isolate it from the rest.

Credit: 2MASS extended source catalog (Jarrett, 2004).
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Methods | Spectral Confusion with Backgrounds & Foregrounds
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Methods | The Delicate Decomposition of Diffuse Data

Necessity to develop methods to extract ISM observables

Spectral decomposition, using SED fitting, with ancillary data, etc.
Machine-learning methods: new development, but robustness difficult to assess.
Statistically-motivated methods: most popular approaches.

⇒ no Universal method ⇒ very dependent on the type of data.

Example: Separating Milky Way dust & the Cosmic Infrared Background

Herschel 250 µm image Extracted dust Residual contamination

Credit: separation of a high-Galactic-latitude field using wavelet phase harmonics (Auclair et al., 2024).
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Methods | The Sociology of ISMology

Theory & Simulations

Analytical theory & numerical
simulations.
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Accurate comparison of the-
ory & observations.

Observations

Planning, performing & ana-
lyzing observations.

Laboratory Experiments

Isolating & measuring astro-
physical processes.

Instrumentation

Designing, building & com-
missioning instruments.

Bibliometry

past 10 years → 15 %
of Annual Review of As-
tronomy & Astrophysics
(ARA&A) papers about
ISM.
≃ 10 new publications
per week day.
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Methods | The Uniqueness of Working on the ISM

Project scaling

Possibility to work in small teams ⇒ control the whole process (observations, models, etc.).
Possibility to participate to large collaborations (large surveys, mission design, etc.).

Interdisciplinarity

ISM permeates everything ⇒ interface with:
planetary system, galaxy evolution, com-
pact objects, stellar physics;
chemistry, material science, etc.

Aesthetics

Credit: JWST, NASA, ESA, CSA, STScI.

ISM ⇒ the most beautiful images.

(van den Broek d’Obrenan et al., 2023)
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Outline of the Lecture

1 OVERVIEW: WHAT IS THE ISM?
Composition, physical properties, characteristic regions
The Milky Way and the diversity of external galaxies
Recommended bibliography and outline of the course

2 A BRIEF HISTORY OF STUDIES OF THE ISM
Before the XXth Century
From astronomy to astrophysics
The modern era

3 METHODOLOGY: HOW DO WE STUDY INTERSTELLAR MEDIA?
The microphysical components of the ISM
The challenges of studying macroscopic regions
The Sociology of ISMology

4 CONCLUSION
Take-away points
References
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Conclusion | Take-Away Points

Overview of the physical components of the ISM

1 The ISM is the medium filling the space between stars in a galaxy, made of atoms, molecules,
dust grains & cosmic rays, bathed with photons, and magnetic & gravitational fields.

2 Most of its mass is in atomic Hydrogen, with ≃ 25 % of Helium, and traces of other elements
& dust. The ionized & molecular phases account for ≃ 20 % of the mass each.

3 There is a wide diversity of phases with ⟨nH⟩ ≃ 0.3 cm−3, with 10−3 cm−3 ≲ nH ≲ 106 cm−3

& 10 K ≲ Tgas ≲ 106 K. These phases are far from thermal equilibrium.

Chronology of the main breakthroughs

1 Scientific studies of the ISM started about a Century ago, with the first evidence of dust
extinction & the first detections of atoms & molecules.

2 The development of detectors over the whole electromagnetic spectrum was instrumental.
Spectroscopy is a key technique to remotely probe the physical conditions in the ISM.

3 Modern ISMology heavily relies on the data from space missions to circumvent the atmosphere.

The methodological approach of ISMology

1 The microphysics of the ISM can be studied over the whole electromagnetic spectrum.
2 Due to the diffuse nature of the ISM’s emission, confusion is a major limitation.
3 Working on the ISM can imply a wide range of approaches & some inter-disciplinarity.
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