### ISYA 2024 – THE INTERSTELLAR MEDIUM (ISM): LECTURE 1. An Overview of the ISM & the Way We Study It

Frédéric GALLIANO

CEA Paris-Saclay, France

September 23, 2024

◎ () ③ CC BY-SA 4.0



### OVERVIEW: WHAT IS THE ISM?

- Composition, physical properties, characteristic regions
- The Milky Way and the diversity of external galaxies
- Recommended bibliography and outline of the course

#### OVERVIEW: WHAT IS THE ISM?

- Composition, physical properties, characteristic regions
- The Milky Way and the diversity of external galaxies
- Recommended bibliography and outline of the course

#### 2 A BRIEF HISTORY OF STUDIES OF THE ISM

- Before the XXth Century
- From astronomy to astrophysics
- The modern era

#### OVERVIEW: WHAT IS THE ISM?

- Composition, physical properties, characteristic regions
- The Milky Way and the diversity of external galaxies
- Recommended bibliography and outline of the course

#### 2 A BRIEF HISTORY OF STUDIES OF THE ISM

- Before the XXth Century
- From astronomy to astrophysics
- The modern era

#### METHODOLOGY: HOW DO WE STUDY INTERSTELLAR MEDIA?

- The microphysical components of the ISM
- The challenges of studying macroscopic regions
- The Sociology of ISMology

#### OVERVIEW: WHAT IS THE ISM?

- Composition, physical properties, characteristic regions
- The Milky Way and the diversity of external galaxies
- Recommended bibliography and outline of the course

#### 2 A BRIEF HISTORY OF STUDIES OF THE ISM

- Before the XXth Century
- From astronomy to astrophysics
- The modern era

#### METHODOLOGY: HOW DO WE STUDY INTERSTELLAR MEDIA?

- The microphysical components of the ISM
- The challenges of studying macroscopic regions
- The Sociology of ISMology

### 4 CONCLUSION

- Take-away points
- References

#### OVERVIEW: WHAT IS THE ISM?

- Composition, physical properties, characteristic regions
- The Milky Way and the diversity of external galaxies
- Recommended bibliography and outline of the course

#### A BRIEF HISTORY OF STUDIES OF THE ISM

- Before the XXth Century
- From astronomy to astrophysics
- The modern era

#### METHODOLOGY: HOW DO WE STUDY INTERSTELLAR MEDIA?

- The microphysical components of the ISM
- The challenges of studying macroscopic regions
- The Sociology of ISMology

- Take-away points
- References

ISM: Medium filling the space between the stars in a galaxy.

- ISM: Medium filling the space between the stars in a galaxy.
  - ⇒ Mostly *baryonic* matter, that is not in stars, compact objects & their immediate surroundings.

ISM: Medium filling the space between the stars in a galaxy.

 $\Rightarrow$  Mostly *baryonic* matter, that is not in stars, compact objects & their immediate surroundings.

PARSEC SCALE (e.g. Horsehead nebula)



Observatory: Euclid (visible range). Credit: ESA/Euclid/Euclid Consortium/NASA.

F. Galliano (CEA Paris-Saclay)

ISM: Medium filling the space between the stars in a galaxy.

 $\Rightarrow$  Mostly *baryonic* matter, that is not in stars, compact objects & their immediate surroundings.

PARSEC SCALE (e.g. Horsehead nebula)



#### KILOPARSEC SCALE (e.g. NGC 628)



Observatory: Euclid (visible range). Credit: ESA/Euclid/Euclid Consortium/NASA.

**Observatory:** JWST (mid-infrared range). **Credit:** Williams et al. 2022.

F. Galliano (CEA Paris-Saclay)

**BARYONIC MATTER** 

#### **BARYONIC MATTER**



Including fully ionized nuclei & free  $e^-$ .









PERMEATED BY FIELDS



#### PERMEATED BY FIELDS

Electromagnetic mmy

From  $\gamma$ -rays to decametric.



F. Galliano (CEA Paris-Saclay)



F. Galliano (CEA Paris-Saclav)

ISM lecture 1 (ISYA 2024, Algiers)

September 23, 2024 5/53

**TYPICAL INTERSTELLAR REGIONS** 

#### **TYPICAL INTERSTELLAR REGIONS**



Credit: J.-C. Cuillandre. Observatory: CFHT / Megacam.

#### TYPICAL INTERSTELLAR REGIONS



Credit: J.-C. Cuillandre. Observatory: CFHT / Megacam.

**Reflection nebulae** 



Credit: G. Duchene & G. Kober. Observatory: HST.



Credit: J.-C. Cuillandre. Observatory: CFHT / Megacam.

#### TYPICAL INTERSTELLAR REGIONS

**Reflection nebulae** 



Credit: G. Duchene & G. Kober. Observatory: HST.

HII regions



Credit: M. Pugh & R. Gendler. Observatory: HST & Subaru.



Credit: J.-C. Cuillandre. Observatory: CFHT / Megacam.

### TYPICAL INTERSTELLAR REGIONS

Reflection nebulae



Credit: G. Duchene & G. Kober. Observatory: HST.

HII regions

Credit: Pugh R Gendler

Observatory: HST & Subaru.

Molecular clouds



Credit: NASA, ESA. Observatory: HST.



#### Credit: J.-C. Cuillandre. Observatory: CFHT / Megacam.

#### TYPICAL INTERSTELLAR REGIONS

**Reflection nebulae** 



Credit: G. Duchene & G. Kober.

Observatory: HST.



Credit: M. Pugh & R. Gendler. Observatory: HST & Subaru. Molecular clouds



Credit: NASA, ESA. Observatory: HST.

#### CIRCUMSTELLAR REGIONS



#### Credit: L-C Cuillandre Observatory: CFHT / Megacam.

#### TYPICAL INTERSTELLAR REGIONS

**Reflection nebulae** 



Credit: G. Duchene & G. Koher Observatory: HST.



Credit: Pugh & R Gendler Observatory: HST & Subaru.

Molecular clouds



Credit: NASA, ESA. Observatory: HST.

#### CIRCUMSTELLAR REGIONS

#### Supernova remnants



Credit: NASA, ESA, Observatory: HST.



Credit: J.-C. Cuillandre. Observatory: CFHT / Megacam.

### TYPICAL INTERSTELLAR REGIONS

**Reflection nebulae** 



Credit: G. Duchene & Kober. Observatory: HST.



Credit: M. Pugh & R. Gendler. Observatory: HST & Subaru.

Molecular clouds



Credit: NASA, ESA. Observatory: HST.

#### CIRCUMSTELLAR REGIONS

Supernova remnants



Credit: NASA, ESA. Observatory: HST.

#### **Planetary nebulae**



Credit: NASA, ESA. Observatory: HST.



Credit: J.-C. Cuillandre. Observatory: CFHT / Megacam.

### TYPICAL INTERSTELLAR REGIONS

**Reflection nebulae** 



Credit: G. Duchene & Kober. Observatory: HST.



Credit: M. Pugh & R. Gendler. Observatory: HST & Subaru.

Molecular clouds



Credit: NASA, ESA. Observatory: HST.

#### CIRCUMSTELLAR REGIONS

#### Supernova remnants



Credit: NASA, ESA. Observatory: HST.

#### Planetary nebulae



Credit: NASA, ESA. Observatory: HST.

#### Protostellar objects



Credit: NASA, ESA. Observatory: HST.



Credit: J.-C. Cuillandre. Observatory: CFHT / Megacam.

### TYPICAL INTERSTELLAR REGIONS

**Reflection nebulae** 



Credit: G. Duchene & Kober. Observatory: HST. HII regions

Credit: M. Pugh & R. Gendler. Observatory: HST & Subaru. Molecular clouds



Credit: NASA, ESA. Observatory: HST.

#### CIRCUMSTELLAR REGIONS

Supernova remnants



Credit: NASA, ESA. Observatory: HST.

#### Planetary nebulae



Credit: NASA, ESA. Observatory: HST.

 $\Rightarrow$  at the interface with the ISM.

#### Protostellar objects



Credit: NASA, ESA. Observatory: HST.

Infall  $\simeq 0.5 M_{\odot}/yr$ 

(Adapted from Draine 2011, Chap. 1)

F. Galliano (CEA Paris-Saclay)



(Adapted from Draine 2011, Chap. 1)

F. Galliano (CEA Paris-Saclay)



(Adapted from Draine 2011, Chap. 1)

F. Galliano (CEA Paris-Saclay)




(Adapted from Draine 2011, Chap. 1)

F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)



(Adapted from Draine 2011, Chap. 1)

F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)







 $1.5 \times 10^9$  M<sub> $\odot$ </sub>

23 %



F. Galliano (CEA Paris-Saclav)

ISM lecture 1 (ISYA 2024, Algiers)

 $1.5 \times 10^9$  M<sub> $\odot$ </sub>

 $4 \times 10^9 \, \text{M}_{\odot}^{-1} \, | \, 60 \, \%$ 

23%



Gas associated with different states of H

| $H^+$          | $1.5	imes10^9~M_{\odot}$                        | 23 % |
|----------------|-------------------------------------------------|------|
| H <sup>0</sup> | $4	imes 10^9~{ m M}_{\odot}$                    | 60 % |
| H <sub>2</sub> | $\mid$ 1.2 $	imes$ 10 $^9~$ M $_{\odot}$ $\mid$ | 17 % |



### Gas associated with different states of H

| H <sup>+</sup> | $1.5 	imes 10^9$ M $_{\odot}$ | 23 % |
|----------------|-------------------------------|------|
| H <sup>0</sup> | $4	imes 10^9~$ M $_{\odot}$   | 60 % |
| H <sub>2</sub> | $1.2 	imes 10^9$ M $_{\odot}$ | 17%  |
| Total gas      | $6.7	imes10^9~M_{\odot}$      | 100% |

 $\Rightarrow$  ISM-to-star mass ratio  $\simeq$  14 %.



F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)



Gas associated with different states of H

| H <sup>+</sup> | $1.5	imes 10^9~M_{\odot}$     | 23 % |
|----------------|-------------------------------|------|
| H <sup>0</sup> | $4	imes 10^9~$ M $_{\odot}$   | 60 % |
| H <sub>2</sub> | $1.2 	imes 10^9$ M $_{\odot}$ | 17 % |
| Total gas      | $6.7	imes10^9~M_{\odot}$      | 100% |

Element mass fractions (Asplund et al. 2009)  $X_{\odot} \equiv \frac{M_{\rm H}}{M_{\rm gas}} \simeq 73.8 \,\%$ 

 $\Rightarrow$  ISM-to-star mass ratio  $\simeq$  14 %.



Gas associated with different states of H

| H <sup>+</sup> | $1.5	imes 10^9~$ M $_{\odot}$ | 23 % |
|----------------|-------------------------------|------|
| H <sup>0</sup> | $4	imes 10^9~$ M $_{\odot}$   | 60 % |
| H <sub>2</sub> | $1.2 	imes 10^9$ M $_{\odot}$ | 17%  |
| Total gas      | $6.7	imes10^9~M_{\odot}$      | 100% |

Element mass fractions (Asplund et al. 2009)  $X_{\odot} \equiv \frac{M_{\rm H}}{M_{\rm gas}} \simeq 73.8\%$  $Y_{\odot} \equiv \frac{M_{\rm He}}{M_{\rm gas}} \simeq 24.9\%$ 

 $\Rightarrow$  ISM-to-star mass ratio  $\simeq$  14 %.



#### Gas associated with different states of H

| H <sup>+</sup> | $1.5	imes 10^9~$ M $_{\odot}$ | 23 % |
|----------------|-------------------------------|------|
| H <sup>0</sup> | $4	imes 10^9~M_{\odot}$       | 60 % |
| H <sub>2</sub> | $1.2 	imes 10^9$ M $_{\odot}$ | 17 % |
| Total gas      | $6.7	imes10^9~M_{\odot}$      | 100% |

Element mass fractions (Asplund et al. 2009)  $X_{\odot} \equiv \frac{M_{\text{H}}}{M_{\text{gas}}} \simeq 73.8 \%$   $Y_{\odot} \equiv \frac{M_{\text{He}}}{M_{\text{gas}}} \simeq 24.9 \%$   $\stackrel{\rightarrow}{\rightarrow}$  Most He formed during primordial nucleosynthesis.

 $\Rightarrow$  ISM-to-star mass ratio  $\simeq$  14 %.



Gas associated with different states of H

| H <sup>+</sup> | $1.5	imes10^9~M_{\odot}$ | 23 % |
|----------------|--------------------------|------|
| H <sup>0</sup> | $4	imes 10^9~M_{\odot}$  | 60 % |
| H <sub>2</sub> | $1.2	imes10^9~M_{\odot}$ | 17%  |
| Total gas      | $6.7	imes10^9~M_{\odot}$ | 100% |

Element mass fractions (Asplund et al. 2009)  $X_{\odot} \equiv \frac{M_{\text{H}}}{M_{\text{gas}}} \simeq 73.8 \%$   $Y_{\odot} \equiv \frac{M_{\text{He}}}{M_{\text{gas}}} \simeq 24.9 \%$   $\stackrel{\longrightarrow}{}$  Most He formed during primordial nucleosynthesis.  $Z_{\odot} \equiv \frac{M_{>\text{He}}}{M_{\text{gas}}} \simeq 1.3 \%$ 

 $\Rightarrow$  ISM-to-star mass ratio  $\simeq$  14 %.



Gas associated with different states of H

| H <sup>+</sup> | $1.5	imes10^9~M_{\odot}$ | 23 % |
|----------------|--------------------------|------|
| H <sup>0</sup> | $4	imes 10^9~M_{\odot}$  | 60 % |
| H <sub>2</sub> | $1.2	imes10^9~M_{\odot}$ | 17%  |
| Total gas      | $6.7	imes10^9~M_{\odot}$ | 100% |

Element mass fractions (Asplund et al. 2009)  $X_{\odot} \equiv \frac{M_{\text{H}}}{M_{\text{gas}}} \simeq 73.8\%$   $Y_{\odot} \equiv \frac{M_{\text{He}}}{M_{\text{gas}}} \simeq 24.9\%$   $\xrightarrow{\rightarrow}$  Most He formed during primordial nucleosynthesis.  $Z_{\odot} \equiv \frac{M_{\text{>He}}}{M_{\text{gas}}} \simeq 1.3\%$   $(metallicity) \rightarrow$  large variations among galaxy types.

 $\Rightarrow$  ISM-to-star mass ratio  $\simeq$  14 %.



Gas associated with different states of H

| H <sup>+</sup> | $1.5	imes 10^9~M_{\odot}$     | 23 % |
|----------------|-------------------------------|------|
| H <sup>0</sup> | $4	imes 10^9~M_{\odot}$       | 60 % |
| H <sub>2</sub> | $1.2 	imes 10^9$ M $_{\odot}$ | 17 % |
| Total gas      | $6.7	imes10^9~M_{\odot}$      | 100% |

Element mass fractions (Asplund et al. 2009) $X_{\odot} \equiv \frac{M_{H}}{M_{gas}} \simeq 73.8 \%$  $X_{\odot} + Y_{\odot} + Z_{\odot} = 1$  $Y_{\odot} \equiv \frac{M_{He}}{M_{gas}} \simeq 24.9 \%$  $\rightarrow$  Most He formed<br/>during primordial nu-<br/>cleosynthesis. $Z_{\odot} \equiv \frac{M_{>He}}{M_{gas}} \simeq 1.3 \%$  $(metallicity) \rightarrow$  large<br/>variations among<br/>galaxy types.

 $\Rightarrow$  ISM-to-star mass ratio  $\simeq$  14 %.



Gas associated with different states of H

| H <sup>+</sup> | $1.5	imes 10^9~M_{\odot}$     | 23 % |
|----------------|-------------------------------|------|
| H <sup>0</sup> | $4	imes 10^9~M_{\odot}$       | 60 % |
| H <sub>2</sub> | $1.2 	imes 10^9$ M $_{\odot}$ | 17%  |
| Total gas      | $6.7	imes10^9~M_{\odot}$      | 100% |

Element mass fractions (Asplund et al. 2009) $X_{\odot} \equiv \frac{M_{H}}{M_{gas}} \simeq 73.8 \%$  $X_{\odot} + Y_{\odot} + Z_{\odot} = 1$  $Y_{\odot} \equiv \frac{M_{He}}{M_{gas}} \simeq 24.9 \%$  $\rightarrow$  Most He formed during primordial nucleosynthesis. $Z_{\odot} \equiv \frac{M_{\ni He}}{M_{gas}} \simeq 1.3 \%$  $(metallicity) \rightarrow$  large variations among galaxy types.

Dust mass fractions (Galliano 2022)



Gas associated with different states of H

| H <sup>+</sup> | $1.5	imes10^9~M_{\odot}$      | 23 % |
|----------------|-------------------------------|------|
| H <sup>0</sup> | $4	imes 10^9~M_{\odot}$       | 60 % |
| H <sub>2</sub> | $1.2 	imes 10^9$ M $_{\odot}$ | 17%  |
| Total gas      | $6.7	imes10^9~M_{\odot}$      | 100% |

Element mass fractions (Asplund et al. 2009) $X_{\odot} \equiv \frac{M_{H}}{M_{gas}} \simeq 73.8 \%$  $X_{\odot} + Y_{\odot} + Z_{\odot} = 1$  $Y_{\odot} \equiv \frac{M_{He}}{M_{gas}} \simeq 24.9 \%$  $\rightarrow$  Most He formed<br/>during primordial nu-<br/>cleosynthesis. $Z_{\odot} \equiv \frac{M_{>He}}{M_{gas}} \simeq 1.3 \%$  $(metallicity) \rightarrow$  large<br/>variations among<br/>galaxy types.

Dust mass fractions (Galliano 2022)

$$Z_{
m dust} \equiv rac{M_{
m dust}}{M_{
m gas}} \simeq 1/150$$

F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)



Gas associated with different states of H

| H <sup>+</sup> | $1.5	imes10^9~M_{\odot}$      | 23 % |
|----------------|-------------------------------|------|
| H <sup>0</sup> | $4	imes 10^9~M_{\odot}$       | 60 % |
| H <sub>2</sub> | $1.2 	imes 10^9$ M $_{\odot}$ | 17%  |
| Total gas      | $6.7	imes10^9~M_{\odot}$      | 100% |

Element mass fractions (Asplund et al. 2009) $X_{\odot} \equiv \frac{M_{H}}{M_{gas}} \simeq 73.8 \%$  $X_{\odot} + Y_{\odot} + Z_{\odot} = 1$  $Y_{\odot} \equiv \frac{M_{He}}{M_{gas}} \simeq 24.9 \%$  $\rightarrow$  Most He formed<br/>during primordial nu-<br/>cleosynthesis. $Z_{\odot} \equiv \frac{M_{>He}}{M_{gas}} \simeq 1.3 \%$  $(metallicity) \rightarrow$  large<br/>variations among<br/>galaxy types.

Dust mass fractions (Galliano 2022)

$$Z_{
m dust} \equiv rac{M_{
m dust}}{M_{
m gas}} \simeq 1/150 \qquad DM \equiv rac{M_{
m dust}}{M_{
m >He}} \simeq 1/2$$

F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)

**Dust extinction** 



Credit: Barnard 68 (dark nebula); FORS Team, 8.2-meter VLT Antu, ESO.

**Dust extinction** 



Credit: Barnard 68 (dark nebula); FORS Team, 8.2-meter VLT Antu, ESO.

 $\Rightarrow$  Dust extincts starlight, mainly from the UV to the mid-IR.

#### **Dust extinction**



Credit: Barnard 68 (dark nebula); FORS Team, 8.2-meter VLT Antu, ESO.

 $\Rightarrow$  Dust extincts starlight, mainly from the UV to the mid-IR.

Extinction in magnitude

### **Dust extinction**



Credit: Barnard 68 (dark nebula); FORS Team, 8.2-meter VLT Antu, ESO.

 $\Rightarrow$  Dust extincts starlight, mainly from the UV to the mid-IR.

Extinction in magnitude

### **Dust extinction**



Credit: Barnard 68 (dark nebula); FORS Team, 8.2-meter VLT Antu, ESO.

 $\Rightarrow$  Dust extincts starlight, mainly from the UV to the mid-IR.

#### Extinction in magnitude



#### **Dust extinction**



Credit: Barnard 68 (dark nebula); FORS Team, 8.2-meter VLT Antu, ESO.

 $\Rightarrow$  Dust extincts starlight, mainly from the UV to the mid-IR.

### Extinction in magnitude



### **Dust extinction**



Credit: Barnard 68 (dark nebula); FORS Team, 8.2-meter VLT Antu, ESO.

 $\Rightarrow$  Dust extincts starlight, mainly from the UV to the mid-IR.

#### Extinction in magnitude



### **Dust extinction**



Credit: Barnard 68 (dark nebula); FORS Team, 8.2-meter VLT Antu, ESO.

 $\Rightarrow$  Dust extincts starlight, mainly from the UV to the mid-IR.

#### Extinction in magnitude



 $A(\lambda) \equiv m_{ ext{observed}}(\lambda) - m_{ ext{intrinsic}}(\lambda)$ 

### **Dust extinction**



Credit: Barnard 68 (dark nebula); FORS Team, 8.2-meter VLT Antu, ESO.

 $\Rightarrow$  Dust extincts starlight, mainly from the UV to the mid-IR.

#### Extinction in magnitude



$$= 2.5 \log \left(rac{F_{
u}^{ ext{intrinsic}}(\lambda)}{F_{
u}^{ ext{observed}}(\lambda)}
ight)$$

#### **Dust extinction**



Credit: Barnard 68 (dark nebula); FORS Team, 8.2-meter VLT Antu, ESO.

 $\Rightarrow$  Dust extincts starlight, mainly from the UV to the mid-IR.

# **Extinction in magnitude** www. ~~~~~<del>`</del> cobserved $A(\lambda)$ $\equiv m_{\text{observed}}(\lambda) - m_{\text{intrinsic}}(\lambda)$ $= 2.5 \log \left( \frac{F_{\nu}^{\text{intrinsic}}(\lambda)}{F_{\nu}^{\text{observed}}(\lambda)} \right)$ Frequency, v [THz] 1000 100 A(*λ*)/N(H) [10<sup>25</sup> m<sup>2</sup>] 1.0 1.0 10 0.1 10 Wavelength, $\lambda$ [ $\mu$ m]





Credit: Barnard 68 (dark nebula); FORS Team, 8.2-meter VLT Antu, ESO.

 $\Rightarrow$  Dust extincts starlight, mainly from the UV to the mid-IR.



#### **Dust extinction**



Credit: Barnard 68 (dark nebula); FORS Team, 8.2-meter VLT Antu, ESO.

 $\Rightarrow$  Dust extincts starlight, mainly from the UV to the mid-IR.

# Extinction in magnitude ~~~~~<del>`</del> cobserved $A(\lambda)$ $\equiv m_{\text{observed}}(\lambda) - m_{\text{intrinsic}}(\lambda)$ $= 2.5 \log \left( \frac{F_{\nu}^{\text{intrinsic}}(\lambda)}{F^{\text{observed}}(\lambda)} \right)$ Frequency, v [THz] 1000 100 $m^2$ 0.1 10 Wavelength, $\lambda$ [ $\mu$ m]





Credit: Barnard 68 (dark nebula); FORS Team, 8.2-meter VLT Antu, ESO.

 $\Rightarrow$  Dust extincts starlight, mainly from the UV to the mid-IR.



F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)

### **Overview** | Morphology of the Milky Way

## **Overview** | Morphology of the Milky Way



Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

### **Overview** | Morphology of the Milky Way



Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.


Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

#### Quantitative information



Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

#### Quantitative information

Full diameter:  $D_{25} \simeq 27$  kpc.



Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

### Quantitative information

Full diameter:  $D_{25} \simeq 27$  kpc. Position of the Sun:  $R_{\odot} \simeq 8.5$  kpc.



Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

### Quantitative information

Full diameter:  $D_{25} \simeq 27$  kpc. Position of the Sun:  $R_{\odot} \simeq 8.5$  kpc. Disk thickness:  $h \simeq 500$  pc (at 1/2 radius).



Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

### Quantitative information

Full diameter:  $D_{25} \simeq 27$  kpc. Position of the Sun:  $R_{\odot} \simeq 8.5$  kpc. Disk thickness:  $h \simeq 500$  pc (at 1/2 radius).  $\rightarrow$  most of the ISM is in the disk.



Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

#### Quantitative information

Full diameter:  $D_{25} \simeq 27$  kpc.Position of the Sun:  $R_{\odot} \simeq 8.5$  kpc.Disk thickness:  $h \simeq 500$  pc (at 1/2 radius). $\rightarrow$  most of the ISM is in the disk.Mean distance between stars:  $d_* \simeq 1$  pc.



Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

#### Quantitative information

| Full diameter: $D_{25}\simeq 27$ kpc.                     | Mean ISM density: | $n_{ m H} \simeq 0.3 \ { m H/cm^3}$ |  |
|-----------------------------------------------------------|-------------------|-------------------------------------|--|
| Position of the Sun: $R_{\odot}\simeq$ 8.5 kpc.           |                   | ,                                   |  |
| <b>Disk thickness:</b> $h \simeq 500$ pc (at 1/2 radius). |                   |                                     |  |
| ightarrow most of the ISM is in the disk.                 |                   |                                     |  |
| Mean distance between stars: $d_{\star} \simeq 1$ pc.     |                   |                                     |  |



Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

#### Quantitative information

Full diameter:  $D_{25} \simeq 27$  kpc.Mean ISM density:  $n_{\rm H} \simeq 0.3$  H/cm³Position of the Sun:  $R_{\odot} \simeq 8.5$  kpc.Disk thickness:  $h \simeq 500$  pc (at 1/2 radius). $\rightarrow$  most of the ISM is in the disk.Man-made ultra-high vacuum  $\simeq 100$  cm<sup>-3</sup>.Mean distance between stars:  $d_{\star} \simeq 1$  pc.

F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)



Credit: artist view; NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

#### Quantitative information

Mean ISM density:  $n_{\rm H} \simeq 0.3 \ {\rm H/cm^3}$ Full diameter:  $D_{25} \simeq 27$  kpc. **Position of the Sun:**  $R_{\odot} \simeq 8.5$  kpc. **Disk thickness:**  $h \simeq 500$  pc (at 1/2 radius).  $\rightarrow$  most of the ISM is in the disk. Mean distance between stars:  $d_{\star} \simeq 1$  pc.

- Man-made ultra-high vacuum  $\simeq 100$  cm $^{-3}$ .
- Air density  $\simeq 10^{20}$  cm<sup>-3</sup>.

F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3 \ {\rm cm}^{-3}$  &  $T = 1000 \ {\rm K}.$ 

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3$  cm<sup>-3</sup> & T = 1000 K.

**Collision cross-section** between two H atoms, with  $r_{\rm H} = 0.5$  Å:

### Mean collision time between two H atoms

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3 \text{ cm}^{-3}$  & T = 1000 K.

Collision cross-section between two H atoms, with  $r_{\rm H} = 0.5$  Å:



### Mean collision time between two H atoms

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3 \text{ cm}^{-3}$  & T = 1000 K.

Collision cross-section between two H atoms, with  $r_{\rm H} = 0.5$  Å:



### Mean collision time between two H atoms

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3$  cm<sup>-3</sup> & T = 1000 K.

Collision cross-section between two H atoms, with  $r_{\rm H}=0.5$  Å:



Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3$  cm<sup>-3</sup> & T = 1000 K.

**Collision cross-section** between two H atoms, with  $r_{\rm H} = 0.5$  Å:  $\sigma_{\rm H} \equiv \pi (2r_{\rm H})^2$ .



### Mean collision time between two H atoms

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3 \text{ cm}^{-3}$  & T = 1000 K.

Collision cross-section between two H atoms, with  $r_{\rm H}=0.5~{\rm \AA}:~\sigma_{\rm H}\equiv\pi(2r_{\rm H})^2.$ 

Mean free-path:



### Mean collision time between two H atoms

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3$  cm<sup>-3</sup> & T = 1000 K.

**Collision cross-section** between two H atoms, with  $r_{\rm H} = 0.5$  Å:  $\sigma_{\rm H} \equiv \pi (2r_{\rm H})^2$ .

Mean free-path:  $\lambda_{\rm H} \equiv \frac{1}{n_{\rm H}\sigma_{\rm H}}$ 



### Mean collision time between two H atoms

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3 \text{ cm}^{-3}$  & T = 1000 K.

**Collision cross-section** between two H atoms, with  $r_{\rm H} = 0.5$  Å:  $\sigma_{\rm H} \equiv \pi (2r_{\rm H})^2$ .

Mean free-path:  $\lambda_{\rm H} \equiv \frac{1}{n_{\rm H}\sigma_{\rm H}} \simeq 10^{13} {\rm m}$ 



### Mean collision time between two H atoms

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3 \text{ cm}^{-3}$  & T = 1000 K.

**Collision cross-section** between two H atoms, with  $r_{\rm H} = 0.5$  Å:  $\sigma_{\rm H} \equiv \pi (2r_{\rm H})^2$ .

Mean free-path:  $\lambda_{\rm H} \equiv \frac{1}{n_{\rm H}\sigma_{\rm H}} \simeq 10^{13} \text{ m} \simeq 700 \text{ a.u.}$ 



### Mean collision time between two H atoms

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3 \, {\rm cm}^{-3}$  &  $T = 1000 \, {\rm K}$ .

**Collision cross-section** between two H atoms, with  $r_{\rm H} = 0.5$  Å:  $\sigma_{\rm H} \equiv \pi (2r_{\rm H})^2$ .

Mean free-path:  $\lambda_{\rm H} \equiv \frac{1}{n_{\rm H}\sigma_{\rm H}} \simeq 10^{13} \text{ m} \simeq 700 \text{ a.u.}$ 

Mean velocity:



#### Mean collision time between two H atoms

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3 \text{ cm}^{-3}$  & T = 1000 K.

**Collision cross-section** between two H atoms, with  $r_{\rm H} = 0.5$  Å:  $\sigma_{\rm H} \equiv \pi (2r_{\rm H})^2$ .

Mean free-path:  $\lambda_{\rm H} \equiv \frac{1}{n_{\rm H}\sigma_{\rm H}} \simeq 10^{13} \ {\rm m} \simeq 700 \ {\rm a.u.}$ 

Mean velocity:  $\frac{1}{2}m_{\rm H}v_{\rm H}^2 = \frac{3}{2}kT$ 



Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3$  cm<sup>-3</sup> & T = 1000 K.

**Collision cross-section** between two H atoms, with  $r_{\rm H} = 0.5$  Å:  $\sigma_{\rm H} \equiv \pi (2r_{\rm H})^2$ .

Mean free-path:  $\lambda_{\rm H} \equiv \frac{1}{n_{\rm H}\sigma_{\rm H}} \simeq 10^{13} \text{ m} \simeq 700 \text{ a.u.}$ 

Mean velocity: 
$$\frac{1}{2}m_{\rm H}v_{\rm H}^2 = \frac{3}{2}kT \Rightarrow v_{\rm H} = \sqrt{\frac{3kT}{m_{\rm H}}}$$



### Mean collision time between two H atoms

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3 \text{ cm}^{-3}$  & T = 1000 K.

**Collision cross-section** between two H atoms, with  $r_{\rm H} = 0.5$  Å:  $\sigma_{\rm H} \equiv \pi (2r_{\rm H})^2$ .

Mean free-path:  $\lambda_{\rm H} \equiv \frac{1}{n_{\rm H}\sigma_{\rm H}} \simeq 10^{13} \text{ m} \simeq 700 \text{ a.u.}$ 

Mean velocity: 
$$\frac{1}{2}m_{\rm H}v_{\rm H}^2 = \frac{3}{2}kT \Rightarrow v_{\rm H} = \sqrt{\frac{3kT}{m_{\rm H}}}$$

Collision time:



### Mean collision time between two H atoms

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3 \text{ cm}^{-3}$  & T = 1000 K.

**Collision cross-section** between two H atoms, with  $r_{\rm H} = 0.5$  Å:  $\sigma_{\rm H} \equiv \pi (2r_{\rm H})^2$ .

Mean free-path:  $\lambda_{\rm H} \equiv \frac{1}{n_{\rm H}\sigma_{\rm H}} \simeq 10^{13} \text{ m} \simeq 700 \text{ a.u.}$ 

Mean velocity: 
$$\frac{1}{2}m_{\rm H}v_{\rm H}^2 = \frac{3}{2}kT \Rightarrow v_{\rm H} = \sqrt{\frac{3kT}{m_{\rm H}}}$$

Collision time:



#### Mean collision time between two H atoms

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3 \text{ cm}^{-3}$  & T = 1000 K.

Collision cross-section between two H atoms, with  $r_{\rm H}=0.5~{\rm \AA}:~\sigma_{\rm H}\equiv\pi(2r_{\rm H})^2.$ 

Mean free-path:  $\lambda_{\rm H} \equiv \frac{1}{n_{\rm H}\sigma_{\rm H}} \simeq 10^{13} \text{ m} \simeq 700 \text{ a.u.}$ 

Mean velocity:  $\frac{1}{2}m_{\rm H}v_{\rm H}^2 = \frac{3}{2}kT \Rightarrow v_{\rm H} = \sqrt{\frac{3kT}{m_{\rm H}}}.$ 

Collision time: 
$$au_{\mathsf{coll}} \equiv rac{\lambda_{\mathsf{H}}}{v_{\mathsf{H}}}$$



Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3$  cm<sup>-3</sup> & T = 1000 K.

Collision cross-section between two H atoms, with 
$$r_{\rm H}=0.5~{\rm \AA}:~\sigma_{\rm H}\equiv\pi(2r_{\rm H})^2.$$

Mean free-path:  $\lambda_{\rm H} \equiv \frac{1}{n_{\rm H}\sigma_{\rm H}} \simeq 10^{13} \text{ m} \simeq 700 \text{ a.u.}$ 

Mean velocity: 
$$\frac{1}{2}m_{\rm H}v_{\rm H}^2 = \frac{3}{2}kT \Rightarrow v_{\rm H} = \sqrt{\frac{3kT}{m_{\rm H}}}$$

Collision time: 
$$\tau_{coll} \equiv \frac{\lambda_{H}}{v_{H}} = \frac{\lambda_{H}}{\sqrt{3kT/m_{H}}}$$



Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3 \text{ cm}^{-3}$  & T = 1000 K.

Collision cross-section between two H atoms, with  $r_{\rm H} = 0.5$  Å:  $\sigma_{\rm H} \equiv \pi (2r_{\rm H})^2$ . Mean free-path:  $\lambda_{\rm H} \equiv \frac{1}{n_{\rm H}\sigma_{\rm H}} \simeq 10^{13} \text{ m} \simeq 700 \text{ a.u.}$ Mean velocity:  $\frac{1}{2}m_{\rm H}v_{\rm H}^2 = \frac{3}{2}kT \Rightarrow v_{\rm H} = \sqrt{\frac{3kT}{m_{\rm H}}}$ . Collision time:  $\tau_{\rm coll} \equiv \frac{\lambda_{\rm H}}{v_{\rm H}} = \frac{\lambda_{\rm H}}{\sqrt{3kT/m_{\rm H}}} \simeq 2 \times 10^{10} \text{ s}$  $dA = 4\pi r_{\rm H}^2$ 

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3$  cm<sup>-3</sup> & T = 1000 K.

Collision cross-section between two H atoms, with  

$$r_{\rm H} = 0.5$$
 Å:  $\sigma_{\rm H} \equiv \pi (2r_{\rm H})^2$ .  
Mean free-path:  $\lambda_{\rm H} \equiv \frac{1}{n_{\rm H}\sigma_{\rm H}} \simeq 10^{13} \text{ m} \simeq 700 \text{ a.u.}$   
Mean velocity:  $\frac{1}{2}m_{\rm H}v_{\rm H}^2 = \frac{3}{2}kT \Rightarrow v_{\rm H} = \sqrt{\frac{3kT}{m_{\rm H}}}$ .  
Collision time:  $\tau_{\rm coll} \equiv \frac{\lambda_{\rm H}}{v_{\rm H}} = \frac{\lambda_{\rm H}}{\sqrt{3kT/m_{\rm H}}} \simeq 2 \times 10^{10} \text{ s}$   
 $\simeq 700 \text{ yr.}$   
 $dA = 4\pi r_{\rm H}^2$ 

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3 \text{ cm}^{-3}$  & T = 1000 K.

Collision cross-section between two H atoms, with  

$$r_{\rm H} = 0.5$$
 Å:  $\sigma_{\rm H} \equiv \pi (2r_{\rm H})^2$ .  
Mean free-path:  $\lambda_{\rm H} \equiv \frac{1}{n_{\rm H}\sigma_{\rm H}} \simeq 10^{13} \text{ m} \simeq 700 \text{ a.u.}$   
Mean velocity:  $\frac{1}{2}m_{\rm H}v_{\rm H}^2 = \frac{3}{2}kT \Rightarrow v_{\rm H} = \sqrt{\frac{3kT}{m_{\rm H}}}$ .  
Collision time:  $\tau_{\rm coll} \equiv \frac{\lambda_{\rm H}}{v_{\rm H}} = \frac{\lambda_{\rm H}}{\sqrt{3kT/m_{\rm H}}} \simeq 2 \times 10^{10} \text{ s}$   
 $\simeq 700 \text{ yr.}$ 

Conditions for Local Thermal Equilibirum (LTE)

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3 \text{ cm}^{-3}$  & T = 1000 K.

Collision cross-section between two H atoms, with  

$$r_{\rm H} = 0.5$$
 Å:  $\sigma_{\rm H} \equiv \pi (2r_{\rm H})^2$ .  
Mean free-path:  $\lambda_{\rm H} \equiv \frac{1}{n_{\rm H}\sigma_{\rm H}} \simeq 10^{13} \text{ m} \simeq 700 \text{ a.u.}$   
Mean velocity:  $\frac{1}{2}m_{\rm H}v_{\rm H}^2 = \frac{3}{2}kT \Rightarrow v_{\rm H} = \sqrt{\frac{3kT}{m_{\rm H}}}$ .  
Collision time:  $\tau_{\rm coll} \equiv \frac{\lambda_{\rm H}}{v_{\rm H}} = \frac{\lambda_{\rm H}}{\sqrt{3kT/m_{\rm H}}} \simeq 2 \times 10^{10} \text{ s}$   
 $\simeq 700 \text{ yr.}$ 

Conditions for Local Thermal Equilibirum (LTE)

Spontaneous transition rate for the first levels of H:

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3$  cm<sup>-3</sup> & T = 1000 K.

Collision cross-section between two H atoms, with  

$$r_{\rm H} = 0.5$$
 Å:  $\sigma_{\rm H} \equiv \pi (2r_{\rm H})^2$ .  
Mean free-path:  $\lambda_{\rm H} \equiv \frac{1}{n_{\rm H}\sigma_{\rm H}} \simeq 10^{13} \text{ m} \simeq 700 \text{ a.u.}$   
Mean velocity:  $\frac{1}{2}m_{\rm H}v_{\rm H}^2 = \frac{3}{2}kT \Rightarrow v_{\rm H} = \sqrt{\frac{3kT}{m_{\rm H}}}$ .  
Collision time:  $\tau_{\rm coll} \equiv \frac{\lambda_{\rm H}}{v_{\rm H}} = \frac{\lambda_{\rm H}}{\sqrt{3kT/m_{\rm H}}} \simeq 2 \times 10^{10} \text{ s}$   
 $\simeq 700 \text{ yr.}$ 

Conditions for Local Thermal Equilibirum (LTE)

Spontaneous transition rate for the first levels of H:  $\tau_{\rm cool} = \frac{1}{A \, ({\rm Einstein \ coefficient})}$ 

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3 \text{ cm}^{-3}$  & T = 1000 K.

Collision cross-section between two H atoms, with  

$$r_{\rm H} = 0.5 \text{ Å}: \sigma_{\rm H} \equiv \pi (2r_{\rm H})^2.$$
  
Mean free-path:  $\lambda_{\rm H} \equiv \frac{1}{n_{\rm H}\sigma_{\rm H}} \simeq 10^{13} \text{ m} \simeq 700 \text{ a.u.}$   
Mean velocity:  $\frac{1}{2}m_{\rm H}v_{\rm H}^2 = \frac{3}{2}kT \Rightarrow v_{\rm H} = \sqrt{\frac{3kT}{m_{\rm H}}}.$   
Collision time:  $\tau_{\rm coll} \equiv \frac{\lambda_{\rm H}}{v_{\rm H}} = \frac{\lambda_{\rm H}}{\sqrt{3kT/m_{\rm H}}} \simeq 2 \times 10^{10} \text{ s}$   
 $\simeq 700 \text{ yr}$ 

Conditions for Local Thermal Equilibirum (LTE)

**Spontaneous transition rate** for the first levels of H:

$$au_{
m cool} = rac{1}{A \, ({
m Einstein \ coefficient})} \simeq 10^{-8} - 10^{-5} \, {
m s}$$

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3$  cm<sup>-3</sup> & T = 1000 K.

Collision cross-section between two H atoms, with  

$$r_{\rm H} = 0.5 \text{ Å}: \sigma_{\rm H} \equiv \pi (2r_{\rm H})^2.$$
  
Mean free-path:  $\lambda_{\rm H} \equiv \frac{1}{n_{\rm H}\sigma_{\rm H}} \simeq 10^{13} \text{ m} \simeq 700 \text{ a.u.}$   
Mean velocity:  $\frac{1}{2}m_{\rm H}v_{\rm H}^2 = \frac{3}{2}kT \Rightarrow v_{\rm H} = \sqrt{\frac{3kT}{m_{\rm H}}}.$   
Collision time:  $\tau_{\rm coll} \equiv \frac{\lambda_{\rm H}}{v_{\rm H}} = \frac{\lambda_{\rm H}}{\sqrt{3kT/m_{\rm H}}} \simeq 2 \times 10^{10} \text{ s}$   
 $\simeq 700 \text{ yr}$ 

Conditions for Local Thermal Equilibirum (LTE)

**Spontaneous transition rate** for the first levels of H:

$$au_{
m cool} = rac{1}{A \ ({
m Einstein \ coefficient})} \simeq 10^{-8} - 10^{-5} \ {
m s}$$
  
 $\Rightarrow \ au_{
m cool} \ll au_{
m cool}$ 

Let's assume that the ISM is only made of H atoms, with  $n_{\rm H} = 0.3$  cm<sup>-3</sup> & T = 1000 K.

Collision cross-section between two H atoms, with  

$$r_{\rm H} = 0.5$$
 Å:  $\sigma_{\rm H} \equiv \pi (2r_{\rm H})^2$ .  
Mean free-path:  $\lambda_{\rm H} \equiv \frac{1}{n_{\rm H}\sigma_{\rm H}} \simeq 10^{13} \text{ m} \simeq 700 \text{ a.u.}$   
Mean velocity:  $\frac{1}{2}m_{\rm H}v_{\rm H}^2 = \frac{3}{2}kT \Rightarrow v_{\rm H} = \sqrt{\frac{3kT}{m_{\rm H}}}$ .  
Collision time:  $\tau_{\rm coll} \equiv \frac{\lambda_{\rm H}}{v_{\rm H}} = \frac{\lambda_{\rm H}}{\sqrt{3kT/m_{\rm H}}} \simeq 2 \times 10^{10} \text{ s}$   
 $\simeq 700 \text{ yr}$ 

Conditions for Local Thermal Equilibirum (LTE)

Spontaneous transition rate for the first levels of H:

$$au_{
m cool} = rac{1}{A \, ({
m Einstein \ coefficient})} \simeq 10^{-8} - 10^{-5} \ {
m s}$$

 $\Rightarrow \tau_{\rm cool} \ll \tau_{\rm coll}$ 

 $\Rightarrow$  T is not sufficient to describe the physical state of the ISM (species are usually in their ground state).

F. Galliano (CEA Paris-Saclay)
**Overview** | Density & Temperature Range of the ISM



(Adapted from Dopita & Sutherland 2003)



















Velocity distribution in the ISM

1 pc

Typical scale of interstellar clouds:  $L_{\rm ISM} \simeq$ 



(Adapted from Dopita & Sutherland 2003)

Velocity distribution in the ISM

1 pc  $\gg \lambda_{\rm H}$ .

Typical scale of interstellar clouds:  $L_{\rm ISM} \simeq$ 



(Adapted from Dopita & Sutherland 2003)



(Adapted from Dopita & Sutherland 2003)

- 2 Typical cloud lifetimes:  $au_{\sf cl}~\gtrsim~1$  Myr

Velocity distribution in the ISM

 $1 \text{ pc} \gg \lambda_{\text{H}}.$ 

 $\tau_{\rm coll}$ .

Typical scale of interstellar clouds:  $L_{\rm ISM} \simeq$ 

Typical cloud lifetimes:  $\tau_{\rm cl} \gtrsim 1 \, \text{Myr} \gg$ 



(Adapted from Dopita & Sutherland 2003)

Velocity distribution in the ISM

1 pc  $\gg \lambda_{\rm H}$ .

thermalization.

 $\tau_{\rm coll}$ .

Typical scale of interstellar clouds:  $L_{\rm ISM} \simeq$ 

Typical cloud lifetimes:  $\tau_{\rm cl} \gtrsim 1 \, {\rm Myr} \gg$ 

Collisions are essentially elastic  $\Rightarrow$  good



(Adapted from Dopita & Sutherland 2003)



- $\label{eq:list} \begin{array}{ll} {\rm I} & {\rm Typical \ scale \ of \ interstellar \ clouds: \ } L_{\rm ISM} \simeq \\ {\rm I \ pc} \gg \lambda_{\rm H}. \end{array}$
- 2 Typical cloud lifetimes:  $au_{
  m cl}\gtrsim 1~{
  m Myr}\gg au_{
  m coll}.$
- 3 Collisions are essentially elastic  $\Rightarrow$  good thermalization.
- ⇒ interstellar atoms mostly follow a Maxwell-Boltzmann distribution:



- $\label{eq:list} \begin{array}{ll} {\rm I} & {\rm Typical \ scale \ of \ interstellar \ clouds: \ } L_{\rm ISM} \simeq \\ {\rm I \ pc} \gg \lambda_{\rm H}. \end{array}$
- 2 Typical cloud lifetimes:  $au_{
  m cl}\gtrsim 1~{
  m Myr}\gg au_{
  m coll}.$
- ⇒ interstellar atoms mostly follow a Maxwell-Boltzmann distribution:

$$f(v) \equiv \left(\frac{m}{2\pi kT}\right)^{3/2} 4\pi v^2 \exp\left(-\frac{mv^2}{2kT}\right)$$



#### Velocity distribution in the ISM

- 2 Typical cloud lifetimes:  $au_{
  m cl}\gtrsim 1~{
  m Myr}\gg au_{
  m coll}.$
- S Collisions are essentially elastic ⇒ good thermalization.
- ⇒ interstellar atoms mostly follow a Maxwell-Boltzmann distribution:

$$f(v) \equiv \left(\frac{m}{2\pi kT}\right)^{3/2} 4\pi v^2 \exp\left(-\frac{mv^2}{2kT}\right)$$





#### Velocity distribution in the ISM

- 2 Typical cloud lifetimes:  $au_{
  m cl}\gtrsim 1~{
  m Myr}\gg au_{
  m coll}.$
- ⇒ interstellar atoms mostly follow a Maxwell-Boltzmann distribution:

$$f(v) \equiv \left(\frac{m}{2\pi kT}\right)^{3/2} 4\pi v^2 \exp\left(-\frac{mv^2}{2kT}\right)$$





#### Velocity distribution in the ISM

- 2 Typical cloud lifetimes:  $au_{
  m cl}\gtrsim 1~{
  m Myr}\gg au_{
  m coll}.$
- ⇒ interstellar atoms mostly follow a Maxwell-Boltzmann distribution:

$$f(v) \equiv \left(\frac{m}{2\pi kT}\right)^{3/2} 4\pi v^2 \exp\left(-\frac{mv^2}{2kT}\right)$$





#### Velocity distribution in the ISM

- 2 Typical cloud lifetimes:  $au_{
  m cl}\gtrsim 1~{
  m Myr}\gg au_{
  m coll}.$
- ⇒ interstellar atoms mostly follow a Maxwell-Boltzmann distribution:

$$f(v) \equiv \left(\frac{m}{2\pi kT}\right)^{3/2} 4\pi v^2 \exp\left(-\frac{mv^2}{2kT}\right)$$





#### Velocity distribution in the ISM

- $\label{eq:list} \begin{array}{ll} {\rm I} & {\rm Typical \ scale \ of \ interstellar \ clouds: \ } L_{\rm ISM} \simeq \\ {\rm I \ pc} \gg \lambda_{\rm H}. \end{array}$
- 2 Typical cloud lifetimes:  $au_{
  m cl}\gtrsim 1~{
  m Myr}\gg au_{
  m coll}.$
- S Collisions are essentially elastic ⇒ good thermalization.
- ⇒ interstellar atoms mostly follow a Maxwell-Boltzmann distribution:

$$f(v) \equiv \left(\frac{m}{2\pi kT}\right)^{3/2} 4\pi v^2 \exp\left(-\frac{mv^2}{2kT}\right)$$



Power injection in the ISM

Power injection in the ISM

#### Power injection in the ISM

| Radiative power injection |  |
|---------------------------|--|
|                           |  |
|                           |  |
| (Tielens 2005, Chap. 1)   |  |

#### Power injection in the ISM

| Radiative power injection            |  |
|--------------------------------------|--|
| All stars $4	imes 10^{10}~L_{\odot}$ |  |
|                                      |  |
|                                      |  |
| (Tielens 2005, Chap. 1)              |  |

#### Power injection in the ISM

| Radiative pow | er injection               |  |
|---------------|----------------------------|--|
| All stars     | $4	imes 10^{10}~L_{\odot}$ |  |
| O, B, A stars | $8	imes 10^9~L_{\odot}$    |  |
| (Tielens 2005 | 5, Chap. 1)                |  |

#### Power injection in the ISM

| Radiative power injection |                            | Mechanical power injection |  |
|---------------------------|----------------------------|----------------------------|--|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ |                            |  |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    |                            |  |
|                           |                            |                            |  |
| (Tielens 2005             | ō, Chap. 1)                |                            |  |

#### Power injection in the ISM

| Radiative power injection Mechanic |                            | Mechanical po | wer injection           |  |
|------------------------------------|----------------------------|---------------|-------------------------|--|
| All stars                          | $4	imes 10^{10}~L_{\odot}$ | SNe           | $2	imes 10^8~L_{\odot}$ |  |
| O, B, A stars                      | $8	imes 10^9~L_{\odot}$    |               |                         |  |
| (Tielens 2005                      | 5, Chap. 1)                |               |                         |  |
| Radiative power injection |                            | Mechanical power injection |                         |  |
|---------------------------|----------------------------|----------------------------|-------------------------|--|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ |  |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ |  |
| (Tielens 2005, Chap. 1)   |                            |                            |                         |  |

| Radiative power injection |                            | Mechanical power injection |                         |  |
|---------------------------|----------------------------|----------------------------|-------------------------|--|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ |  |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ |  |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ |  |
| (Tielens 2005, Chap. 1)   |                            |                            |                         |  |

| Radiative power injection |                            | Mechanical power injection |                         |  |
|---------------------------|----------------------------|----------------------------|-------------------------|--|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ |  |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ |  |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ |  |
| (Tielens 2005, Chap. 1)   |                            | AGB stars                  | $1	imes 10^4~L_{\odot}$ |  |

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ |                   |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ |                   |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ |                   |
| (Tielens 2005, Chap. 1)   |                            | AGB stars                  | $1	imes 10^4~L_{\odot}$ |                   |

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust              | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ |                   |                             |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ |                   |                             |
| (Tielens 2005, Chap. 1)   |                            | AGB stars                  | $1	imes 10^4~L_{\odot}$ |                   |                             |

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust              | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio             | $1.5	imes 10^8~L_{\odot}$   |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ |                   |                             |
| (Tielens 2005, Chap. 1)   |                            | AGB stars                  | $1	imes 10^4~L_{\odot}$ |                   |                             |

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5 	imes 10^8 L_{\odot}$  |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C 11] <sub>158µm</sub> | $5 	imes 10^7 L_{\odot}$    |
| (Tielens 2005, Chap. 1)   |                            | AGB stars                  | $1	imes 10^4~L_{\odot}$ |                         |                             |

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5	imes10^8~L_{\odot}$    |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C 11] <sub>158µm</sub> | $5	imes 10^7 L_{\odot}$     |
| (Tielens 2005, Chap. 1)   |                            | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma$ -rays          | $3	imes 10^5~L_{\odot}$     |

Most ISM phases are at thermal pressure equilibrium:  $P/k = n.T \simeq 10^3 - 10^4 \text{ K/cm}^3$ .

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5 	imes 10^8 L_{\odot}$  |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C 11] <sub>158µm</sub> | $5 	imes 10^7 L_{\odot}$    |
| (Tielens 2005, Chap. 1)   |                            | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma$ -rays          | $3 	imes 10^5 L_{\odot}$    |

Most ISM phases are at thermal pressure equilibrium:  $P/k = n.T \simeq 10^3 - 10^4 \text{ K/cm}^3$ .

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5 	imes 10^8 L_{\odot}$  |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C 11] <sub>158µm</sub> | $5 	imes 10^7 L_{\odot}$    |
| (Tielens 2005, Chap. 1)   |                            | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma$ -rays          | $3 	imes 10^5 L_{\odot}$    |

Rough equipartition of all energy densities

Thermal kinetic energy:  $U_{\rm th} =$ 

Most ISM phases are at thermal pressure equilibrium:  $P/k = n.T \simeq 10^3 - 10^4 \text{ K/cm}^3$ .

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5 	imes 10^8 L_{\odot}$  |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C II] <sub>158µm</sub> | $5 	imes 10^7 L_{\odot}$    |
| (Tielens 2005, Chap. 1)   |                            | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma	ext{-rays}$     | $3 	imes 10^5 L_{\odot}$    |

Rough equipartition of all energy densities

Thermal kinetic energy:  $U_{\rm th} = \frac{3}{2}P =$ 

Most ISM phases are at thermal pressure equilibrium:  $P/k = n.T \simeq 10^3 - 10^4 \text{ K/cm}^3$ .

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5 	imes 10^8 L_{\odot}$  |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C 11] <sub>158µm</sub> | $5 	imes 10^7 L_{\odot}$    |
| (Tielens 2005, Chap. 1)   |                            | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma$ -rays          | $3 	imes 10^5 L_{\odot}$    |

Thermal kinetic energy: 
$$U_{\rm th} = \frac{3}{2}P = 0.39 \times \left(\frac{P/k}{3000 \text{ K.cm}^{-3}}\right) \text{ eV/cm}^3$$

Most ISM phases are at thermal pressure equilibrium:  $P/k = n.T \simeq 10^3 - 10^4 \text{ K/cm}^3$ .

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5	imes 10^8~L_{\odot}$   |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C 11] <sub>158µm</sub> | $5	imes 10^7~L_{\odot}$     |
| (Tielens 200              | 5, Chap. 1)                | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma$ -rays          | $3	imes 10^5~L_{\odot}$     |

Thermal kinetic energy: 
$$U_{\rm th} = rac{3}{2}P = 0.39 imes \left(rac{P/k}{3000 \ {\rm K.cm^{-3}}}
ight) \ {\rm eV/cm^3} \simeq 0.39 \ {\rm eV/cm^3}.$$

Most ISM phases are at thermal pressure equilibrium:  $P/k = n.T \simeq 10^3 - 10^4 \text{ K/cm}^3$ .

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5	imes 10^8~L_{\odot}$   |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C 11] <sub>158µm</sub> | $5	imes 10^7~L_{\odot}$     |
| (Tielens 200              | 5, Chap. 1)                | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma$ -rays          | $3	imes 10^5~L_{\odot}$     |

Rough equipartition of all energy densities

Thermal kinetic energy: 
$$U_{\rm th} = rac{3}{2}P = 0.39 imes \left(rac{P/k}{3000 \ {\rm K.cm^{-3}}}
ight) \ {\rm eV/cm^3} \simeq 0.39 \ {\rm eV/cm^3}.$$

Turbulent energy:  $U_{turb} =$ 

Most ISM phases are at thermal pressure equilibrium:  $P/k = n.T \simeq 10^3 - 10^4 \text{ K/cm}^3$ .

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5	imes 10^8~L_{\odot}$   |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C 11] <sub>158µm</sub> | $5	imes 10^7~L_{\odot}$     |
| (Tielens 200              | 5, Chap. 1)                | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma$ -rays          | $3	imes 10^5~L_{\odot}$     |

Rough equipartition of all energy densities

Thermal kinetic energy:  $U_{\rm th} = \frac{3}{2}P = 0.39 \times \left(\frac{P/k}{3000 \text{ K.cm}^{-3}}\right) \text{ eV/cm}^3 \simeq 0.39 \text{ eV/cm}^3.$ Turbulent energy:  $U_{\rm turb} = \frac{1}{2}\rho\langle v^2 \rangle =$ 

Most ISM phases are at thermal pressure equilibrium:  $P/k = n.T \simeq 10^3 - 10^4 \text{ K/cm}^3$ .

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5	imes 10^8~L_{\odot}$   |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C 11] <sub>158µm</sub> | $5	imes 10^7~L_{\odot}$     |
| (Tielens 200              | 5, Chap. 1)                | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma	ext{-rays}$     | $3	imes 10^5~L_{\odot}$     |

Thermal kinetic energy: 
$$U_{th} = \frac{3}{2}P = 0.39 \times \left(\frac{P/k}{3000 \text{ K.cm}^{-3}}\right) \text{ eV/cm}^3 \simeq 0.39 \text{ eV/cm}^3.$$
  
Turbulent energy:  $U_{turb} = \frac{1}{2}\rho\langle v^2 \rangle = 0.13 \times \left(\frac{n_{\text{H}}}{1 \text{ cm}^{-3}}\right) \left(\frac{\sigma(v)}{5 \text{ km/s}}\right)^2 \text{ eV/cm}^3$ 

Most ISM phases are at thermal pressure equilibrium:  $P/k = n.T \simeq 10^3 - 10^4 \text{ K/cm}^3$ .

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5	imes 10^8~L_{\odot}$   |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C 11] <sub>158µm</sub> | $5	imes 10^7~L_{\odot}$     |
| (Tielens 200              | 5, Chap. 1)                | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma$ -rays          | $3	imes 10^5~L_{\odot}$     |

Thermal kinetic energy: 
$$U_{\rm th} = \frac{3}{2}P = 0.39 \times \left(\frac{P/k}{3000 \text{ K.cm}^{-3}}\right) \text{ eV/cm}^3 \simeq 0.39 \text{ eV/cm}^3.$$
  
Turbulent energy:  $U_{\rm turb} = \frac{1}{2}\rho \langle v^2 \rangle = 0.13 \times \left(\frac{n_{\rm H}}{1 \text{ cm}^{-3}}\right) \left(\frac{\sigma(v)}{5 \text{ km/s}}\right)^2 \text{ eV/cm}^3 \simeq 0.13 \text{ eV/cm}^3.$ 

Most ISM phases are at thermal pressure equilibrium:  $P/k = n.T \simeq 10^3 - 10^4 \text{ K/cm}^3$ .

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5	imes 10^8~L_{\odot}$   |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C 11] <sub>158µm</sub> | $5	imes 10^7~L_{\odot}$     |
| (Tielens 200              | 5, Chap. 1)                | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma	ext{-rays}$     | $3	imes 10^5~L_{\odot}$     |

Rough equipartition of all energy densities

Thermal kinetic energy: 
$$U_{\rm th} = \frac{3}{2}P = 0.39 \times \left(\frac{P/k}{3000 \text{ K.cm}^{-3}}\right) \text{ eV/cm}^3 \simeq 0.39 \text{ eV/cm}^3.$$
  
Turbulent energy:  $U_{\rm turb} = \frac{1}{2}\rho \langle v^2 \rangle = 0.13 \times \left(\frac{n_{\rm H}}{1 \text{ cm}^{-3}}\right) \left(\frac{\sigma(v)}{5 \text{ km/s}}\right)^2 \text{ eV/cm}^3 \simeq 0.13 \text{ eV/cm}^3.$ 

Magnetic energy:  $U_{magn} =$ 

Most ISM phases are at thermal pressure equilibrium:  $P/k = n.T \simeq 10^3 - 10^4 \text{ K/cm}^3$ .

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5	imes 10^8~L_{\odot}$   |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C 11] <sub>158µm</sub> | $5	imes 10^7~L_{\odot}$     |
| (Tielens 200              | 5, Chap. 1)                | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma	ext{-rays}$     | $3	imes 10^5~L_{\odot}$     |

#### Rough equipartition of all energy densities

Thermal kinetic energy:  $U_{th} = \frac{3}{2}P = 0.39 \times \left(\frac{P/k}{3000 \text{ K.cm}^{-3}}\right) \text{ eV/cm}^3 \simeq 0.39 \text{ eV/cm}^3.$ Turbulent energy:  $U_{turb} = \frac{1}{2}\rho\langle v^2 \rangle = 0.13 \times \left(\frac{n_{\text{H}}}{1 \text{ cm}^{-3}}\right) \left(\frac{\sigma(v)}{5 \text{ km/s}}\right)^2 \text{ eV/cm}^3 \simeq 0.13 \text{ eV/cm}^3.$ Magnetic energy:  $U_{\text{magn}} = \frac{B^2}{2\mu_0} =$ 

Most ISM phases are at thermal pressure equilibrium:  $P/k = n.T \simeq 10^3 - 10^4 \text{ K/cm}^3$ .

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5	imes 10^8~L_{\odot}$   |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C 11] <sub>158µm</sub> | $5	imes 10^7~L_{\odot}$     |
| (Tielens 200              | 5, Chap. 1)                | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma	ext{-rays}$     | $3	imes 10^5~L_{\odot}$     |

Thermal kinetic energy: 
$$U_{th} = \frac{3}{2}P = 0.39 \times \left(\frac{P/k}{3000 \text{ K.cm}^{-3}}\right) \text{ eV/cm}^3 \simeq 0.39 \text{ eV/cm}^3.$$
  
Turbulent energy:  $U_{turb} = \frac{1}{2}\rho\langle v^2 \rangle = 0.13 \times \left(\frac{n_{\text{H}}}{1 \text{ cm}^{-3}}\right) \left(\frac{\sigma(v)}{5 \text{ km/s}}\right)^2 \text{ eV/cm}^3 \simeq 0.13 \text{ eV/cm}^3.$   
Magnetic energy:  $U_{\text{magn}} = \frac{B^2}{2\mu_0} = 0.88 \times \left(\frac{B}{0.6 \text{ nT}}\right)^2 \text{ eV/cm}^3$ 

Most ISM phases are at thermal pressure equilibrium:  $P/k = n.T \simeq 10^3 - 10^4 \text{ K/cm}^3$ .

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5	imes 10^8~L_{\odot}$   |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C 11] <sub>158µm</sub> | $5	imes 10^7~L_{\odot}$     |
| (Tielens 200              | 5, Chap. 1)                | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma	ext{-rays}$     | $3	imes 10^5~L_{\odot}$     |

Thermal kinetic energy: 
$$U_{\text{th}} = \frac{3}{2}P = 0.39 \times \left(\frac{P/k}{3000 \text{ K.cm}^{-3}}\right) \text{ eV/cm}^3 \simeq 0.39 \text{ eV/cm}^3.$$
  
Turbulent energy:  $U_{\text{turb}} = \frac{1}{2}\rho\langle v^2 \rangle = 0.13 \times \left(\frac{n_{\text{H}}}{1 \text{ cm}^{-3}}\right) \left(\frac{\sigma(v)}{5 \text{ km/s}}\right)^2 \text{ eV/cm}^3 \simeq 0.13 \text{ eV/cm}^3.$   
Magnetic energy:  $U_{\text{magn}} = \frac{B^2}{2\mu_0} = 0.88 \times \left(\frac{B}{0.6 \text{ nT}}\right)^2 \text{ eV/cm}^3 \simeq 0.88 \text{ eV/cm}^3.$ 

Most ISM phases are at thermal pressure equilibrium:  $P/k = n.T \simeq 10^3 - 10^4 \text{ K/cm}^3$ .

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5	imes 10^8~L_{\odot}$   |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C 11] <sub>158µm</sub> | $5	imes 10^7~L_{\odot}$     |
| (Tielens 200              | 5, Chap. 1)                | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma	ext{-rays}$     | $3	imes 10^5~L_{\odot}$     |

#### Rough equipartition of all energy densities

Thermal kinetic energy: 
$$U_{th} = \frac{3}{2}P = 0.39 \times \left(\frac{P/k}{3000 \text{ K.cm}^{-3}}\right) \text{ eV/cm}^3 \simeq 0.39 \text{ eV/cm}^3.$$
  
Turbulent energy:  $U_{turb} = \frac{1}{2}\rho\langle v^2 \rangle = 0.13 \times \left(\frac{n_{\text{H}}}{1 \text{ cm}^{-3}}\right) \left(\frac{\sigma(v)}{5 \text{ km/s}}\right)^2 \text{ eV/cm}^3 \simeq 0.13 \text{ eV/cm}^3.$   
Magnetic energy:  $U_{\text{magn}} = \frac{B^2}{2\mu_0} = 0.88 \times \left(\frac{B}{0.6 \text{ nT}}\right)^2 \text{ eV/cm}^3 \simeq 0.88 \text{ eV/cm}^3.$ 

Cosmic microwave background:  $U_{CMB} =$ 

Most ISM phases are at thermal pressure equilibrium:  $P/k = n.T \simeq 10^3 - 10^4 \text{ K/cm}^3$ .

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5	imes 10^8~L_{\odot}$   |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C 11] <sub>158µm</sub> | $5	imes 10^7~L_{\odot}$     |
| (Tielens 200              | 5, Chap. 1)                | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma	ext{-rays}$     | $3	imes 10^5~L_{\odot}$     |

#### Rough equipartition of all energy densities

Thermal kinetic energy:  $U_{th} = \frac{3}{2}P = 0.39 \times \left(\frac{P/k}{3000 \text{ K.cm}^{-3}}\right) \text{ eV/cm}^3 \simeq 0.39 \text{ eV/cm}^3.$ Turbulent energy:  $U_{turb} = \frac{1}{2}\rho\langle v^2 \rangle = 0.13 \times \left(\frac{n_{\text{H}}}{1 \text{ cm}^{-3}}\right) \left(\frac{\sigma(v)}{5 \text{ km/s}}\right)^2 \text{ eV/cm}^3 \simeq 0.13 \text{ eV/cm}^3.$ Magnetic energy:  $U_{\text{magn}} = \frac{B^2}{2\mu_0} = 0.88 \times \left(\frac{B}{0.6 \text{ nT}}\right)^2 \text{ eV/cm}^3 \simeq 0.88 \text{ eV/cm}^3.$ Cosmic microwave background:  $U_{\text{CMB}} = \frac{c}{4}\sigma T_{\text{CMB}}^4 =$ 

Most ISM phases are at thermal pressure equilibrium:  $P/k = n.T \simeq 10^3 - 10^4 \text{ K/cm}^3$ .

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5 	imes 10^8 L_{\odot}$  |
| <u>~</u>                  |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C II] <sub>158µm</sub> | $5 	imes 10^7 L_{\odot}$    |
| (Tielens 200              | 5, Chap. 1)                | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma	ext{-rays}$     | $3	imes 10^5~L_{\odot}$     |

#### Rough equipartition of all energy densities

Thermal kinetic energy:  $U_{th} = \frac{3}{2}P = 0.39 \times \left(\frac{P/k}{3000 \text{ K.cm}^{-3}}\right) \text{ eV/cm}^3 \simeq 0.39 \text{ eV/cm}^3.$ Turbulent energy:  $U_{turb} = \frac{1}{2}\rho\langle v^2 \rangle = 0.13 \times \left(\frac{n_{\text{H}}}{1 \text{ cm}^{-3}}\right) \left(\frac{\sigma(v)}{5 \text{ km/s}}\right)^2 \text{ eV/cm}^3 \simeq 0.13 \text{ eV/cm}^3.$ Magnetic energy:  $U_{\text{magn}} = \frac{B^2}{2\mu_0} = 0.88 \times \left(\frac{B}{0.6 \text{ nT}}\right)^2 \text{ eV/cm}^3 \simeq 0.88 \text{ eV/cm}^3.$ Cosmic microwave background:  $U_{\text{CMB}} = \frac{c}{4}\sigma T_{\text{CMB}}^4 = 0.26 \times \left(\frac{T_{\text{CMB}}}{2.725 \text{ K}}\right)^4 \text{ eV/cm}^3$ 

Most ISM phases are at thermal pressure equilibrium:  $P/k = n.T \simeq 10^3 - 10^4 \text{ K/cm}^3$ .

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5	imes 10^8~L_{\odot}$   |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C 11] <sub>158µm</sub> | $5	imes 10^7~L_{\odot}$     |
| (Tielens 2005, Chap. 1)   |                            | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma	ext{-rays}$     | $3	imes 10^5~L_{\odot}$     |

Thermal kinetic energy: 
$$U_{th} = \frac{3}{2}P = 0.39 \times \left(\frac{P/k}{3000 \text{ K.cm}^{-3}}\right) \text{ eV/cm}^3 \simeq 0.39 \text{ eV/cm}^3.$$
  
Turbulent energy:  $U_{turb} = \frac{1}{2}\rho \langle v^2 \rangle = 0.13 \times \left(\frac{n_{\text{H}}}{1 \text{ cm}^{-3}}\right) \left(\frac{\sigma(v)}{5 \text{ km/s}}\right)^2 \text{ eV/cm}^3 \simeq 0.13 \text{ eV/cm}^3.$   
Magnetic energy:  $U_{\text{magn}} = \frac{B^2}{2\mu_0} = 0.88 \times \left(\frac{B}{0.6 \text{ nT}}\right)^2 \text{ eV/cm}^3 \simeq 0.88 \text{ eV/cm}^3.$   
Cosmic microwave background:  $U_{\text{CMB}} = \frac{c}{4}\sigma T_{\text{CMB}}^4 = 0.26 \times \left(\frac{T_{\text{CMB}}}{2.725 \text{ K}}\right)^4 \text{ eV/cm}^3 \simeq 0.26 \text{ eV/cm}^3.$ 

Most ISM phases are at thermal pressure equilibrium:  $P/k = n.T \simeq 10^3 - 10^4 \text{ K/cm}^3$ .

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5	imes 10^8~L_{\odot}$   |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C 11] <sub>158µm</sub> | $5	imes 10^7~L_{\odot}$     |
| (Tielens 2005, Chap. 1)   |                            | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma	ext{-rays}$     | $3	imes 10^5~L_{\odot}$     |

#### Rough equipartition of all energy densities

Thermal kinetic energy:  $U_{th} = \frac{3}{2}P = 0.39 \times \left(\frac{P/k}{3000 \text{ K.cm}^{-3}}\right) \text{ eV/cm}^3 \simeq 0.39 \text{ eV/cm}^3.$ Turbulent energy:  $U_{turb} = \frac{1}{2}\rho \langle v^2 \rangle = 0.13 \times \left(\frac{n_{\text{H}}}{1 \text{ cm}^{-3}}\right) \left(\frac{\sigma(v)}{5 \text{ km/s}}\right)^2 \text{ eV/cm}^3 \simeq 0.13 \text{ eV/cm}^3.$ Magnetic energy:  $U_{\text{magn}} = \frac{B^2}{2\mu_0} = 0.88 \times \left(\frac{B}{0.6 \text{ nT}}\right)^2 \text{ eV/cm}^3 \simeq 0.88 \text{ eV/cm}^3.$ Cosmic microwave background:  $U_{\text{CMB}} = \frac{c}{4}\sigma T_{\text{CMB}}^4 = 0.26 \times \left(\frac{T_{\text{CMB}}}{2.725 \text{ K}}\right)^4 \text{ eV/cm}^3 \simeq 0.26 \text{ eV/cm}^3.$ Starlight:  $U_{\star} \simeq 0.5 \text{ eV/cm}^3.$ 

Most ISM phases are at thermal pressure equilibrium:  $P/k = n.T \simeq 10^3 - 10^4 \text{ K/cm}^3$ .

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5 	imes 10^8 L_{\odot}$  |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C II] <sub>158µm</sub> | $5 	imes 10^7 L_{\odot}$    |
| (Tielens 2005, Chap. 1)   |                            | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma	ext{-rays}$     | $3	imes 10^5~L_{\odot}$     |

Rough equipartition of all energy densities

Thermal kinetic energy:  $U_{th} = \frac{3}{2}P = 0.39 \times \left(\frac{P/k}{3000 \text{ K.cm}^{-3}}\right) \text{ eV/cm}^3 \simeq 0.39 \text{ eV/cm}^3.$ Turbulent energy:  $U_{turb} = \frac{1}{2}\rho\langle v^2 \rangle = 0.13 \times \left(\frac{n_{\text{H}}}{1 \text{ cm}^{-3}}\right) \left(\frac{\sigma(v)}{5 \text{ km/s}}\right)^2 \text{ eV/cm}^3 \simeq 0.13 \text{ eV/cm}^3.$ Magnetic energy:  $U_{\text{magn}} = \frac{B^2}{2\mu_0} = 0.88 \times \left(\frac{B}{0.6 \text{ nT}}\right)^2 \text{ eV/cm}^3 \simeq 0.88 \text{ eV/cm}^3.$ Cosmic microwave background:  $U_{\text{CMB}} = \frac{c}{4}\sigma T_{\text{CMB}}^4 = 0.26 \times \left(\frac{T_{\text{CMB}}}{2.725 \text{ K}}\right)^4 \text{ eV/cm}^3 \simeq 0.26 \text{ eV/cm}^3.$ Starlight:  $U_{\star} \simeq 0.5 \text{ eV/cm}^3.$ Cosmic rays:  $U_{\text{CR}} \simeq 0.8 \text{ eV/cm}^3.$ 

Most ISM phases are at thermal pressure equilibrium:  $P/k = n.T \simeq 10^3 - 10^4 \text{ K/cm}^3$ .

| Radiative power injection |                            | Mechanical power injection |                         | Radiative cooling       |                             |
|---------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|
| All stars                 | $4	imes 10^{10}~L_{\odot}$ | SNe                        | $2	imes 10^8~L_{\odot}$ | Dust                    | $1.7	imes10^{10}~L_{\odot}$ |
| O, B, A stars             | $8	imes 10^9~L_{\odot}$    | Wolf-Rayet                 | $2	imes 10^7~L_{\odot}$ | Radio                   | $1.5 	imes 10^8 L_{\odot}$  |
|                           |                            | O, B, A stars              | $1	imes 10^7~L_{\odot}$ | [C II] <sub>158µm</sub> | $5 	imes 10^7 L_{\odot}$    |
| (Tielens 2005, Chap. 1)   |                            | AGB stars                  | $1	imes 10^4~L_{\odot}$ | $\gamma	ext{-rays}$     | $3	imes 10^5~L_{\odot}$     |

Rough equipartition of all energy densities

Thermal kinetic energy:  $U_{th} = \frac{3}{2}P = 0.39 \times \left(\frac{P/k}{3000 \text{ K.cm}^{-3}}\right) \text{ eV/cm}^3 \simeq 0.39 \text{ eV/cm}^3.$ Turbulent energy:  $U_{turb} = \frac{1}{2}\rho\langle v^2 \rangle = 0.13 \times \left(\frac{n_{\text{H}}}{1 \text{ cm}^{-3}}\right) \left(\frac{\sigma(v)}{5 \text{ km/s}}\right)^2 \text{ eV/cm}^3 \simeq 0.13 \text{ eV/cm}^3.$ Magnetic energy:  $U_{\text{magn}} = \frac{B^2}{2\mu_0} = 0.88 \times \left(\frac{B}{0.6 \text{ nT}}\right)^2 \text{ eV/cm}^3 \simeq 0.88 \text{ eV/cm}^3.$ Cosmic microwave background:  $U_{\text{CMB}} = \frac{c}{4}\sigma T_{\text{CMB}}^4 = 0.26 \times \left(\frac{T_{\text{CMB}}}{2.725 \text{ K}}\right)^4 \text{ eV/cm}^3 \simeq 0.26 \text{ eV/cm}^3.$ Starlight:  $U_{\star} \simeq 0.5 \text{ eV/cm}^3.$  $U_{\text{th}} \simeq U_{\text{turb}} \simeq U_{\text{cMB}} \simeq U_{\star} \simeq U_{\text{CR}} \simeq 0.3 \text{ eV/cm}^3$ 

F. Galliano (CEA Paris-Saclay)











## **Overview** | The ISM of External Galaxies

# **Overview** | The ISM of External Galaxies

### Terminology
#### Terminology

"The Galaxy" = the Milky Way.

### Terminology

"The Galaxy" = the Milky Way. "Galactic" = relative to the Milky Way.

### Terminology

"The Galaxy" = the Milky Way. "Galactic" = relative to the Milky Way.

## Terminology

"The Galaxy" = the Milky Way. "Galactic" = relative to the Milky Way. "galaxies" = that are not the Milky Way.

#### Dwarf / Irregular



Credit: I Zw 18 (Aloisi et al., 2007).

#### Terminology

"The Galaxy" = the Milky Way. "Galactic" = relative to the Milky Way. "galaxies" = that are not the Milky Way.

#### Dwarf / Irregular



Credit: I Zw 18 (Aloisi et al., 2007).

Metallicity: low ( $\lesssim 1/50 Z_{\odot}$ ).

#### Terminology

"The Galaxy" = the Milky Way. "Galactic" = relative to the Milky Way. "galaxies" = that are not the Milky Way.

#### Dwarf / Irregular



Credit: I Zw 18 (Aloisi et al., 2007).

Metallicity: low ( $\lesssim 1/50 Z_{\odot}$ ). Gas fraction: high ( $\gtrsim 95 \%$ ).

#### Terminology

"The Galaxy" = the Milky Way. "Galactic" = relative to the Milky Way. "galaxies" = that are not the Milky Way.

#### Dwarf / Irregular



Credit: I Zw 18 (Aloisi et al., 2007).

 $\begin{array}{l} \mbox{Metallicity: low } (\lesssim 1/50 \ Z_{\odot}). \\ \mbox{Gas fraction: high } (\gtrsim 95 \ \%). \\ \mbox{SFR}/M_{\star}: \ \mbox{high } (\gtrsim 10 \ \mbox{Gyr}^{-1}). \end{array}$ 

"The Galaxy" = the Milky Way. "Galactic" = relative to the Milky Way.



"The Galaxy" = the Milky Way. "Galactic" = relative to the Milky Way.



"The Galaxy" = the Milky Way. "Galactic" = relative to the Milky Way.

Dwarf / Irregular
Spiral / Late-Type

Image: Constraint of the system o

Credit: I Zw 18 (Aloisi et al., 2007).

Metallicity: low  $(\leq 1/50 Z_{\odot})$ . Gas fraction: high  $(\geq 95 \%)$ . SFR/ $M_{\star}$ : high  $(\geq 10 \text{ Gyr}^{-1})$ . Metallicity: av. ( $\simeq Z_{\odot}$ ). Gas fraction: av. ( $\simeq 30$  %).

Credit: M 33 (Subaru / HST)

"The Galaxy" = the Milky Way. "Galactic" = relative to the Milky Way.

Dwarf / Irregular Spiral / Late-Type Credit: I Zw 18 (Aloisi et al., 2007). Credit: M 33 (Subaru / HST) Metallicity: low ( $\leq 1/50 Z_{\odot}$ ). Metallicity: av. ( $\simeq Z_{\odot}$ ). Gas fraction: high ( $\gtrsim$  95%). Gas fraction: av. ( $\simeq$  30%). SFR/ $M_{\star}$ : high ( $\geq 10 \text{ Gyr}^{-1}$ ). SFR/ $M_{\star}$ : av. ( $\simeq 0.1 \text{ Gyr}^{-1}$ ).

"The Galaxy" = the Milky Way. "Galactic" = relative to the Milky Way. "galaxies" = that are not the Milky Way.



F. Galliano (CEA Paris-Saclay)

"The <u>Galaxy</u>" = the Milky Way. "<u>Galactic</u>" = relative to the Milky Way.



"The <u>Galaxy</u>" = the Milky Way. "<u>Galactic</u>" = relative to the Milky Way.



"The <u>Galaxy</u>" = the Milky Way. "<u>Galactic</u>" = relative to the Milky Way.



## **Overview** | Why Is It Important to Understand the ISM?



# **Overview** | Why Is It Important to Understand the ISM?





# ORIGIN OF THE UNIVERSE





















F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)

September 23, 2024

15 / 53

**ISMology:** • Dust properties in different environments.

- **ISMology:** Dust properties in different environments.
  - Polycyclic Aromatic Hydrocarbons (PAH), photoelectric heating, dark gas, etc.

ISMology:

- Dust properties in different environments.
- Polycyclic Aromatic Hydrocarbons (PAH), photoelectric heating, dark gas, etc.



## **Overview** | My Personal Scientific Interests

#### Scientific Perspective

**ISMology:** • Dust properties in different environments.

 Polycyclic Aromatic Hydrocarbons (PAH), photoelectric heating, dark gas, etc.

#### Galaxies:

 Focus on nearby galaxies ⇒ understand galaxy evolution.



## **Overview** | My Personal Scientific Interests

#### Scientific Perspective

**ISMology:** • Dust properties in different environments.

 Polycyclic Aromatic Hydrocarbons (PAH), photoelectric heating, dark gas, etc.

#### Galaxies:

- Focus on nearby galaxies  $\Rightarrow$  understand galaxy evolution.
- Cosmic dust evolution.



## **Overview** | My Personal Scientific Interests

#### **Scientific Perspective**

**ISMology:** • Dust properties in different environments.

 Polycyclic Aromatic Hydrocarbons (PAH), photoelectric heating, dark gas, etc.

#### Galaxies:

- Focus on nearby galaxies ⇒ understand galaxy evolution.
- Cosmic dust evolution.



#### Methodological Approach
### **Scientific Perspective**

**ISMology:** • Dust properties in different environments

 Polycyclic Aromatic Hydrocarbons (PAH), photoelectric heating, dark gas, etc.

#### Galaxies:

- Focus on nearby galaxies ⇒ understand galaxy evolution.
- Cosmic dust evolution.



#### Methodological Approach

Modelling: • Spectral Energy Distribution (SED) modelling.

### Scientific Perspective

**ISMology:** • Dust properties in different environments

 Polycyclic Aromatic Hydrocarbons (PAH), photoelectric heating, dark gas, etc.

#### Galaxies:

- Focus on nearby galaxies ⇒ understand galaxy evolution.
- Cosmic dust evolution.



#### Methodological Approach

### Modelling:

- Spectral Energy Distribution (SED) modelling.
  - Spectral decomposition.

### Scientific Perspective

**ISMology:** • Dust properties in different environments

 Polycyclic Aromatic Hydrocarbons (PAH), photoelectric heating, dark gas, etc.

#### Galaxies:

- Focus on nearby galaxies ⇒ understand galaxy evolution.
- Cosmic dust evolution.



#### Methodological Approach

### Modelling:

- Spectral Energy Distribution (SED) modelling.
- Spectral decomposition.
- Bayesian statistics.

### **Scientific Perspective**

**ISMology:** • Dust properties in different environments.

 Polycyclic Aromatic Hydrocarbons (PAH), photoelectric heating, dark gas, etc.

#### Galaxies:

- Focus on nearby galaxies ⇒ understand galaxy evolution.
- Cosmic dust evolution.



#### Methodological Approach

| Modelling:    | • Spectral Energy Distribution (SED) mod-<br>elling. |
|---------------|------------------------------------------------------|
|               | <ul> <li>Spectral decomposition.</li> </ul>          |
|               | <ul> <li>Bayesian statistics.</li> </ul>             |
| Observations: | • Infrared expertise (ISO Spitzer Herschel)          |

### **Scientific Perspective**

**ISMology:** • Dust properties in different environments.

 Polycyclic Aromatic Hydrocarbons (PAH), photoelectric heating, dark gas, etc.

#### Galaxies:

- Focus on nearby galaxies ⇒ understand galaxy evolution.
- Cosmic dust evolution.



#### Methodological Approach

| Modelling:    | <ul> <li>Spectral Energy Distribution (SED) mod-<br/>elling.</li> </ul>                                           |
|---------------|-------------------------------------------------------------------------------------------------------------------|
|               | <ul><li>Spectral decomposition.</li><li>Bayesian statistics.</li></ul>                                            |
| Observations: | <ul> <li>Infrared expertise (ISO, Spitzer, Herschel).</li> <li>Currently : mm observations @ IRAM-30m.</li> </ul> |

### Scientific Perspective

**ISMology:** • Dust properties in different environments.

 Polycyclic Aromatic Hydrocarbons (PAH), photoelectric heating, dark gas, etc.

#### Galaxies:

- Focus on nearby galaxies ⇒ understand galaxy evolution.
- Cosmic dust evolution.



### Methodological Approach



### LECTURE 1: AN OVERVIEW OF THE ISM AND THE WAY WE STUDY IT

- 1 Overview: What is the ISM?
- 2 A Brief History of ISM studies.
- 3 Methodology: how do we study interstellar media?

### LECTURE 1: AN OVERVIEW OF THE ISM AND THE WAY WE STUDY IT

- Overview: What is the ISM?
- 2 A Brief History of ISM studies.
- Methodology: how do we study interstellar media?

### LECTURE 2: ATOMS, MOLECULES AND DUST

- Atoms and ions.
- Molecules in space.
- Interstellar dust grains.

### LECTURE 1: AN OVERVIEW OF THE ISM AND THE WAY WE STUDY IT

- Overview: What is the ISM?
- 2 A Brief History of ISM studies.
- Methodology: how do we study interstellar media?

### LECTURE 2: ATOMS, MOLECULES AND DUST

- Atoms and ions.
- 2 Molecules in space.
- Interstellar dust grains.

### LECTURE 3: HEATING AND COOLING - THE PHASES OF THE ISM

- Cooling and heating of the gas.
- 2 Radiative transfer.
- 3 Star-forming regions.

### LECTURE 1: AN OVERVIEW OF THE ISM AND THE WAY WE STUDY IT

- Overview: What is the ISM?
- 2 A Brief History of ISM studies.
- Methodology: how do we study interstellar media?

### LECTURE 2: ATOMS, MOLECULES AND DUST

- Atoms and ions.
- Molecules in space.
- Interstellar dust grains.

### LECTURE 3: HEATING AND COOLING - THE PHASES OF THE ISM

- Cooling and heating of the gas.
- 2 Radiative transfer.
- 3 Star-forming regions.

### LECTURE 4: THE INTERSTELLAR LIFECYCLE

- Molecular clouds.
- 2 The star formation process.
- 3 Elemental & dust evolution.

# **Overview** | Recommended Bibliography (1/2)

# **Overview** | Recommended Bibliography (1/2)

### Textbooks about the ISM

- "The Physics and Chemistry of the Interstellar Medium", by A. G. G. M. Tielens, 2005, Cambridge University Press.
- "Physics of the Interstellar and Intergalactic Medium", by B. T. Draine, 2011, Princeton University Press.
- "Astrophysics of the diffuse Universe", by M. A. Dopita & R. S. Sutherland, 2003, Springer, open text.

# **Overview** | Recommended Bibliography (1/2)

### Textbooks about the ISM

- "The Physics and Chemistry of the Interstellar Medium", by A. G. G. M. Tielens, 2005, Cambridge University Press.
- "Physics of the Interstellar and Intergalactic Medium", by B. T. Draine, 2011, Princeton University Press.
- "Astrophysics of the diffuse Universe", by M. A. Dopita & R. S. Sutherland, 2003, Springer, open text.

#### Textbooks about an ISM-related Topic

- "Astrophysics of gaseous nebulae and active galactic nuclei" by D. E. Osterbrock & G. J. Ferland, 2006, University Science Books.
- "Radiative processes in astrophysics", by G. B. Rybicky & A. P. Lightman, 1979, Wiley.
- "The physics of interstellar dust", by E. Krügel, 2003, IoP.

### Textbooks about the ISM

- "The Physics and Chemistry of the Interstellar Medium", by A. G. G. M. Tielens, 2005, Cambridge University Press.
- "Physics of the Interstellar and Intergalactic Medium", by B. T. Draine, 2011, Princeton University Press.
- "Astrophysics of the diffuse Universe", by M. A. Dopita & R. S. Sutherland, 2003, Springer, open text.

#### Textbooks about an ISM-related Topic

- "Astrophysics of gaseous nebulae and active galactic nuclei" by D. E. Osterbrock & G. J. Ferland, 2006, University Science Books.
- "Radiative processes in astrophysics", by G. B. Rybicky & A. P. Lightman, 1979, Wiley.
- "The physics of interstellar dust", by E. Krügel, 2003, IoP.

#### Open Reviews about the Phases of the ISM

- "The Three-Phase Interstellar Medium Revisited", by D. P. Cox, 2005, ARA&A.
- "The HI distribution of the Milky Way", by P. M. W. Kalberla & K. Jürgen, 2009, ARA&A.
- "Molecular clouds in the Milky Way", by M. Heyer & T. M. Dame, 2015, ARA&A.
- "Physical processes in the interstellar medium", by R. S. Klessen & S. C. O. Glover, 2016, Saas-Fee Advanced Course.

#### **Open Reviews about Dust**

- "Interstellar dust grains", by B. T. Draine, 2003, ARA&A.
- "The interstellar dust properties of nearby galaxies", by F. Galliano, M. Galametz & A. P. Jones, 2018, ARA&A.
- "A nearby galaxy perspective on interstellar dust properties and their evolution", by F. Galliano, Habilitation thesis, 2022, Université Paris-Saclay.

#### **Open Reviews about Dust**

- "Interstellar dust grains", by B. T. Draine, 2003, ARA&A.
- "The interstellar dust properties of nearby galaxies", by F. Galliano, M. Galametz & A. P. Jones, 2018, ARA&A.
- "A nearby galaxy perspective on interstellar dust properties and their evolution", by F. Galliano, Habilitation thesis, 2022, Université Paris-Saclay.

### **Open Reviews about PDRs**

- "Dense photodissociation regions (PDRs)", by A. G. G. M. Tielens & D. J. Hollenbach, 1997, ARA&A.
- "Photodissociation and X-Ray-Dominated Regions", by M. Wolfire, L. Vallini & M. Chevance, 2022, ARA&A.

| Song ala<br>Song alaxies<br>Song a | Xies<br>56 abonnés - 65 vidéos<br>e chaine <b>plus</b><br>ncesconf.org                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Les plus récentes Populaires Les plus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | anciennes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Afficiation and a set of the set                                                                                                                                                                                                                                                                                                      | Longer of transmitter data 4 minutes junctions<br>Compared Transmitter data 4 minutes junctions<br>Compared Transmitter data and a minutes junction of the second secon | Korresson<br>House constructions<br>House constructions<br>H                                                                                                                                                                          | der (pray) | Nours of the BM     Nourse of the BM     Nours |
| GISM2 #14: Daniel Dale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GISM2 #5: Nathalie Ysard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GISM2 #6: Vianney Lebouteiller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | GISM2 #15: Julia Roman-Duval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cooling efficiency (1) of stemats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Experiment for the second seco | 42:35      | 10L37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| GISM2 #20: Round Table 3 on Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GISM2 #23: Hands-on project #3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GISM2 #8: Chiaki Kobayashi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | GISM2 #12: Round Table 2 on Simulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| S ADONE VIDES OF CALAXIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IXIES<br>156 abornés - 65 vidéos<br>te chaine <b>plus</b><br>nncesconf.org                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Les plus récentes Populaires Les plus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s anciennes                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Artic infrardy size<br>of marky patients<br>and the size of |                                                                                                                                      | Constant and the second s           | Nonsistanti     Nonsistan |
| GISM2 #14: Daniel Dale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GISM2 #5: Nathalie Ysard                                                                                                             | GISM2 #6: Vianney Lebouteiller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GISM2 #15: Julia Roman-Duval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cooling efficiency (1) of elements<br>- 4 - Hannes hear and the starting to the 1 - 1 - 2<br>- 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 | Explosion Decisionariamente<br>Marine and Annual Annua<br>Annual Annual Annua | 106.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| GISM2 #20: Round Table 3 on Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GISM2 #23: Hands-on project #3                                                                                                       | GISM2 #8: Chiaki Kobayashi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GISM2 #12: Round Table 2 on Simulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

2021 International summer school on the ISM of galaxies: videos & slides.

| CF GALAXIES<br>CF GALAXIES<br>Accueil Video Playtists Q               | Xies<br>56 abomés - 65 vidéos<br>te othine - <b>plus</b><br>ncesconf org                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Les plus récentes Populaires Les plus                                 | Andennes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Manual contactive<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I. Sum of the full     I. Our of the full     Num of the full     Sum of the full     I. Sum of the full |
| GISM2 #14: Daniel Dale :<br>57 vues • Il y a 8 mols                   | GISM2 #5: Nathalie Ysard :<br>53 vues • II y a 8 mols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GISM2 #6: Vianney Lebouteiller :<br>40 vues • Il y a 8 mois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GISM2 #15: Julia Roman-Duval :<br>40 vues - Il y a B mois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                       | Cooling efficiency (1) of elements<br>- 4 - angle have a real part of part (1) of<br>- 4 - angle have a real part of part (1) of<br>- 4 - angle have a real part of part of part of<br>- 6 - angle have a real works include in the<br>- 6 - angle have a real works include in the<br>- 7 - angle have a real works include in the<br>- 7 - angle have a real works include in the<br>- 7 - angle have a real works include in the<br>- 7 - angle have a real works include in the<br>- 7 - angle have a real works in the angle have a real work in the<br>- 7 - angle have a real works in the angle have a real works in the<br>- 7 - angle have a real work in the angle have a real works in the<br>- 7 - angle have a real works in the angle have a real works in the<br>- 7 - angle have a real work in the angle have a real works in the angle have a real work in the angle have a real works in the angle have a re | Episotic functions<br>The second | 1027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| GISM2 #20: Round Table 3 on Observations :<br>20 vues • II y a 8 mols | GISM2 #23: Hands-on project #3<br>23 vues • II y a 8 mois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GISM2 #8: Chiaki Kobayashi :<br>63 vues • Il y a 8 mois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GISM2 #12: Round Table 2 on Simulations :<br>16 vues • Il y a 8 mols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

2021 International summer school on the ISM of galaxies: videos & slides.
 2023 International summer school on the ISM of galaxies: videos & slides.

F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)

Next Galaxies' ISM Summer School: July 21 – August 1, 2025 – Banyuls-sur-mer France

Next Galaxies' ISM Summer School: July 21 – August 1, 2025 – Banyuls-sur-mer France





Next Galaxies' ISM Summer School: July 21 – August 1, 2025 – Banyuls-sur-mer France

Scope: theory and observations of the ISM of nearby galaxies, with an emphasis on modern data analysis methods.





#### Next Galaxies' ISM Summer School: July 21 – August 1, 2025 – Banyuls-sur-mer France

- **Scope:** theory and observations of the ISM of nearby galaxies, with an emphasis on modern data analysis methods.
- Confirmed speakers: Dalya BARON, Danielle BERG, Pierre CHAINAIS, Emmanuel DARTOIS, Simon GLOVER, Javier GOICOECHEA, Anna MCLEOD, Adeline PAIEMENT, Kate PATTLE, Donatella ROMANO, Antoine ROUEFF, Serena VITI.





#### Next Galaxies' ISM Summer School: July 21 – August 1, 2025 – Banyuls-sur-mer France

Scope: theory and observations of the ISM of nearby galaxies, with an emphasis on modern data analysis methods.

Confirmed speakers: Dalya BARON, Danielle BERG, Pierre CHAINAIS, Emmanuel DARTOIS, Simon GLOVER, Javier GOICOECHEA, Anna MCLEOD, Adeline PAIEMENT, Kate PATTLE, Donatella ROMANO, Antoine ROUEFF, Serena VITI.

Registration: January 27 – April 18, 2025.





#### Next Galaxies' ISM Summer School: July 21 – August 1, 2025 – Banyuls-sur-mer France

Scope: theory and observations of the ISM of nearby galaxies, with an emphasis on modern data analysis methods.

Confirmed speakers: Dalya BARON, Danielle BERG, Pierre CHAINAIS, Emmanuel DARTOIS, Simon GLOVER, Javier GOICOECHEA, Anna MCLEOD, Adeline PAIEMENT, Kate PATTLE, Donatella ROMANO, Antoine ROUEFF, Serena VITI.

Registration: January 27 – April 18, 2025.

**More info:** <u>https://ismgalaxies2025.sciencesconf.org/?lang=en</u>.





# **Outline of the Lecture**

### OVERVIEW: WHAT IS THE ISM?

- Composition, physical properties, characteristic regions
- The Milky Way and the diversity of external galaxies
- Recommended bibliography and outline of the course

### A BRIEF HISTORY OF STUDIES OF THE ISM

- Before the XXth Century
- From astronomy to astrophysics
- The modern era

### METHODOLOGY: HOW DO WE STUDY INTERSTELLAR MEDIA?

- The microphysical components of the ISM
- The challenges of studying macroscopic regions
- The Sociology of ISMology

- Take-away points
- References

Naked eye observations (Antiquity – Middle Age)

### Naked eye observations (Antiquity - Middle Age)

A few fixed clouds were noted by various authors during Antiquity & Middle Age. Among others:

### Naked eye observations (Antiquity - Middle Age)

A few fixed clouds were noted by various authors during Antiquity & Middle Age. Among others:

• The Milky Way (dark clouds);



Credit: The Milky Way, as seen with a naked eye, © 2013 Alan DYER.

### Naked eye observations (Antiquity - Middle Age)

A few fixed clouds were noted by various authors during Antiquity & Middle Age. Among others:

- The Milky Way (dark clouds);
- M 42 (the Orion nebula, a H II region);



Credit: The Milky Way, as seen with a naked eye, © 2013 Alan DYER.

### Naked eye observations (Antiquity - Middle Age)

A few fixed clouds were noted by various authors during Antiquity & Middle Age. Among others:

- The Milky Way (dark clouds);
- M 42 (the Orion nebula, a H II region);
- M 17 (the Omega nebulae, a H II region);



Credit: The Milky Way, as seen with a naked eye, © 2013 Alan DYER.

### Naked eye observations (Antiquity - Middle Age)

A few fixed clouds were noted by various authors during Antiquity & Middle Age. Among others:

- The Milky Way (dark clouds);
- M 42 (the Orion nebula, a H II region);
- M 17 (the Omega nebulae, a H II region);



Credit: The Milky Way, as seen with a naked eye, © 2013 Alan DYER.

The Pleiades (reflection nebula);
## **History** | Before the First Telescopes

## Naked eye observations (Antiquity - Middle Age)

A few fixed clouds were noted by various authors during Antiquity & Middle Age. Among others:

- The Milky Way (dark clouds);
- M 42 (the Orion nebula, a H II region);
- M 17 (the Omega nebulae, a H II region);
- The Pleiades (reflection nebula);
- M 31 (Andromeda galaxy);

Credit: The Milky Way, as seen with a naked eye, © 2013 Alan DYER.

## **History** | Before the First Telescopes

## Naked eye observations (Antiquity - Middle Age)

A few fixed clouds were noted by various authors during Antiquity & Middle Age. Among others:

- The Milky Way (dark clouds);
- M 42 (the Orion nebula, a H II region);
- M 17 (the Omega nebulae, a H II region);
- The Pleiades (reflection nebula);
- M 31 (Andromeda galaxy);
- The Magellanic Clouds (dwarf galaxies).

Credit: The Milky Way, as seen with a naked eye, © 2013 Alan DYER.

First studies of the Orion nebula

First studies of the Orion nebula

1609: first telescope pointed toward the sky by Galileo.



## First studies of the Orion nebula

1609: first telescope pointed toward the sky by Galileo.1610: first detailed observation of M 42 by Nicolas Claude FABRI DE PEREISC, as a *"small illuminated cloud"*.



#### First studies of the Orion nebula

1609: first telescope pointed toward the sky by Galileo.

- **1610:** first detailed observation of M 42 by Nicolas Claude FABRI DE PEREISC, as a *"small illuminated cloud"*.
- **1659:** observations by Christian HUYGENS  $\rightarrow$  reports variability.



#### First studies of the Orion nebula

1609: first telescope pointed toward the sky by Galileo.
1610: first detailed observation of M 42 by Nicolas Claude FABRI DE PEREISC, as a *"small illuminated cloud"*.
1659: observations by Christian HUYGENS → reports variability.
1774-1811: observations by William HERSCHEL → refine its structure and discusses its variability.



#### First studies of the Orion nebula

1609: first telescope pointed toward the sky by Galileo.
1610: first detailed observation of M 42 by Nicolas Claude FABRI DE PEREISC, as a *"small illuminated cloud"*.
1659: observations by Christian HUYGENS → reports variability.
1774-1811: observations by William HERSCHEL → refine its structure and discusses its variability.

(Harrison, 1984)

#### The Messier catalog (1774–1784)



(Messier, 1781)

(1564–1642)

#### First studies of the Orion nebula

1609: first telescope pointed toward the sky by Galileo. 1610: first detailed observation of M 42 by Nicolas Claude FABRI DE PEREISC, as a "small illuminated cloud". **1659:** observations by Christian HUYGENS  $\rightarrow$  reports variability. **1774-1811:** observations by William HERSCHEL  $\rightarrow$  refine its structure and discusses its variability. Galileo GALIE (1564–1642)

(Harrison, 1984)

#### The Messier catalog (1774–1784)



Catalog identifying 110 "nebulae" (i.e. permanent diffuse objects)

(Messier, 1781)

F. Galliano (CEA Paris-Saclav)

ISM lecture 1 (ISYA 2024, Algiers)

#### First studies of the Orion nebula

1609: first telescope pointed toward the sky by Galileo. 1610: first detailed observation of M 42 by Nicolas Claude FABRI DE PEREISC, as a "small illuminated cloud". **1659:** observations by Christian HUYGENS  $\rightarrow$  reports variability. **1774-1811:** observations by William HERSCHEL  $\rightarrow$  refine its structure and discusses its variability. Galileo GALIE (1564–1642)

#### The Messier catalog (1774–1784)



Charles MESSIER (1730–1817)

Catalog identifying 110 "nebulae" (i.e. permanent diffuse objects)

(Harrison, 1984)

 $\Rightarrow$  allow identifying comets (*i.e.* moving diffuse objects).

#### First studies of the Orion nebula

1609: first telescope pointed toward the sky by Galileo.
1610: first detailed observation of M 42 by Nicolas Claude FABRI DE PEREISC, as a *"small illuminated cloud"*.
1659: observations by Christian HUYGENS → reports variability.
1774-1811: observations by William HERSCHEL → refine its structure and discusses its variability.

#### ,

(Harrison, 1984)

#### The Messier catalog (1774–1784)



Charles MESSIER (1730–1817)

- Catalog identifying 110 "nebulae" (i.e. permanent diffuse objects)
- $\Rightarrow$  allow identifying comets (*i.e.* moving diffuse objects).
  - Restricted to the northern hemisphere.

## (Messier, 1781)

(1564–1642)

F. Galliano (CEA Paris-Saclay)

#### First studies of the Orion nebula

1609: first telescope pointed toward the sky by Galileo.
1610: first detailed observation of M 42 by Nicolas Claude FABRI DE PEREISC, as a *"small illuminated cloud"*.
1659: observations by Christian HUYGENS → reports variability.
1774-1811: observations by William HERSCHEL → refine its structure and discusses its variability.

# (Harrison, 1984)

#### The Messier catalog (1774–1784)



Charles MESSIER (1730–1817)

- Catalog identifying 110 "nebulae" (i.e. permanent diffuse objects)
- $\Rightarrow$  allow identifying comets (*i.e.* moving diffuse objects).
  - Restricted to the northern hemisphere.
  - Mixes indifferently: reflection nebulae, planetary nebulae, H II regions, stellar clusters & galaxies.

(Messier, 1781)

(1564–1642)





Pioneering observational techniques



William HERSCHEL

#### **Pioneering observational techniques**

**1785:** construction of the first large reflecting telescope ( $\emptyset = 1.26$  m), with a *speculum* (2/3 Cu + 1/3 Sn) mirror.



Pioneering observational techniques

- **1785:** construction of the first large reflecting telescope ( $\emptyset = 1.26$  m), with a *speculum* (2/3 Cu + 1/3 Sn) mirror.
- **1800:** discovery of *infrared radiation*, from the Sun, using thermometers



## **Pioneering observational techniques**

- **1785:** construction of the first large reflecting telescope ( $\emptyset = 1.26$  m), with a *speculum* (2/3 Cu + 1/3 Sn) mirror.
- **1800:** discovery of *infrared radiation*, from the Sun, using thermometers
  - ⇒ significant development of astronomical spectrophotometry.



### Progressing on nebulae

#### **Pioneering observational techniques**

- **1785:** construction of the first large reflecting telescope ( $\emptyset = 1.26$  m), with a *speculum* (2/3 Cu + 1/3 Sn) mirror.
- **1800:** discovery of *infrared radiation*, from the Sun, using thermometers
  - ⇒ significant development of astronomical spectrophotometry.



#### Progressing on nebulae

**1785:** "a hole in the Heavens"  $\rightarrow$  actually a dark cloud in front of a rich stellar field (Herschel, 1785).



## **Pioneering observational techniques**

- **1785:** construction of the first large reflecting telescope  $(\emptyset = 1.26 \text{ m})$ , with a *speculum* (2/3 Cu + 1/3 Sn) mirror.
- **1800:** discovery of *infrared radiation*, from the Sun, using thermometers
  - ⇒ significant development of astronomical spectrophotometry.

## Progressing on nebulae

**1785:** "a hole in the Heavens"  $\rightarrow$  actually a dark cloud in front of a rich stellar field (Herschel, 1785).

#### The Inkspot nebula



Credit: Gábor Tóth.



### **Pioneering observational techniques**

- **1785:** construction of the first large reflecting telescope  $(\emptyset = 1.26 \text{ m})$ , with a *speculum* (2/3 Cu + 1/3 Sn) mirror.
- **1800:** discovery of *infrared radiation*, from the Sun, using thermometers
  - $\Rightarrow$  significant development of astronomical spectrophotometry.

### Progressing on nebulae

- **1785:** "a hole in the Heavens"  $\rightarrow$  actually a dark cloud in front of a rich stellar field (Herschel, 1785).
- **1791:** hypothesize that some nebulae can not be resolved into individual stars  $\rightarrow$  "a shining fluid, of a nature totally unknown to us" (Herschel, 1791).

#### The Inkspot nebula



Credit: Gábor Tóth.



## **Pioneering observational techniques**

- **1785:** construction of the first large reflecting telescope  $(\emptyset = 1.26 \text{ m})$ , with a *speculum* (2/3 Cu + 1/3 Sn) mirror.
- **1800:** discovery of *infrared radiation*, from the Sun, using thermometers
  - $\Rightarrow$  significant development of astronomical spectrophotometry.

## Progressing on nebulae

- **1785:** "a hole in the Heavens"  $\rightarrow$  actually a dark cloud in front of a rich stellar field (Herschel, 1785).
- **1791:** hypothesize that some nebulae can not be resolved into individual stars  $\rightarrow$  "a shining fluid, of a nature totally unknown to us" (Herschel, 1791).

1821: extended catalog of 5000 objects

## The Inkspot nebula



Credit: Gábor Tóth.

25 / 53



#### **Pioneering observational techniques**

- **1785:** construction of the first large reflecting telescope  $(\emptyset = 1.26 \text{ m})$ , with a *speculum* (2/3 Cu + 1/3 Sn) mirror.
- **1800:** discovery of *infrared radiation*, from the Sun, using thermometers
  - $\Rightarrow$  significant development of astronomical spectrophotometry.

## Progressing on nebulae

- **1785:** "a hole in the Heavens"  $\rightarrow$  actually a dark cloud in front of a rich stellar field (Herschel, 1785).
- **1791:** hypothesize that some nebulae can not be resolved into individual stars  $\rightarrow$  "a shining fluid, of a nature totally unknown to us" (Herschel, 1791).
- 1821: extended catalog of 5000 objects
  - $\Rightarrow$  distinguish star clusters & nebulae / galaxies

## The Inkspot nebula



Credit: Gábor Tóth.



### **Pioneering observational techniques**

- **1785:** construction of the first large reflecting telescope  $(\emptyset = 1.26 \text{ m})$ , with a *speculum* (2/3 Cu + 1/3 Sn) mirror.
- **1800:** discovery of *infrared radiation*, from the Sun, using thermometers
  - ⇒ significant development of astronomical spectrophotometry.

## Progressing on nebulae

- **1785:** "a hole in the Heavens"  $\rightarrow$  actually a dark cloud in front of a rich stellar field (Herschel, 1785).
- **1791:** hypothesize that some nebulae can not be resolved into individual stars  $\rightarrow$  "a shining fluid, of a nature totally unknown to us" (Herschel, 1791).
- 1821: extended catalog of 5000 objects
  - $\Rightarrow$  distinguish star clusters & nebulae / galaxies
  - → basis for the New General Catalog (NGC), compiled by John DREYER (Dreyer, 1888).

## The Inkspot nebula



Credit: Gábor Tóth.

Astrophotography: turning astronomy into a reproducible science

Astrophotography: turning astronomy into a reproducible science

**1860:** first silvered-glass mirrors (by Léon FOUCAULT) better than speculum mirrors  $\rightarrow$  implemented on large telescopes.

Astrophotography: turning astronomy into a reproducible science

- **1860:** first silvered-glass mirrors (by Léon FOUCAULT) better than speculum mirrors  $\rightarrow$  implemented on large telescopes.
- **1880:** first deep-sky photograph (the Orion nebula) by Henry DRAPER (Barker, 1888).

#### Astrophotography: turning astronomy into a reproducible science

- **1860:** first silvered-glass mirrors (by Léon FOUCAULT) better than speculum mirrors  $\rightarrow$  implemented on large telescopes.
- **1880:** first deep-sky photograph (the Orion nebula) by Henry DRAPER (Barker, 1888).



Photograph of Orion by Henry DRAPER.

#### Astrophotography: turning astronomy into a reproducible science

- **1860:** first silvered-glass mirrors (by Léon FOUCAULT) better than speculum mirrors  $\rightarrow$  implemented on large telescopes.
- 1880: first deep-sky photograph (the Orion nebula) by Henry DRAPER (Barker, 1888).
- **1899:** Edward BARNARD's photographs of Ophiucus showed dark lanes through the nebula (Barnard, 1899).



Photograph of Orion by Henry DRAPER.

#### Astrophotography: turning astronomy into a reproducible science

- **1860:** first silvered-glass mirrors (by Léon FOUCAULT) better than speculum mirrors  $\rightarrow$  implemented on large telescopes.
- 1880: first deep-sky photograph (the Orion nebula) by Henry DRAPER (Barker, 1888).
- **1899:** Edward BARNARD's photographs of Ophiucus showed dark lanes through the nebula (Barnard, 1899).
- **1903:** They were interpreted by Agnes CLERKE, as *"glades and clearing"* in the stellar distribution (Clerke, 1903).



Photograph of Orion by Henry DRAPER.

#### Astrophotography: turning astronomy into a reproducible science

- **1860:** first silvered-glass mirrors (by Léon FOUCAULT) better than speculum mirrors  $\rightarrow$  implemented on large telescopes.
- 1880: first deep-sky photograph (the Orion nebula) by Henry DRAPER (Barker, 1888).
- **1899:** Edward BARNARD's photographs of Ophiucus showed dark lanes through the nebula (Barnard, 1899).
- **1903:** They were interpreted by Agnes CLERKE, as *"glades and clearing"* in the stellar distribution (Clerke, 1903).
- **1919:** Edward BARNARD realized these were "*real, obscuring masses, most probably dark nebulae*" (Barnard, 1919).



Photograph of Orion by Henry DRAPER.

#### Astrophotography: turning astronomy into a reproducible science

- **1860:** first silvered-glass mirrors (by Léon FOUCAULT) better than speculum mirrors  $\rightarrow$  implemented on large telescopes.
- **1880:** first deep-sky photograph (the Orion nebula) by Henry DRAPER (Barker, 1888).
- **1899:** Edward BARNARD's photographs of Ophiucus showed dark lanes through the nebula (Barnard, 1899).
- **1903:** They were interpreted by Agnes CLERKE, as *"glades and clearing"* in the stellar distribution (Clerke, 1903).
- **1919:** Edward BARNARD realized these were *"real, obscuring masses, most probably dark nebulae"* (Barnard, 1919).

# er.

Photograph of Orion by Henry DRAPER.

#### The development of spectrophotometry

#### Astrophotography: turning astronomy into a reproducible science

- **1860:** first silvered-glass mirrors (by Léon FOUCAULT) better than speculum mirrors  $\rightarrow$  implemented on large telescopes.
- **1880:** first deep-sky photograph (the Orion nebula) by Henry DRAPER (Barker, 1888).
- **1899:** Edward BARNARD's photographs of Ophiucus showed dark lanes through the nebula (Barnard, 1899).
- **1903:** They were interpreted by Agnes CLERKE, as *"glades and clearing"* in the stellar distribution (Clerke, 1903).
- **1919:** Edward BARNARD realized these were "*real, obscuring masses, most probably dark nebulae*" (Barnard, 1919).

#### The development of spectrophotometry

Photography allowed recording spectra of faint objects.



Photograph of Orion by Henry DRAPER.
# History | XIX<sup>th</sup> Century – The Beginning of Astrophotography

### Astrophotography: turning astronomy into a reproducible science

- **1860:** first silvered-glass mirrors (by Léon FOUCAULT) better than speculum mirrors  $\rightarrow$  implemented on large telescopes.
- **1880:** first deep-sky photograph (the Orion nebula) by Henry DRAPER (Barker, 1888).
- **1899:** Edward BARNARD's photographs of Ophiucus showed dark lanes through the nebula (Barnard, 1899).
- **1903:** They were interpreted by Agnes CLERKE, as *"glades and clearing"* in the stellar distribution (Clerke, 1903).
- **1919:** Edward BARNARD realized these were "*real, obscuring masses, most probably dark nebulae*" (Barnard, 1919).

### The development of spectrophotometry

- Photography allowed recording spectra of faint objects.
- William HUGGINS took the spectra of  $\simeq$  70 nebulae (Huggins & Miller, 1864). Distinguish:



Photograph of Orion by Henry DRAPER.

# History | XIX<sup>th</sup> Century – The Beginning of Astrophotography

### Astrophotography: turning astronomy into a reproducible science

- **1860:** first silvered-glass mirrors (by Léon FOUCAULT) better than speculum mirrors  $\rightarrow$  implemented on large telescopes.
- **1880:** first deep-sky photograph (the Orion nebula) by Henry DRAPER (Barker, 1888).
- **1899:** Edward BARNARD's photographs of Ophiucus showed dark lanes through the nebula (Barnard, 1899).
- **1903:** They were interpreted by Agnes CLERKE, as *"glades and clearing"* in the stellar distribution (Clerke, 1903).
- **1919:** Edward BARNARD realized these were "*real, obscuring masses, most probably dark nebulae*" (Barnard, 1919).



- Photography allowed recording spectra of faint objects.
- William HUGGINS took the spectra of  $\simeq$  70 nebulae (Huggins & Miller, 1864). Distinguish: HII regions: bright emission lines;



Photograph of Orion by Henry DRAPER.

# **History** | XIX<sup>th</sup> Century – The Beginning of Astrophotography

### Astrophotography: turning astronomy into a reproducible science

- 1860: first silvered-glass mirrors (by Léon FOUCAULT) better than speculum mirrors  $\rightarrow$  implemented on large telescopes.
- **1880:** first deep-sky photograph (the Orion nebula) by Henry DRAPER (Barker, 1888).
- 1899: Edward BARNARD's photographs of Ophiucus showed dark lanes through the nebula (Barnard, 1899).
- **1903:** They were interpreted by Agnes CLERKE, as "glades and clearing" in the stellar distribution (Clerke, 1903).
- **1919:** Edward BARNARD realized these were "real, obscuring" masses, most probably dark nebulae" (Barnard, 1919).



Photograph of Orion by Henry DRAPFR

### The development of spectrophotometry

- Photography allowed recording spectra of faint objects.
- William HUGGINS took the spectra of  $\simeq$  70 nebulae (Huggins & Miller, 1864). Distinguish:

**HII regions:** bright emission lines;

**Reflection nebulae:** continuous spectrum (reflected starlight).

Cepheid stars, a standard candle to estimate large distances

Cepheid stars, a standard candle to estimate large distances

**Cepheid stars:** pulsating stars with a periodluminosity relation.

### Cepheid stars, a standard candle to estimate large distances

**Cepheid stars:** pulsating stars with a periodluminosity relation.

**Discovery of the relation:** by Leavitt & Pickering (1912) using 25 Cepheids in the *Small Magellanic Cloud* (SMC).

### Cepheid stars, a standard candle to estimate large distances



Henrietta SWAN LEAVITT (1868–1921)

**Cepheid stars:** pulsating stars with a periodluminosity relation.

**Discovery of the relation:** by Leavitt & Pickering (1912) using 25 Cepheids in the *Small Magellanic Cloud* (SMC).

### Cepheid stars, a standard candle to estimate large distances



Henrietta SWAN LEAVITT (1868–1921)

**Cepheid stars:** pulsating stars with a periodluminosity relation.

**Discovery of the relation:** by Leavitt & Pickering (1912) using 25 Cepheids in the *Small Magellanic Cloud* (SMC).



### Cepheid stars, a standard candle to estimate large distances



Henrietta SWAN LEAVITT (1868–1921)

**Cepheid stars:** pulsating stars with a periodluminosity relation.

**Discovery of the relation:** by Leavitt & Pickering (1912) using 25 Cepheids in the *Small Magellanic Cloud* (SMC).

Distance estimator: period + apparent magnitude  $\rightarrow$  distance.



### Cepheid stars, a standard candle to estimate large distances



Henrietta SWAN LEAVITT (1868–1921) **Cepheid stars:** pulsating stars with a period-luminosity relation.

**Discovery of the relation:** by Leavitt & Pickering (1912) using 25 Cepheids in the *Small Magellanic Cloud* (SMC).

**Distance estimator:** period + apparent magnitude  $\rightarrow$  distance.



First evidence of extragalactic nebulae: M 31 & M 33 are outside the Milky Way

### Cepheid stars, a standard candle to estimate large distances



Henrietta SWAN LEAVITT (1868–1921)

**Cepheid stars:** pulsating stars with a period-luminosity relation.

**Discovery of the relation:** by Leavitt & Pickering (1912) using 25 Cepheids in the *Small Magellanic Cloud* (SMC).

**Distance estimator:** period + apparent magnitude  $\rightarrow$  distance.



First evidence of extragalactic nebulae: M 31 & M 33 are outside the Milky Way

 Hubble (1925) resolved Cepheids in M 31 & M 33, with long pauses, at Mount Wilson Observatory.

### Cepheid stars, a standard candle to estimate large distances



Henrietta SWAN LEAVITT (1868–1921)

**Cepheid stars:** pulsating stars with a periodluminosity relation.

**Discovery of the relation:** by Leavitt & Pickering (1912) using 25 Cepheids in the *Small Magellanic Cloud* (SMC).

**Distance estimator:** period + apparent magnitude  $\rightarrow$  distance.



First evidence of extragalactic nebulae: M 31 & M 33 are outside the Milky Way



(1889 - 1953)

 Hubble (1925) resolved Cepheids in M 31 & M 33, with long pauses, at Mount Wilson Observatory.

F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)

### Cepheid stars, a standard candle to estimate large distances



Henrietta SWAN LEAVITT (1868–1921)

**Cepheid stars:** pulsating stars with a periodluminosity relation.

**Discovery of the relation:** by Leavitt & Pickering (1912) using 25 Cepheids in the *Small Magellanic Cloud* (SMC).

**Distance estimator:** period + apparent magnitude  $\rightarrow$  distance.



### First evidence of extragalactic nebulae: M 31 & M 33 are outside the Milky Way



Edwin HUBBLE

 Hubble (1925) resolved Cepheids in M 31 & M 33, with long pauses, at Mount Wilson Observatory.



Mount Wilson's 100inch reflector.

F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)

### Cepheid stars, a standard candle to estimate large distances



Henrietta SWAN LEAVITT (1868–1921)

**Cepheid stars:** pulsating stars with a periodluminosity relation.

**Discovery of the relation:** by Leavitt & Pickering (1912) using 25 Cepheids in the *Small Magellanic Cloud* (SMC).

**Distance estimator:** period + apparent magnitude  $\rightarrow$  distance.



### First evidence of extragalactic nebulae: M 31 & M 33 are outside the Milky Way



Edwin HUBBLE Edwin HUBBLE (1889–1953)

- Hubble (1925) resolved Cepheids in M 31 & M 33, with long pauses, at Mount Wilson Observatory.
- Derived their distance, equal to  $\simeq 285$  kpc (actually 765 & 970 kpc)



Mount Wilson's 100inch reflector.

F. Galliano (CEA Paris-Saclay)

### Cepheid stars, a standard candle to estimate large distances



Henrietta SWAN LEAVITT (1868–1921)

**Cepheid stars:** pulsating stars with a periodluminosity relation.

**Discovery of the relation:** by Leavitt & Pickering (1912) using 25 Cepheids in the *Small Magellanic Cloud* (SMC).

**Distance estimator:** period + apparent magnitude  $\rightarrow$  distance.



### First evidence of extragalactic nebulae: M 31 & M 33 are outside the Milky Way



Edwin HUBBLE

- Hubble (1925) resolved Cepheids in M 31 & M 33, with long pauses, at Mount Wilson Observatory.
- Derived their distance, equal to  $\simeq 285$  kpc (actually 765 & 970 kpc)
- $\Rightarrow$  they are outside the Milky Way.



Mount Wilson's 100inch reflector.

F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)

The first astrophysical spectrum: the Sun, by Joseph VON FRAUNHOFER (1814)







Quantum Physics: the possibility to study distant matter

F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)

September 23, 2024





### Quantum Physics: the possibility to study distant matter

 $\bullet\,$  Quantum physics  $\rightarrow\,$  identifying atoms & molecules in distant objects





### Quantum Physics: the possibility to study distant matter

- $\bullet\,$  Quantum physics  $\rightarrow\,$  identifying atoms & molecules in distant objects
- ⇒ measuring their abundance (Payne, 1925), temperature, density, charge + kinematics, magnetic field.

F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)

# 1930 - First evidence of interstellar dust

**1922:** Russell (1922) noted the reddening of starlight  $\Rightarrow$  produced mainly by dust particles of  $\simeq$  $0.03 - 0.1 \ \mu$ m in diameter.

- **1922:** Russell (1922) noted the reddening of starlight  $\Rightarrow$  produced mainly by dust particles of  $\simeq$  $0.03 - 0.1 \ \mu$ m in diameter.
- **1930:** Trumpler (1930) studied 100 open clusters  $\Rightarrow$  diameter distance < photometric distance

- **1922:** Russell (1922) noted the reddening of starlight  $\Rightarrow$  produced mainly by dust particles of  $\simeq$  $0.03 - 0.1 \ \mu$ m in diameter.
- **1930:** Trumpler (1930) studied 100 open clusters  $\Rightarrow$  diameter distance < photometric distance



- **1922:** Russell (1922) noted the reddening of starlight  $\Rightarrow$  produced mainly by dust particles of  $\simeq$  $0.03 - 0.1 \ \mu m$  in diameter.
- **1930:** Trumpler (1930) studied 100 open clusters  $\Rightarrow$  diameter distance < photometric distance
  - $\rightarrow\,$  effect increases with distance



- **1922:** Russell (1922) noted the reddening of starlight  $\Rightarrow$  produced mainly by dust particles of  $\simeq$  $0.03 - 0.1 \,\mu\text{m}$  in diameter.
- **1930:** Trumpler (1930) studied 100 open clusters  $\Rightarrow$  diameter distance < photometric distance
  - $\rightarrow\,$  effect increases with distance
  - $\Rightarrow$  selective extinction by fine dust particles (larger than 2 nm).



# 1930 - First evidence of interstellar dust

- **1922:** Russell (1922) noted the reddening of starlight  $\Rightarrow$  produced mainly by dust particles of  $\simeq$  $0.03 - 0.1 \,\mu\text{m}$  in diameter.
- **1930:** Trumpler (1930) studied 100 open clusters  $\Rightarrow$  diameter distance < photometric distance
  - $\rightarrow$  effect increases with distance
  - $\Rightarrow$  selective extinction by fine dust particles (larger than 2 nm).

# 

### 1937 – Detection of the first interstellar molecule

# 1930 - First evidence of interstellar dust

- **1922:** Russell (1922) noted the reddening of starlight  $\Rightarrow$  produced mainly by dust particles of  $\simeq$  $0.03 - 0.1 \ \mu$ m in diameter.
- **1930:** Trumpler (1930) studied 100 open clusters  $\Rightarrow$  diameter distance < photometric distance
  - $\rightarrow$  effect increases with distance
  - $\Rightarrow$  selective extinction by fine dust particles (larger than 2 nm).



### 1937 - Detection of the first interstellar molecule

**1937:** identification of a line of CH at  $\lambda = 4300$  Å by Swings & Rosenfeld (1937).

# 1930 - First evidence of interstellar dust

- **1922:** Russell (1922) noted the reddening of starlight  $\Rightarrow$  produced mainly by dust particles of  $\simeq$  $0.03 - 0.1 \ \mu$ m in diameter.
- **1930:** Trumpler (1930) studied 100 open clusters  $\Rightarrow$  diameter distance < photometric distance
  - $\rightarrow$  effect increases with distance
  - $\Rightarrow$  selective extinction by fine dust particles (larger than 2 nm).



# 1937 - Detection of the first interstellar molecule

**1937:** identification of a line of CH at  $\lambda = 4300$  Å by Swings & Rosenfeld (1937). **1963:** first detection of a molecular radio line (OH<sub>18cm</sub>) by Weinreb et al. (1963).

# 1930 - First evidence of interstellar dust

- **1922:** Russell (1922) noted the reddening of starlight  $\Rightarrow$  produced mainly by dust particles of  $\simeq$  $0.03 - 0.1 \ \mu$ m in diameter.
- **1930:** Trumpler (1930) studied 100 open clusters  $\Rightarrow$  diameter distance < photometric distance
  - $\rightarrow$  effect increases with distance
  - $\Rightarrow$  selective extinction by fine dust particles (larger than 2 nm).



### 1937 - Detection of the first interstellar molecule

**1937:** identification of a line of CH at  $\lambda = 4300$  Å by Swings & Rosenfeld (1937). **1963:** first detection of a molecular radio line (OH<sub>18cm</sub>) by Weinreb et al. (1963).

### 1951 – Detection of interstellar atomic Hydrogen

# 1930 - First evidence of interstellar dust

- **1922:** Russell (1922) noted the reddening of starlight  $\Rightarrow$  produced mainly by dust particles of  $\simeq$  $0.03 - 0.1 \ \mu$ m in diameter.
- **1930:** Trumpler (1930) studied 100 open clusters  $\Rightarrow$  diameter distance < photometric distance
  - $\rightarrow$  effect increases with distance
  - $\Rightarrow$  selective extinction by fine dust particles (larger than 2 nm).



### 1937 - Detection of the first interstellar molecule

**1937:** identification of a line of CH at  $\lambda = 4300$  Å by Swings & Rosenfeld (1937).

**1963:** first detection of a molecular radio line  $(OH_{18cm})$  by Weinreb et al. (1963).

### 1951 – Detection of interstellar atomic Hydrogen

**1945:** prediction of the [H I]<sub>21 cm</sub> line by van de Hulst (1945).

F. Galliano (CEA Paris-Saclay)

# 1930 - First evidence of interstellar dust

- **1922:** Russell (1922) noted the reddening of starlight  $\Rightarrow$  produced mainly by dust particles of  $\simeq$  $0.03 - 0.1 \ \mu$ m in diameter.
- **1930:** Trumpler (1930) studied 100 open clusters  $\Rightarrow$  diameter distance < photometric distance
  - $\rightarrow\,$  effect increases with distance
  - $\Rightarrow$  selective extinction by fine dust particles (larger than 2 nm).



# 1937 - Detection of the first interstellar molecule

**1937:** identification of a line of CH at  $\lambda = 4300$  Å by Swings & Rosenfeld (1937).

**1963:** first detection of a molecular radio line  $(OH_{18cm})$  by Weinreb et al. (1963).

### 1951 – Detection of interstellar atomic Hydrogen

**1945:** prediction of the  $[H_{I}]_{21 \text{ cm}}$  line by van de Hulst (1945).

**1951**: detection of the [H I]<sub>21 cm</sub> line by Ewen & Purcell (1951).

F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)

# History | The Modern Era – Technological Opportunities

# History | The Modern Era – Technological Opportunities

Solid-state physics
Solid-state physics

After World War II: strong impulse  $\rightarrow$  prospective development of electronics (Martin, 2013).

Solid-state physics

After World War II: strong impulse  $\rightarrow$  prospective development of electronics (Martin, 2013). **1947:** invention of the transistor, at Bell laboratories in New Jersey.

Solid-state physics

After World War II: strong impulse  $\rightarrow$  prospective development of electronics (Martin, 2013). **1947:** invention of the transistor, at Bell laboratories in New Jersey.

The introduction of computers

Solid-state physics

After World War II: strong impulse  $\rightarrow$  prospective development of electronics (Martin, 2013). **1947:** invention of the transistor, at Bell laboratories in New Jersey.

The introduction of computers

1937: principle of the computer laid out by Alan TURING (Turing, 1937).

Solid-state physics

After World War II: strong impulse  $\rightarrow$  prospective development of electronics (Martin, 2013). **1947**: invention of the transistor, at Bell laboratories in New Jersey.

### The introduction of computers

1937: principle of the computer laid out by Alan TURING (Turing, 1937).World War II: first computers developed to break the German encryption codes (*e.g.* McGrayne 2011).

Solid-state physics

After World War II: strong impulse  $\rightarrow$  prospective development of electronics (Martin, 2013). **1947**: invention of the transistor, at Bell laboratories in New Jersey.

### The introduction of computers

1937: principle of the computer laid out by Alan TURING (Turing, 1937).

World War II: first computers developed to break the German encryption codes (*e.g.* McGrayne 2011).

1950s: first numerical models of stellar structures.

Solid-state physics

After World War II: strong impulse  $\rightarrow$  prospective development of electronics (Martin, 2013). **1947:** invention of the transistor, at Bell laboratories in New Jersey.

The introduction of computers

**1937:** principle of the computer laid out by Alan TURING (Turing, 1937).

World War II: first computers developed to break the German encryption codes (*e.g.* McGrayne 2011).

1950s: first numerical models of stellar structures.

**1970:** first dust radiative transfer numerical computations, using iterative methods (Mathis, 1970) & Monte-Carlo methods (Mattila, 1970).

Solid-state physics

After World War II: strong impulse  $\rightarrow$  prospective development of electronics (Martin, 2013). **1947:** invention of the transistor, at Bell laboratories in New Jersey.

#### The introduction of computers

1937: principle of the computer laid out by Alan TURING (Turing, 1937).

World War II: first computers developed to break the German encryption codes (*e.g.* McGrayne 2011).

1950s: first numerical models of stellar structures.

**1970:** first dust radiative transfer numerical computations, using iterative methods (Mathis, 1970) & Monte-Carlo methods (Mattila, 1970).

The development of modern detectors

Solid-state physics

After World War II: strong impulse  $\rightarrow$  prospective development of electronics (Martin, 2013). **1947:** invention of the transistor, at Bell laboratories in New Jersey.

#### The introduction of computers

**1937:** principle of the computer laid out by Alan TURING (Turing, 1937).

- **World War II:** first computers developed to break the German encryption codes (*e.g.* McGrayne 2011).
  - 1950s: first numerical models of stellar structures.
  - **1970:** first dust radiative transfer numerical computations, using iterative methods (Mathis, 1970) & Monte-Carlo methods (Mattila, 1970).

#### The development of modern detectors

They solved the issues of photography: (i) non-linear response; (ii) restricted dynamic range; (iii) low detection efficiency; (iv) reciprocity failure; and (v) adjacency effects (Boksenberg, 1982).

Solid-state physics

After World War II: strong impulse  $\rightarrow$  prospective development of electronics (Martin, 2013). **1947:** invention of the transistor, at Bell laboratories in New Jersey.

### The introduction of computers

**1937:** principle of the computer laid out by Alan TURING (Turing, 1937).

- **World War II:** first computers developed to break the German encryption codes (*e.g.* McGrayne 2011).
  - 1950s: first numerical models of stellar structures.
  - **1970:** first dust radiative transfer numerical computations, using iterative methods (Mathis, 1970) & Monte-Carlo methods (Mattila, 1970).

#### The development of modern detectors

They solved the issues of photography: (i) non-linear response; (ii) restricted dynamic range; (iii) low detection efficiency; (iv) reciprocity failure; and (v) adjacency effects (Boksenberg, 1982).

**1930s:** first IR photomultipliers & bolometers  $\rightarrow$  important military applications: night vision & guiding rockets (Rogalski, 2012).

30 / 53

Solid-state physics

After World War II: strong impulse  $\rightarrow$  prospective development of electronics (Martin, 2013). **1947**: invention of the transistor, at Bell laboratories in New Jersey.

### The introduction of computers

1937: principle of the computer laid out by Alan TURING (Turing, 1937).

- **World War II:** first computers developed to break the German encryption codes (*e.g.* McGrayne 2011).
  - 1950s: first numerical models of stellar structures.
  - **1970:** first dust radiative transfer numerical computations, using iterative methods (Mathis, 1970) & Monte-Carlo methods (Mattila, 1970).

#### The development of modern detectors

They solved the issues of photography: (i) non-linear response; (ii) restricted dynamic range; (iii) low detection efficiency; (iv) reciprocity failure; and (v) adjacency effects (Boksenberg, 1982).

**1930s:** first IR photomultipliers & bolometers  $\rightarrow$  important military applications: night vision & guiding rockets (Rogalski, 2012).

**1969:** first *Charge-Coupled Device* (CCD) invented at Bell laboratories (Amelio et al., 1970).

F. Galliano (CEA Paris-Saclay)

## Balloons & rockets



## Balloons & rockets



### **Balloons & rockets**



- 2 observe for several days continuously, but landing is hazardous  $\rightarrow$  only a few flights during their lifetime.

### **Balloons & rockets**



- 2) observe for several days continuously, but landing is hazardous → only a few flights during their lifetime.

1959: first IR balloon launched from Johns Hopkins.

### **Balloons & rockets**



- 2 observe for several days continuously, but landing is hazardous → only a few flights during their lifetime.

1959: first IR balloon launched from Johns Hopkins.

**1966:** a balloon sent by the Goddard Institute mapped the sky at  $\lambda = 100 \ \mu m$  (Walker, 2000).

### **Balloons & rockets**



Airborne observatories

- Stratospheric balloons can reach altitudes of  $\simeq$  40 km, above most water vapor absorption.
- 2) observe for several days continuously, but landing is hazardous → only a few flights during their lifetime.

1959: first IR balloon launched from Johns Hopkins.

**1966:** a balloon sent by the Goddard Institute mapped the sky at  $\lambda = 100 \ \mu$ m (Walker, 2000).

### **Balloons & rockets**



- Stratospheric balloons can reach altitudes of ~ 40 km, above most water vapor absorption.
- 2 observe for several days continuously, but landing is hazardous → only a few flights during their lifetime.

1959: first IR balloon launched from Johns Hopkins.

**1966:** a balloon sent by the Goddard Institute mapped the sky at  $\lambda = 100 \ \mu$ m (Walker, 2000).

#### Airborne observatories

1 Airplanes can fly up to  $\simeq 15$  km, operate during  $\simeq 10$  hours.

### **Balloons & rockets**



- Stratospheric balloons can reach altitudes of ~ 40 km, above most water vapor absorption.
- 2 observe for several days continuously, but landing is hazardous → only a few flights during their lifetime.

1959: first IR balloon launched from Johns Hopkins.

**1966:** a balloon sent by the Goddard Institute mapped the sky at  $\lambda = 100 \ \mu$ m (Walker, 2000).

### Airborne observatories

- 1 Airplanes can fly up to  $\simeq 15$  km, operate during  $\simeq 10$  hours.
- 2 perform numerous flights, but telescope motion must be perpendicular to the plane

### **Balloons & rockets**



- Stratospheric balloons can reach altitudes of ~ 40 km, above most water vapor absorption.
- 2 observe for several days continuously, but landing is hazardous → only a few flights during their lifetime.

1959: first IR balloon launched from Johns Hopkins.

**1966:** a balloon sent by the Goddard Institute mapped the sky at  $\lambda = 100 \ \mu$ m (Walker, 2000).

#### Airborne observatories

- 1 Airplanes can fly up to  $\simeq 15$  km, operate during  $\simeq 10$  hours.
- 2 perform numerous flights, but telescope motion must be perpendicular to the plane ⇒ flight path has to be adapted.

### **Balloons & rockets**



- $\blacksquare$  Stratospheric balloons can reach altitudes of  $\simeq$  40 km, above most water vapor absorption.
- 2 observe for several days continuously, but landing is hazardous → only a few flights during their lifetime.

1959: first IR balloon launched from Johns Hopkins.

**1966:** a balloon sent by the Goddard Institute mapped the sky at  $\lambda = 100 \ \mu$ m (Walker, 2000).

### Airborne observatories

- 1 Airplanes can fly up to  $\simeq$  15 km, operate during  $\simeq$  10 hours.
- 2 perform numerous flights, but telescope motion must be perpendicular to the plane ⇒ flight path has to be adapted.

**1974–1995:** the Kuiper Airborne Observatory (KAO;  $\emptyset = 0.9$  m; Erickson & Meyer 2013).

### **Balloons & rockets**



- Stratospheric balloons can reach altitudes of ~ 40 km, above most water vapor absorption.
- 2 observe for several days continuously, but landing is hazardous  $\rightarrow$  only a few flights during their lifetime.

1959: first IR balloon launched from Johns Hopkins.

**1966:** a balloon sent by the Goddard Institute mapped the sky at  $\lambda = 100 \ \mu m$  (Walker, 2000).

### Airborne observatories

- 1 Airplanes can fly up to  $\simeq$  15 km, operate during  $\simeq$  10 hours.
- 2 perform numerous flights, but telescope motion must be perpendicular to the plane ⇒ flight path has to be adapted.

**1974–1995:** the Kuiper Airborne Observatory (KAO;  $\emptyset = 0.9$  m; Erickson & Meyer 2013).

2010–2022: the Stratospheric Observatory for Infrared Astronomy (SOFIA; Ø = 2.5 m; Young et al. 2012).

F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)

### **Balloons & rockets**



- 2 observe for several days continuously, but landing is hazardous → only a few flights during their lifetime.

1959: first IR balloon launched from Johns Hopkins.

**1966:** a balloon sent by the Goddard Institute mapped the sky at  $\lambda = 100 \ \mu m$  (Walker, 2000).

### Airborne observatories

- 1 Airplanes can fly up to  $\simeq 15$  km, operate during  $\simeq 10$  hours.
- 2 perform numerous flights, but telescope motion must be perpendicular to the plane ⇒ flight path has to be adapted.
  - **1974–1995:** the *Kuiper Airborne Observatory* (KAO;  $\emptyset = 0.9$  m; Erickson & Meyer 2013).

2010–2022: the Stratospheric Observatory for Infrared Astronomy (SOFIA; Ø = 2.5 m; Young et al. 2012).



Credit: SOFIA; NASA.

F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)

1983 – The InfraRed Astronomical Satellite (IRAS;  $\emptyset = 0.57$  m; Neugebauer et al. 1984)

• First IR observatory to perform an all-sky survey, at  $\lambda = 12, 25, 60$  and  $100 \ \mu m$  (angular resolution  $\simeq 0.5' - 2'$ ).

- First IR observatory to perform an all-sky survey, at  $\lambda = 12$ , 25, 60 and 100  $\mu$ m (angular resolution  $\simeq 0.5' 2'$ ).
- Discovered more than 300 000 point sources → many were the unexpected starburst galaxies (Soifer et al., 1987).

- First IR observatory to perform an all-sky survey, at  $\lambda = 12$ , 25, 60 and 100  $\mu$ m (angular resolution  $\simeq 0.5' 2'$ ).
- Discovered more than 300 000 point sources  $\rightarrow$  many were the unexpected starburst galaxies (Soifer et al., 1987). New categories: Luminous InfraRed Galaxies (LIRG;  $10^{11} L_{\odot} < L_{\rm IR} < 10^{12} L_{\odot}$ ) and UltraLuminous InfraRed Galaxies (ULIRG;  $L_{\rm IR} > 10^{12} L_{\odot}$ ).

- First IR observatory to perform an all-sky survey, at  $\lambda = 12$ , 25, 60 and 100  $\mu$ m (angular resolution  $\simeq 0.5' 2'$ ).
- Discovered more than 300 000 point sources  $\rightarrow$  many were the unexpected starburst galaxies (Soifer et al., 1987). New categories: Luminous InfraRed Galaxies (LIRG;  $10^{11} L_{\odot} < L_{\rm IR} < 10^{12} L_{\odot}$ ) and UltraLuminous InfraRed Galaxies (ULIRG;  $L_{\rm IR} > 10^{12} L_{\odot}$ ).
- Dusty disks around stars were also discovered (Beichman, 1987).

- First IR observatory to perform an all-sky survey, at  $\lambda = 12$ , 25, 60 and 100  $\mu$ m (angular resolution  $\simeq 0.5' 2'$ ).
- Discovered more than 300 000 point sources  $\rightarrow$  many were the unexpected starburst galaxies (Soifer et al., 1987). New categories: Luminous InfraRed Galaxies (LIRG;  $10^{11} L_{\odot} < L_{IR} < 10^{12} L_{\odot}$ ) and UltraLuminous InfraRed Galaxies (ULIRG;  $L_{IR} > 10^{12} L_{\odot}$ ).
- Dusty disks around stars were also discovered (Beichman, 1987).
- Access to cold grain emission  $\Rightarrow$  first reliable dust masses of galaxies & Galactic clouds.

- First IR observatory to perform an all-sky survey, at  $\lambda = 12$ , 25, 60 and 100  $\mu$ m (angular resolution  $\simeq 0.5' 2'$ ).
- Discovered more than 300 000 point sources  $\rightarrow$  many were the unexpected starburst galaxies (Soifer et al., 1987). New categories: Luminous InfraRed Galaxies (LIRG;  $10^{11} L_{\odot} < L_{IR} < 10^{12} L_{\odot}$ ) and UltraLuminous InfraRed Galaxies (ULIRG;  $L_{IR} > 10^{12} L_{\odot}$ ).
- Dusty disks around stars were also discovered (Beichman, 1987).
- Access to cold grain emission  $\Rightarrow$  first reliable dust masses of galaxies & Galactic clouds.
- IRAS data shaped modern dust models (Désert et al., 1990)  $\rightarrow$  still used nowadays.

1983 – The InfraRed Astronomical Satellite (IRAS;  $\emptyset = 0.57$  m; Neugebauer et al. 1984)

- First IR observatory to perform an all-sky survey, at  $\lambda = 12$ , 25, 60 and 100  $\mu$ m (angular resolution  $\simeq 0.5' 2'$ ).
- Discovered more than 300 000 point sources  $\rightarrow$  many were the unexpected starburst galaxies (Soifer et al., 1987). New categories: Luminous InfraRed Galaxies (LIRG;  $10^{11} L_{\odot} < L_{IR} < 10^{12} L_{\odot}$ ) and UltraLuminous InfraRed Galaxies (ULIRG;  $L_{IR} > 10^{12} L_{\odot}$ ).
- Dusty disks around stars were also discovered (Beichman, 1987).
- Access to cold grain emission  $\Rightarrow$  first reliable dust masses of galaxies & Galactic clouds.
- IRAS data shaped modern dust models (Désert et al., 1990)  $\rightarrow$  still used nowadays.

Prominent space observatories aimed at the ISM

1983 – The InfraRed Astronomical Satellite (IRAS;  $\emptyset = 0.57$  m; Neugebauer et al. 1984)

- First IR observatory to perform an all-sky survey, at  $\lambda = 12$ , 25, 60 and 100  $\mu$ m (angular resolution  $\simeq 0.5' 2'$ ).
- Discovered more than 300 000 point sources  $\rightarrow$  many were the unexpected starburst galaxies (Soifer et al., 1987). New categories: Luminous InfraRed Galaxies (LIRG;  $10^{11} L_{\odot} < L_{IR} < 10^{12} L_{\odot}$ ) and UltraLuminous InfraRed Galaxies (ULIRG;  $L_{IR} > 10^{12} L_{\odot}$ ).
- Dusty disks around stars were also discovered (Beichman, 1987).
- Access to cold grain emission  $\Rightarrow$  first reliable dust masses of galaxies & Galactic clouds.
- IRAS data shaped modern dust models (Désert et al., 1990)  $\rightarrow$  still used nowadays.

### Prominent space observatories aimed at the ISM

In the IR: COBE (1989–1993; Boggess et al. 1992); ISO (1995–1998; Kessler et al. 1996); Spitzer (2003–2009; Werner et al. 2004); Herschel (2009–2013; Pilbratt et al. 2010); Planck (2009–2013; Tauber et al. 2010); the JWST (2021–; McElwain et al. 2020).

1983 – The InfraRed Astronomical Satellite (IRAS;  $\emptyset = 0.57$  m; Neugebauer et al. 1984)

- First IR observatory to perform an all-sky survey, at  $\lambda = 12$ , 25, 60 and 100  $\mu$ m (angular resolution  $\simeq 0.5' 2'$ ).
- Discovered more than 300 000 point sources  $\rightarrow$  many were the unexpected starburst galaxies (Soifer et al., 1987). New categories: Luminous InfraRed Galaxies (LIRG;  $10^{11} L_{\odot} < L_{IR} < 10^{12} L_{\odot}$ ) and UltraLuminous InfraRed Galaxies (ULIRG;  $L_{IR} > 10^{12} L_{\odot}$ ).
- Dusty disks around stars were also discovered (Beichman, 1987).
- Access to cold grain emission  $\Rightarrow$  first reliable dust masses of galaxies & Galactic clouds.
- IRAS data shaped modern dust models (Désert et al., 1990)  $\rightarrow$  still used nowadays.

### Prominent space observatories aimed at the ISM

In the IR: COBE (1989–1993; Boggess et al. 1992); ISO (1995–1998; Kessler et al. 1996); *Spitzer* (2003–2009; Werner et al. 2004); *Herschel* (2009–2013; Pilbratt et al. 2010); *Planck* (2009–2013; Tauber et al. 2010); the JWST (2021–; McElwain et al. 2020).



Credit: Launch of JWST; artist view; ESA.

1983 – The InfraRed Astronomical Satellite (IRAS;  $\emptyset = 0.57$  m; Neugebauer et al. 1984)

- First IR observatory to perform an all-sky survey, at  $\lambda = 12$ , 25, 60 and 100  $\mu$ m (angular resolution  $\simeq 0.5' 2'$ ).
- Discovered more than 300 000 point sources  $\rightarrow$  many were the unexpected starburst galaxies (Soifer et al., 1987). New categories: Luminous InfraRed Galaxies (LIRG;  $10^{11} L_{\odot} < L_{IR} < 10^{12} L_{\odot}$ ) and UltraLuminous InfraRed Galaxies (ULIRG;  $L_{IR} > 10^{12} L_{\odot}$ ).
- Dusty disks around stars were also discovered (Beichman, 1987).
- Access to cold grain emission  $\Rightarrow$  first reliable dust masses of galaxies & Galactic clouds.
- IRAS data shaped modern dust models (Désert et al., 1990)  $\rightarrow$  still used nowadays.

### Prominent space observatories aimed at the ISM

In the IR: COBE (1989–1993; Boggess et al. 1992); ISO (1995–1998; Kessler et al. 1996); Spitzer (2003–2009; Werner et al. 2004); Herschel (2009–2013; Pilbratt et al. 2010); Planck (2009–2013; Tauber et al. 2010); the JWST (2021–; McElwain et al. 2020).

In the UV: IUE (1978–1996; Boggess et al. 1978); HST (1990–; Burrows et al. 1991); FUSE (1999– 2007; Moos et al. 2000).



Credit: Launch of JWST; artist view; ESA.

F. Galliano (CEA Paris-Saclay)
## Observations - A panchromatic view of the ISM

• The ISM of the Milky Way & nearby galaxies have been observed in all spectral windows.

- The ISM of the Milky Way & nearby galaxies have been observed in all spectral windows.
- High angular resolution ( $\simeq 1''$ ) in the visible, near- & mid-IR, & submm-to-cm regimes.

- The ISM of the Milky Way & nearby galaxies have been observed in all spectral windows.
- High angular resolution ( $\simeq 1''$ ) in the visible, near- & mid-IR, & submm-to-cm regimes.
- Detection of spectral features in the X-ray (Milky Way).

- The ISM of the Milky Way & nearby galaxies have been observed in all spectral windows.
- High angular resolution ( $\simeq 1''$ ) in the visible, near- & mid-IR, & submm-to-cm regimes.
- Detection of spectral features in the X-ray (Milky Way).
- Probing the ISM content with  $\gamma$ -rays.

#### Observations – A panchromatic view of the ISM

- The ISM of the Milky Way & nearby galaxies have been observed in all spectral windows.
- High angular resolution ( $\simeq 1'')$  in the visible, near- & mid-IR, & submm-to-cm regimes.
- Detection of spectral features in the X-ray (Milky Way).
- Probing the ISM content with  $\gamma$ -rays.

Simulations – Intensive computations with detailed microphysics

- The ISM of the Milky Way & nearby galaxies have been observed in all spectral windows.
- High angular resolution ( $\simeq 1''$ ) in the visible, near- & mid-IR, & submm-to-cm regimes.
- Detection of spectral features in the X-ray (Milky Way).
- Probing the ISM content with  $\gamma$ -rays.

#### Simulations – Intensive computations with detailed microphysics

 3D simulations of the ISM down to A.U. scales, implementing: MHD, gravity, turbulence, realistic heating & cooling, & complex chemistry networks (≃ 1000s of reactions).

- The ISM of the Milky Way & nearby galaxies have been observed in all spectral windows.
- High angular resolution ( $\simeq 1''$ ) in the visible, near- & mid-IR, & submm-to-cm regimes.
- Detection of spectral features in the X-ray (Milky Way).
- Probing the ISM content with  $\gamma$ -rays.

#### Simulations – Intensive computations with detailed microphysics

- 3D simulations of the ISM down to A.U. scales, implementing: MHD, gravity, turbulence, realistic heating & cooling, & complex chemistry networks ( $\simeq$  1000s of reactions).
- 3D radiative transfer (lines & dust continuum) with high resolution ⇒ produce realistic synthetic observables.

- The ISM of the Milky Way & nearby galaxies have been observed in all spectral windows.
- High angular resolution ( $\simeq 1''$ ) in the visible, near- & mid-IR, & submm-to-cm regimes.
- Detection of spectral features in the X-ray (Milky Way).
- Probing the ISM content with  $\gamma$ -rays.

## Simulations – Intensive computations with detailed microphysics

- 3D simulations of the ISM down to A.U. scales, implementing: MHD, gravity, turbulence, realistic heating & cooling, & complex chemistry networks (≃ 1000s of reactions).
- 3D radiative transfer (lines & dust continuum) with high resolution ⇒ produce realistic synthetic observables.

- The ISM of the Milky Way & nearby galaxies have been observed in all spectral windows.
- High angular resolution ( $\simeq 1''$ ) in the visible, near- & mid-IR, & submm-to-cm regimes.
- Detection of spectral features in the X-ray (Milky Way).
- Probing the ISM content with  $\gamma$ -rays.

## Simulations – Intensive computations with detailed microphysics

- 3D simulations of the ISM down to A.U. scales, implementing: MHD, gravity, turbulence, realistic heating & cooling, & complex chemistry networks (≃ 1000s of reactions).
- 3D radiative transfer (lines & dust continuum) with high resolution ⇒ produce realistic synthetic observables.

#### Laboratory experiments - Reproducing the conditions in the ISM

• Possibility to constrain microphysical properties in the lab (reaction rates, cross-sections, molecular lines, *etc.*).

- The ISM of the Milky Way & nearby galaxies have been observed in all spectral windows.
- High angular resolution ( $\simeq 1''$ ) in the visible, near- & mid-IR, & submm-to-cm regimes.
- Detection of spectral features in the X-ray (Milky Way).
- Probing the ISM content with  $\gamma$ -rays.

## Simulations – Intensive computations with detailed microphysics

- 3D simulations of the ISM down to A.U. scales, implementing: MHD, gravity, turbulence, realistic heating & cooling, & complex chemistry networks (≃ 1000s of reactions).
- 3D radiative transfer (lines & dust continuum) with high resolution ⇒ produce realistic synthetic observables.

- Possibility to constrain microphysical properties in the lab (reaction rates, cross-sections, molecular lines, *etc.*).
- Identification of complex molecules in the ISM: ≃ 300 Complex Organic Molecules (COMs) & fullerenes.

- The ISM of the Milky Way & nearby galaxies have been observed in all spectral windows.
- High angular resolution ( $\simeq 1''$ ) in the visible, near- & mid-IR, & submm-to-cm regimes.
- Detection of spectral features in the X-ray (Milky Way).
- Probing the ISM content with  $\gamma$ -rays.

## Simulations – Intensive computations with detailed microphysics

- 3D simulations of the ISM down to A.U. scales, implementing: MHD, gravity, turbulence, realistic heating & cooling, & complex chemistry networks (≈ 1000s of reactions).
- 3D radiative transfer (lines & dust continuum) with high resolution ⇒ produce realistic synthetic observables.

- Possibility to constrain microphysical properties in the lab (reaction rates, cross-sections, molecular lines, *etc.*).
- Identification of complex molecules in the ISM: ≃ 300 Complex Organic Molecules (COMs) & fullerenes.



- The ISM of the Milky Way & nearby galaxies have been observed in all spectral windows.
- High angular resolution ( $\simeq 1''$ ) in the visible, near- & mid-IR, & submm-to-cm regimes.
- Detection of spectral features in the X-ray (Milky Way).
- Probing the ISM content with  $\gamma$ -rays.

## Simulations – Intensive computations with detailed microphysics

- 3D simulations of the ISM down to A.U. scales, implementing: MHD, gravity, turbulence, realistic heating & cooling, & complex chemistry networks ( $\simeq$  1000s of reactions).
- 3D radiative transfer (lines & dust continuum) with high resolution ⇒ produce realistic synthetic observables.

- Possibility to constrain microphysical properties in the lab (reaction rates, cross-sections, molecular lines, *etc.*).
- Identification of complex molecules in the ISM: 
   <sup>2</sup> 300 Complex Organic Molecules (COMs) & fullerenes.
- Analysis of returned samples (spacecraft or meteorites).



Voyager 1 & 2

Voyager 1 & 2

1977: launch.

Voyager 1 & 2

1977: launch.

2012: leaving heliosphere.



# **Outline of the Lecture**

## OVERVIEW: WHAT IS THE ISM?

- Composition, physical properties, characteristic regions
- The Milky Way and the diversity of external galaxies
- Recommended bibliography and outline of the course

#### A BRIEF HISTORY OF STUDIES OF THE ISM

- Before the XXth Century
- From astronomy to astrophysics
- The modern era

# Interstellar Media? Interstellar Media?

- The microphysical components of the ISM
- The challenges of studying macroscopic regions
- The Sociology of ISMology

- Take-away points
- References

How to collect information on the ISM?

## How to collect information on the ISM?

We can not study the ISM in situ  $\Rightarrow$  we need to rely on vectors of information.

## How to collect information on the ISM?

We can not study the ISM *in situ*  $\Rightarrow$  we need to rely on vectors of information. **Photons,** observed first by eye, lately with detectors:

## How to collect information on the ISM?

We can not study the ISM *in situ*  $\Rightarrow$  we need to rely on vectors of information. **Photons,** observed first by eye, lately with detectors: *Visible,* since Antiquity;

## How to collect information on the ISM?

We can not study the ISM in situ  $\Rightarrow$  we need to rely on vectors of information.

Photons, observed first by eye, lately with detectors:

*Visible,* since Antiquity; *Infrared,* since 1800;

## How to collect information on the ISM?

We can not study the ISM in situ  $\Rightarrow$  we need to rely on vectors of information.

Photons, observed first by eye, lately with detectors:

Visible, since Antiquity; Infrared, since 1800; X-rays, since 1920;

## How to collect information on the ISM?

We can not study the ISM in situ  $\Rightarrow$  we need to rely on vectors of information.

Photons, observed first by eye, lately with detectors:

Visible, since Antiquity; Infrared, since 1800; X-rays, since 1920; Radio, since 1933.

## How to collect information on the ISM?

We can not study the ISM in situ  $\Rightarrow$  we need to rely on vectors of information.

Photons, observed first by eye, lately with detectors:

Visible, since Antiquity; Infrared, since 1800; X-rays, since 1920; Radio, since 1933.

**Cosmic rays:** energetic particles (*i.e.* relativistic protons & nuclei), since 1912.

We can not study the ISM in situ  $\Rightarrow$  we need to rely on vectors of information.

Photons, observed first by eye, lately with detectors:

Visible, since Antiquity; Infrared, since 1800; X-rays, since 1920; Radio, since 1933.

**Cosmic rays:** energetic particles (*i.e.* relativistic protons & nuclei), since 1912. **Neutrinos**, since 1967, from the Sun & supernovae

We can not study the ISM in situ  $\Rightarrow$  we need to rely on vectors of information.

Photons, observed first by eye, lately with detectors:

Visible, since Antiquity; Infrared, since 1800; X-rays, since 1920; Radio, since 1933.

**Cosmic rays:** energetic particles (*i.e.* relativistic protons & nuclei), since 1912.

We http://www.since 1967, from the Sun & supernovae  $\rightarrow$  no relevant application for the ISM.

We can not study the ISM in situ  $\Rightarrow$  we need to rely on vectors of information.

Photons, observed first by eye, lately with detectors:

Visible, since Antiquity; Infrared, since 1800; X-rays, since 1920; Radio, since 1933.

We can not study the ISM in situ  $\Rightarrow$  we need to rely on vectors of information.

Photons, observed first by eye, lately with detectors:

Visible, since Antiquity; Infrared, since 1800; X-rays, since 1920; Radio, since 1933.

**Cosmic rays:** energetic particles (*i.e.* relativistic protons & nuclei), since 1912.

We http://white since 1967, from the Sun & supernovae  $\rightarrow$  no relevant application for the ISM. Interstellar grains, found in the Solar system:

Inclusion in meteorites, since 1987;

We can not study the ISM in situ  $\Rightarrow$  we need to rely on vectors of information.

Photons, observed first by eye, lately with detectors:

Visible, since Antiquity; Infrared, since 1800; X-rays, since 1920; Radio, since 1933.

**Cosmic rays:** energetic particles (*i.e.* relativistic protons & nuclei), since 1912.

We with here is a supernovae  $\rightarrow$  no relevant application for the ISM.

Interstellar grains, found in the Solar system:

Inclusion in meteorites, since 1987; Collected in the Solar system, by spacecrafts, since 2003.

We can not study the ISM in situ  $\Rightarrow$  we need to rely on vectors of information.

Photons, observed first by eye, lately with detectors:

Visible, since Antiquity; Infrared, since 1800; X-rays, since 1920; Radio, since 1933.

**Cosmic rays:** energetic particles (*i.e.* relativistic protons & nuclei), since 1912.

Weintrings: since 1967, from the Sun & supernovae  $\rightarrow$  no relevant application for the ISM.

Interstellar grains, found in the Solar system:

Inclusion in meteorites, since 1987;

Collected in the Solar system, by spacecrafts, since 2003.

Gravitational waves: space-time perturbations originating in cataclysmic events, detected since 2015

We can not study the ISM in situ  $\Rightarrow$  we need to rely on vectors of information.

Photons, observed first by eye, lately with detectors:

Visible, since Antiquity; Infrared, since 1800; X-rays, since 1920; Radio, since 1933.

Cosmic rays: energetic particles (*i.e.* relativistic protons & nuclei), since 1912.

Weintrings: since 1967, from the Sun & supernovae  $\rightarrow$  no relevant application for the ISM.

Interstellar grains, found in the Solar system:

Inclusion in meteorites, since 1987;

Collected in the Solar system, by spacecrafts, since 2003.

K in the space-time perturbations originating in cataclysmic events, detected since 2015  $\rightarrow$  no relevant application for the ISM.
















































F. Galliano (CEA Paris-Saclay)



39 / 53





39 / 53



F. Galliano (CEA Paris-Saclay)

39 / 53







The Relevance of Cosmic Rays for the ISM





#### The Relevance of Cosmic Rays for the ISM Pressure:




# Methods | Cosmic Rays (CRs) in the Interstellar Medium



F. Galliano (CEA Paris-Saclay)

# Methods | Cosmic Rays (CRs) in the Interstellar Medium



### Methods | Collecting Interstellar Grains in the Solar System

## Methods | Collecting Interstellar Grains in the Solar System

### Grain-collecting spacecrafts

• Heliosphere moves at  $\simeq$  26 km/s

 $\bullet\,$  Heliosphere moves at  $\simeq$  26 km/s  $\Rightarrow$  flow of interstellar grains in the Solar system.

- Heliosphere moves at  $\simeq$  26 km/s  $\Rightarrow$  flow of interstellar grains in the Solar system.
- Since the 2000s  $\rightarrow$  several grain collecting spacecrafts (Ulysses, Galileo, Cassini, Startdust)

- Heliosphere moves at  $\simeq$  26 km/s  $\Rightarrow$  flow of interstellar grains in the Solar system.
- Since the 2000s  $\rightarrow$  several grain collecting spacecrafts (Ulysses, Galileo, Cassini, Startdust)  $\Rightarrow$  possibility to identify interstellar grains.

- Heliosphere moves at  $\simeq$  26 km/s  $\Rightarrow$  flow of interstellar grains in the Solar system.
- Since the 2000s  $\rightarrow$  several grain collecting spacecrafts (Ulysses, Galileo, Cassini, Startdust)  $\Rightarrow$  possibility to identify interstellar grains.

#### Aerogel honeycomb matrix



Credit: Stardust, NASA / JPL.

# Methods | Collecting Interstellar Grains in the Solar System

#### Grain-collecting spacecrafts

- Heliosphere moves at  $\simeq$  26 km/s  $\Rightarrow$  flow of interstellar grains in the Solar system.
- Since the 2000s  $\rightarrow$  several grain collecting spacecrafts (Ulysses, Galileo, Cassini, Startdust)  $\Rightarrow$  possibility to identify interstellar grains.



# Methods | Collecting Interstellar Grains in the Solar System

#### Grain-collecting spacecrafts

- Heliosphere moves at  $\simeq$  26 km/s  $\Rightarrow$  flow of interstellar grains in the Solar system.
- Since the 2000s  $\rightarrow$  several grain collecting spacecrafts (Ulysses, Galileo, Cassini, Startdust)  $\Rightarrow$  possibility to identify interstellar grains.



- Heliosphere moves at  $\simeq$  26 km/s  $\Rightarrow$  flow of interstellar grains in the Solar system.
- Since the 2000s  $\rightarrow$  several grain collecting spacecrafts (Ulysses, Galileo, Cassini, Startdust)  $\Rightarrow$  possibility to identify interstellar grains.



Interstellar grains locked in meteorites

- Heliosphere moves at  $\simeq$  26 km/s  $\Rightarrow$  flow of interstellar grains in the Solar system.
- Since the 2000s  $\rightarrow$  several grain collecting spacecrafts (Ulysses, Galileo, Cassini, Startdust)  $\Rightarrow$  possibility to identify interstellar grains.



#### Interstellar grains locked in meteorites

• Primitive meteorites contain pre-Solar grains  $\Rightarrow$  of interstellar origin.

# Methods | Collecting Interstellar Grains in the Solar System

#### Grain-collecting spacecrafts

- Heliosphere moves at  $\simeq$  26 km/s  $\Rightarrow$  flow of interstellar grains in the Solar system.
- Since the 2000s  $\rightarrow$  several grain collecting spacecrafts (Ulysses, Galileo, Cassini, Startdust)  $\Rightarrow$  possibility to identify interstellar grains.



#### Interstellar grains locked in meteorites

- Primitive meteorites contain pre-Solar grains  $\Rightarrow$  of interstellar origin.
- $\Rightarrow$  Possibility to identify and study them (*e.g.* Hoppe & Zinner 2000).

F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)

## Methods | Collecting Interstellar Grains on Earth

## Methods | Collecting Interstellar Grains on Earth



Credit: collecting micrometeorites in Antartica (Dome C, 2002; CNRS).

F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)

ISM targets are usually diffuse & extended

#### ISM targets are usually diffuse & extended

 $\bullet$  ISM pervades everything  $\Rightarrow$  large fraction of the sky & low-surface brightness.

#### ISM targets are usually diffuse & extended

• ISM pervades everything  $\Rightarrow$  large fraction of the sky & low-surface brightness.



Credit: 2MASS extended source catalog (Jarrett, 2004).

#### ISM targets are usually diffuse & extended

- ISM pervades everything  $\Rightarrow$  large fraction of the sky & low-surface brightness.
- $\Rightarrow$  need sophisticated methods to isolate it from the rest.



Credit: 2MASS extended source catalog (Jarrett, 2004).













### Methods | The Delicate Decomposition of Diffuse Data

## Methods | The Delicate Decomposition of Diffuse Data

Necessity to develop methods to extract ISM observables

## Methods | The Delicate Decomposition of Diffuse Data

Necessity to develop methods to extract ISM observables Spectral decomposition, using SED fitting, with ancillary data, *etc.*  Necessity to develop methods to extract ISM observables Spectral decomposition, using SED fitting, with ancillary data, *etc.* Machine-learning methods: new development, but robustness difficult to assess. Necessity to develop methods to extract ISM observables Spectral decomposition, using SED fitting, with ancillary data, *etc.* Machine-learning methods: new development, but robustness difficult to assess. Statistically-motivated methods: most popular approaches. Necessity to develop methods to extract ISM observables

Spectral decomposition, using SED fitting, with ancillary data, etc.

Machine-learning methods: new development, but robustness difficult to assess.

Statistically-motivated methods: most popular approaches.

 $\Rightarrow$  no Universal method  $\Rightarrow$  very dependent on the type of data.

Necessity to develop methods to extract ISM observables

**Spectral decomposition,** using SED fitting, with ancillary data, *etc.* 

Machine-learning methods: new development, but robustness difficult to assess.

Statistically-motivated methods: most popular approaches.

 $\Rightarrow$  no Universal method  $\Rightarrow$  very dependent on the type of data.

Example: Separating Milky Way dust & the Cosmic Infrared Background

Necessity to develop methods to extract ISM observables

Spectral decomposition, using SED fitting, with ancillary data, etc.

Machine-learning methods: new development, but robustness difficult to assess.

Statistically-motivated methods: most popular approaches.

 $\Rightarrow$  no Universal method  $\Rightarrow$  very dependent on the type of data.

Example: Separating Milky Way dust & the Cosmic Infrared Background

Herschel 250  $\mu$ m image



Credit: separation of a high-Galactic-latitude field using wavelet phase harmonics (Auclair et al., 2024).
Necessity to develop methods to extract ISM observables

**Spectral decomposition**, using SED fitting, with ancillary data, *etc.* 

Machine-learning methods: new development, but robustness difficult to assess.

Statistically-motivated methods: most popular approaches.

 $\Rightarrow$  no Universal method  $\Rightarrow$  very dependent on the type of data.

Example: Separating Milky Way dust & the Cosmic Infrared Background

*Herschel* 250  $\mu$ m image



Extracted dust



Credit: separation of a high-Galactic-latitude field using wavelet phase harmonics (Auclair et al., 2024).

Necessity to develop methods to extract ISM observables

**Spectral decomposition,** using SED fitting, with ancillary data, *etc.* 

Machine-learning methods: new development, but robustness difficult to assess.

Statistically-motivated methods: most popular approaches.

 $\Rightarrow$  no Universal method  $\Rightarrow$  very dependent on the type of data.



Credit: separation of a high-Galactic-latitude field using wavelet phase harmonics (Auclair et al., 2024).

## **Theory & Simulations**



Analytical theory & numerical simulations.

## **Theory & Simulations**



Analytical theory & numerical simulations.

## Models



**Theory & Simulations** 



Analytical theory & numerical simulations.

## Observations



Planning, performing & analyzing observations.

## Models



**Theory & Simulations** 



Analytical theory & numerical simulations.

## Observations



Planning, performing & analyzing observations.

## Models



Accurate comparison of theory & observations.

## Laboratory Experiments



Isolating & measuring astrophysical processes.

F. Galliano (CEA Paris-Saclay)

ISM lecture 1 (ISYA 2024, Algiers)

45 / 53

**Theory & Simulations** 



Analytical theory & numerical simulations.

## Observations



Planning, performing & analyzing observations.

#### Instrumentation



Designing, building & commissioning instruments.

## Models



Accurate comparison of theory & observations.

## Laboratory Experiments



Isolating & measuring astrophysical processes.

F. Galliano (CEA Paris-Saclay)

**Theory & Simulations** 



Analytical theory & numerical simulations.

## Observations



Planning, performing & analyzing observations.

#### Instrumentation



Designing, building & commissioning instruments.

## Models



Accurate comparison of theory & observations.

## Laboratory Experiments



Isolating & measuring astrophysical processes.

### Bibliometry

F. Galliano (CEA Paris-Saclay)

**Theory & Simulations** 



Analytical theory & numerical simulations.

## Observations



Planning, performing & analyzing observations.

#### Instrumentation



Designing, building & commissioning instruments.

## Models



Accurate comparison of theory & observations.

## Laboratory Experiments



Isolating & measuring astrophysical processes.

### Bibliometry

 past 10 years → 15% of Annual Review of Astronomy & Astrophysics (ARA&A) papers about ISM.

#### **Theory & Simulations**



Analytical theory & numerical simulations.

## Observations



Planning, performing & analyzing observations.

#### Instrumentation



Designing, building & commissioning instruments.

## Models



Accurate comparison of theory & observations.

## Laboratory Experiments



Isolating & measuring astrophysical processes.

#### Bibliometry

- past 10 years → 15% of Annual Review of Astronomy & Astrophysics (ARA&A) papers about ISM.
- $\simeq$  10 new publications per week day.

**Project scaling** 

#### **Project scaling**

• Possibility to work in small teams  $\Rightarrow$  control the whole process (observations, models, *etc.*).

#### **Project scaling**

- Possibility to work in small teams  $\Rightarrow$  control the whole process (observations, models, *etc.*).
- Possibility to participate to large collaborations (large surveys, mission design, etc.).

#### **Project scaling**

- Possibility to work in small teams  $\Rightarrow$  control the whole process (observations, models, *etc.*).
- Possibility to participate to large collaborations (large surveys, mission design, etc.).

#### Interdisciplinarity

- Possibility to work in small teams  $\Rightarrow$  control the whole process (observations, models, *etc.*).
- Possibility to participate to large collaborations (large surveys, mission design, etc.).

#### Interdisciplinarity

ISM permeates everything  $\Rightarrow$  interface with:

- Possibility to work in small teams  $\Rightarrow$  control the whole process (observations, models, *etc.*).
- Possibility to participate to large collaborations (large surveys, mission design, etc.).

#### Interdisciplinarity

ISM permeates everything  $\Rightarrow$  interface with:

 planetary system, galaxy evolution, compact objects, stellar physics;

- Possibility to work in small teams  $\Rightarrow$  control the whole process (observations, models, *etc.*).
- Possibility to participate to large collaborations (large surveys, mission design, etc.).

#### Interdisciplinarity

ISM permeates everything  $\Rightarrow$  interface with:

- planetary system, galaxy evolution, compact objects, stellar physics;
- chemistry, material science, etc.

- Possibility to work in small teams  $\Rightarrow$  control the whole process (observations, models, *etc.*).
- Possibility to participate to large collaborations (large surveys, mission design, etc.).

#### Interdisciplinarity

ISM permeates everything  $\Rightarrow$  interface with:

- planetary system, galaxy evolution, compact objects, stellar physics;
- chemistry, material science, etc.



- Possibility to work in small teams  $\Rightarrow$  control the whole process (observations, models, *etc.*).
- Possibility to participate to large collaborations (large surveys, mission design, etc.).

#### Interdisciplinarity

ISM permeates everything  $\Rightarrow$  interface with:

- planetary system, galaxy evolution, compact objects, stellar physics;
- chemistry, material science, etc.



#### Aesthetics

- Possibility to work in small teams  $\Rightarrow$  control the whole process (observations, models, *etc.*).
- Possibility to participate to large collaborations (large surveys, mission design, etc.).

#### Interdisciplinarity

ISM permeates everything  $\Rightarrow$  interface with:

- planetary system, galaxy evolution, compact objects, stellar physics;
- chemistry, material science, etc.



## Aesthetics



Credit: JWST, NASA, ESA, CSA, STScl.

- Possibility to work in small teams  $\Rightarrow$  control the whole process (observations, models, *etc.*).
- Possibility to participate to large collaborations (large surveys, mission design, etc.).

#### Interdisciplinarity

ISM permeates everything  $\Rightarrow$  interface with:

- planetary system, galaxy evolution, compact objects, stellar physics;
- chemistry, material science, etc.



#### Aesthetics



Credit: JWST, NASA, ESA, CSA, STScl.

 $\mathsf{ISM} \Rightarrow \mathsf{the} \mathsf{ most} \mathsf{ beautiful} \mathsf{ images}.$ 

## **Outline of the Lecture**

#### OVERVIEW: WHAT IS THE ISM?

- Composition, physical properties, characteristic regions
- The Milky Way and the diversity of external galaxies
- Recommended bibliography and outline of the course

## **2** A BRIEF HISTORY OF STUDIES OF THE ISM

- Before the XXth Century
- From astronomy to astrophysics
- The modern era

## METHODOLOGY: HOW DO WE STUDY INTERSTELLAR MEDIA?

- The microphysical components of the ISM
- The challenges of studying macroscopic regions
- The Sociology of ISMology

## 4 CONCLUSION

- Take-away points
- References

# **Conclusion** | Take-Away Points

Overview of the physical components of the ISM

The ISM is the medium filling the space between stars in a galaxy, made of atoms, molecules, dust grains & cosmic rays, bathed with photons, and magnetic & gravitational fields.

- In the ISM is the medium filling the space between stars in a galaxy, made of atoms, molecules, dust grains & cosmic rays, bathed with photons, and magnetic & gravitational fields.
- 2 Most of its mass is in atomic Hydrogen, with  $\simeq 25$  % of Helium, and traces of other elements & dust. The ionized & molecular phases account for  $\simeq 20$  % of the mass each.

- In the ISM is the medium filling the space between stars in a galaxy, made of atoms, molecules, dust grains & cosmic rays, bathed with photons, and magnetic & gravitational fields.
- 2 Most of its mass is in atomic Hydrogen, with  $\simeq 25$  % of Helium, and traces of other elements & dust. The ionized & molecular phases account for  $\simeq 20$  % of the mass each.
- There is a wide diversity of phases with ⟨n<sub>H</sub>⟩ ≃ 0.3 cm<sup>-3</sup>, with 10<sup>-3</sup> cm<sup>-3</sup> ≤ n<sub>H</sub> ≤ 10<sup>6</sup> cm<sup>-3</sup> & 10 K ≤ T<sub>gas</sub> ≤ 10<sup>6</sup> K. These phases are far from thermal equilibrium.

- In the ISM is the medium filling the space between stars in a galaxy, made of atoms, molecules, dust grains & cosmic rays, bathed with photons, and magnetic & gravitational fields.
- 2 Most of its mass is in atomic Hydrogen, with  $\simeq 25$  % of Helium, and traces of other elements & dust. The ionized & molecular phases account for  $\simeq 20$  % of the mass each.
- There is a wide diversity of phases with  $\langle n_{\rm H} \rangle \simeq 0.3 \text{ cm}^{-3}$ , with  $10^{-3} \text{ cm}^{-3} \lesssim n_{\rm H} \lesssim 10^6 \text{ cm}^{-3}$ & 10 K  $\lesssim T_{gas} \lesssim 10^6 \text{ K}$ . These phases are far from thermal equilibrium.

#### Chronology of the main breakthroughs

- In the ISM is the medium filling the space between stars in a galaxy, made of atoms, molecules, dust grains & cosmic rays, bathed with photons, and magnetic & gravitational fields.
- 2 Most of its mass is in atomic Hydrogen, with  $\simeq 25$  % of Helium, and traces of other elements & dust. The ionized & molecular phases account for  $\simeq 20$  % of the mass each.
- There is a wide diversity of phases with  $\langle n_{\rm H} \rangle \simeq 0.3 \text{ cm}^{-3}$ , with  $10^{-3} \text{ cm}^{-3} \lesssim n_{\rm H} \lesssim 10^6 \text{ cm}^{-3}$ & 10 K  $\lesssim T_{gas} \lesssim 10^6 \text{ K}$ . These phases are far from thermal equilibrium.

#### Chronology of the main breakthroughs

Scientific studies of the ISM started about a Century ago, with the first evidence of dust extinction & the first detections of atoms & molecules.

- In the ISM is the medium filling the space between stars in a galaxy, made of atoms, molecules, dust grains & cosmic rays, bathed with photons, and magnetic & gravitational fields.
- 2 Most of its mass is in atomic Hydrogen, with  $\simeq 25\%$  of Helium, and traces of other elements & dust. The ionized & molecular phases account for  $\simeq 20\%$  of the mass each.
- There is a wide diversity of phases with  $\langle n_{\rm H} \rangle \simeq 0.3 \text{ cm}^{-3}$ , with  $10^{-3} \text{ cm}^{-3} \lesssim n_{\rm H} \lesssim 10^6 \text{ cm}^{-3}$ & 10 K  $\lesssim T_{gas} \lesssim 10^6 \text{ K}$ . These phases are far from thermal equilibrium.

#### Chronology of the main breakthroughs

- Scientific studies of the ISM started about a Century ago, with the first evidence of dust extinction & the first detections of atoms & molecules.
- 2 The development of detectors over the whole electromagnetic spectrum was instrumental. *Spectroscopy* is a key technique to remotely probe the physical conditions in the ISM.

- In the ISM is the medium filling the space between stars in a galaxy, made of atoms, molecules, dust grains & cosmic rays, bathed with photons, and magnetic & gravitational fields.
- 2 Most of its mass is in atomic Hydrogen, with  $\simeq 25$  % of Helium, and traces of other elements & dust. The ionized & molecular phases account for  $\simeq 20$  % of the mass each.
- There is a wide diversity of phases with  $\langle n_{\rm H} \rangle \simeq 0.3 \text{ cm}^{-3}$ , with  $10^{-3} \text{ cm}^{-3} \lesssim n_{\rm H} \lesssim 10^6 \text{ cm}^{-3}$ & 10 K  $\lesssim T_{gas} \lesssim 10^6 \text{ K}$ . These phases are far from thermal equilibrium.

#### Chronology of the main breakthroughs

- Scientific studies of the ISM started about a Century ago, with the first evidence of dust extinction & the first detections of atoms & molecules.
- 2 The development of detectors over the whole electromagnetic spectrum was instrumental. Spectroscopy is a key technique to remotely probe the physical conditions in the ISM.
- 9 Modern ISMology heavily relies on the data from space missions to circumvent the atmosphere.

- In the ISM is the medium filling the space between stars in a galaxy, made of atoms, molecules, dust grains & cosmic rays, bathed with photons, and magnetic & gravitational fields.
- 2 Most of its mass is in atomic Hydrogen, with  $\simeq 25\%$  of Helium, and traces of other elements & dust. The ionized & molecular phases account for  $\simeq 20\%$  of the mass each.
- There is a wide diversity of phases with  $\langle n_{\rm H} \rangle \simeq 0.3 \text{ cm}^{-3}$ , with  $10^{-3} \text{ cm}^{-3} \lesssim n_{\rm H} \lesssim 10^6 \text{ cm}^{-3}$ & 10 K  $\lesssim T_{gas} \lesssim 10^6 \text{ K}$ . These phases are far from thermal equilibrium.

#### Chronology of the main breakthroughs

- Scientific studies of the ISM started about a Century ago, with the first evidence of dust extinction & the first detections of atoms & molecules.
- 2 The development of detectors over the whole electromagnetic spectrum was instrumental. Spectroscopy is a key technique to remotely probe the physical conditions in the ISM.
- 9 Modern ISMology heavily relies on the data from space missions to circumvent the atmosphere.

The methodological approach of ISMology

- In the ISM is the medium filling the space between stars in a galaxy, made of atoms, molecules, dust grains & cosmic rays, bathed with photons, and magnetic & gravitational fields.
- 2 Most of its mass is in atomic Hydrogen, with  $\simeq 25$  % of Helium, and traces of other elements & dust. The ionized & molecular phases account for  $\simeq 20$  % of the mass each.
- There is a wide diversity of phases with  $\langle n_{\rm H} \rangle \simeq 0.3 \text{ cm}^{-3}$ , with  $10^{-3} \text{ cm}^{-3} \lesssim n_{\rm H} \lesssim 10^6 \text{ cm}^{-3}$ & 10 K  $\lesssim T_{gas} \lesssim 10^6 \text{ K}$ . These phases are far from thermal equilibrium.

#### Chronology of the main breakthroughs

- Scientific studies of the ISM started about a Century ago, with the first evidence of dust extinction & the first detections of atoms & molecules.
- 2 The development of detectors over the whole electromagnetic spectrum was instrumental. Spectroscopy is a key technique to remotely probe the physical conditions in the ISM.
- 9 Modern ISMology heavily relies on the data from space missions to circumvent the atmosphere.

#### The methodological approach of ISMology

1 The microphysics of the ISM can be studied over the whole electromagnetic spectrum.

- In the ISM is the medium filling the space between stars in a galaxy, made of atoms, molecules, dust grains & cosmic rays, bathed with photons, and magnetic & gravitational fields.
- 2 Most of its mass is in atomic Hydrogen, with  $\simeq 25\%$  of Helium, and traces of other elements & dust. The ionized & molecular phases account for  $\simeq 20\%$  of the mass each.
- There is a wide diversity of phases with  $\langle n_{\rm H} \rangle \simeq 0.3 \text{ cm}^{-3}$ , with  $10^{-3} \text{ cm}^{-3} \lesssim n_{\rm H} \lesssim 10^6 \text{ cm}^{-3}$ & 10 K  $\lesssim T_{gas} \lesssim 10^6 \text{ K}$ . These phases are far from thermal equilibrium.

#### Chronology of the main breakthroughs

- Scientific studies of the ISM started about a Century ago, with the first evidence of dust extinction & the first detections of atoms & molecules.
- 2 The development of detectors over the whole electromagnetic spectrum was instrumental. Spectroscopy is a key technique to remotely probe the physical conditions in the ISM.
- 9 Modern ISMology heavily relies on the data from space missions to circumvent the atmosphere.

#### The methodological approach of ISMology

- 1 The microphysics of the ISM can be studied over the whole electromagnetic spectrum.
- 2 Due to the diffuse nature of the ISM's emission, confusion is a major limitation.
#### Overview of the physical components of the ISM

- In the ISM is the medium filling the space between stars in a galaxy, made of atoms, molecules, dust grains & cosmic rays, bathed with photons, and magnetic & gravitational fields.
- 2 Most of its mass is in atomic Hydrogen, with  $\simeq 25\%$  of Helium, and traces of other elements & dust. The ionized & molecular phases account for  $\simeq 20\%$  of the mass each.
- There is a wide diversity of phases with  $\langle n_{\rm H} \rangle \simeq 0.3 \text{ cm}^{-3}$ , with  $10^{-3} \text{ cm}^{-3} \lesssim n_{\rm H} \lesssim 10^6 \text{ cm}^{-3}$ & 10 K  $\lesssim T_{gas} \lesssim 10^6 \text{ K}$ . These phases are far from thermal equilibrium.

#### Chronology of the main breakthroughs

- Scientific studies of the ISM started about a Century ago, with the first evidence of dust extinction & the first detections of atoms & molecules.
- 2 The development of detectors over the whole electromagnetic spectrum was instrumental. Spectroscopy is a key technique to remotely probe the physical conditions in the ISM.
- 9 Modern ISMology heavily relies on the data from space missions to circumvent the atmosphere.

#### The methodological approach of ISMology

- I The microphysics of the ISM can be studied over the whole electromagnetic spectrum.
- 2 Due to the diffuse nature of the ISM's emission, confusion is a major limitation.
- 9 Working on the ISM can imply a wide range of approaches & some inter-disciplinarity.

F. Galliano (CEA Paris-Saclay)

# **Conclusion** | References (1/5)

- Abreu, P., Aglietta, M., Albury, J. M., et al. 2021, European Physical Journal C, 81, 966
- Aloisi, A., Clementini, G., Tosi, M., et al. 2007, ApJ, 667, L151
- Amelio, G. F., Tompsett, M. F., & Smith, G. E. 1970, The Bell System Technical Journal, 49, 593
- An, Q., Asfandiyarov, R., Azzarello, P., et al. 2019, Science Advances, 5, eaax3793
- Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
- Auclair, C., Allys, E., Boulanger, F., et al. 2024, A&A, 681, A1
- Ave, M., Knapp, J., Lloyd-Evans, J., Marchesini, M., & Watson, A. A. 2003, Astroparticle Physics, 19, 47
- Barker, G. F. 1888, Bibliographical memoir of Heny Draper (Report of the National Academy of Sciences)
- Barnard, E. E. 1899, ApJ, 9, 157
- Barnard, E. E. 1919, ApJ, 49, 1
- Beichman, C. A. 1987, ARA&A, 25, 521
- Bernard, J. P., Ade, P., André, Y., et al. 2016, Experimental Astronomy, 42, 199
- Bird, D. J., Corbato, S. C., Dai, H. Y., et al. 1994, ApJ, 424, 491
- Boggess, A., Carr, F. A., Evans, D. C., et al. 1978, Nature, 275, 372
- Boggess, N. W., Mather, J. C., Weiss, R., et al. 1992, ApJ, 397, 420
- Boksenberg, A. 1982, Nature, 298, 795

## **Conclusion** | References (2/5)

- Burrows, C. J., Holtzman, J. A., Faber, S. M., et al. 1991, ApJ, 369, L21
- Choi, G. H., Seo, E. S., Aggarwal, S., et al. 2022, ApJ, 940, 107
- Clerke, A. M. 1903, Problems in Astrophysics (London: A. & C. Black)
- Cox, D. P. 2005, ARA&A, 43, 337
- Désert, F.-X., Boulanger, F., & Puget, J. L. 1990, A&A, 237, 215
- Dopita, M. A. & Sutherland, R. S. 2003, Astrophysics of the diffuse universe (Springer)
- Draine, B. T. 2003, ApJ, 598, 1017
- Draine, B. T. 2011, Physics of the Interstellar and Intergalactic Medium (Princeton University Press)
- Dreyer, J. L. E. 1888, MmRAS, 49, 1
- Erickson, E. F. & Meyer, A. W. 2013, in NASA's Kuiper Airborne Observatory, 1971–1995: An Operations Retrospective With a View to SOFIA (NASA)
- Ewen, H. I. & Purcell, E. M. 1951, Nature, 168, 356
- Galliano, F. 2022, HDR, Université Paris-Saclay
- Galliano, F., Galametz, M., & Jones, A. P. 2018, ARA&A, 56, 673
- Grebenyuk, V., Karmanov, D., Kovalev, I., et al. 2019, Advances in Space Research, 64, 2546
- Harrison, T. G. 1984, QJRAS, 25, 65
- Herschel, W. 1785, Phil. Trans. R. Soc., 75, 213-266

## **Conclusion** | References (3/5)

- Herschel, W. 1791, Philosophical Transactions of the Royal Society of London Series I, 81, 71
- Heyer, M. & Dame, T. M. 2015, ARA&A, 53, 583
- Hollenbach, D. J. & Tielens, A. G. G. M. 1997, ARA&A, 35, 179
- Hoppe, P. & Zinner, E. 2000, J. Geophys. Res., 105, 10371
- Hubble, E. P. 1925, The Observatory, 48, 139
- Huggins, W. & Miller, W. A. 1864, Philosophical Transactions of the Royal Society of London Series I, 154, 437
- Jarrett, T. 2004, PASA, 21, 396
- Kalberla, P. M. W. & Kerp, J. 2009, ARA&A, 47, 27
- Kessler, M. F., Steinz, J. A., Anderegg, M. E., et al. 1996, A&A, 315, L27
- Klessen, R. S. & Glover, S. C. O. 2016, Saas-Fee Advanced Course, 43, 85
- Krügel, E. 2003, The physics of interstellar dust (IoP)
- Leavitt, H. S. & Pickering, E. C. 1912, Harvard College Observatory Circular, 173, 1
- Martin, J. D. 2013, PhD thesis, University of Minnesota
- Mathis, J. S. 1970, ApJ, 159, 263
- Mathis, J. S., Mezger, P. G., & Panagia, N. 1983, A&A, 128, 212

Mattila, K. 1970, A&A, 9, 53

# **Conclusion** | References (4/5)

- McElwain, M. W., Feinberg, L. D., Kimble, R. A., et al. 2020, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 11443, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 114430T
- McGrayne, S. 2011, The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy (Yale University Press)
- Messier, C. 1781, Catalogue des Nébuleuses et des Amas d'Étoiles (Catalog of Nebulae and Star Clusters), Connoissance des Temps ou des Mouvements Célestes, for 1784, p. 227-267
- Moos, H. W., Cash, W. C., Cowie, L. L., et al. 2000, ApJ, 538, L1
- Morales-Soto, J. A., Arteaga-Velázquez, J. C., Hawc, et al. 2022, in 37th International Cosmic Ray Conference, 330
- Neugebauer, G., Habing, H. J., van Duinen, R., et al. 1984, ApJ, 278, L1
- Osterbrock, D. E. & Ferland, G. J. 2006, Astrophysics of gaseous nebulae and active galactic nuclei (University Science Books)
- Payne, C. H. 1925, Proceedings of the National Academy of Science, 11, 192
- Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, A&A, 518, L1
- Prosin, V. V., Berezhnev, S. F., Budnev, N. M., et al. 2014, Nuclear Instruments and Methods in Physics Research A, 756, 94
- Rogalski, A. 2012, Opto-Electronics Review, 20
- Russell, H. N. 1922, Proceedings of the National Academy of Science, 8, 115

## **Conclusion** | References (5/5)

- Rybicky, G. B. & Lightman, A. P. 1979, Radiative processes in astrophysics (Wiley)
- Seo, E. S., Ormes, J. F., Streitmatter, R. E., et al. 1991, ApJ, 378, 763
- Soifer, B. T., Neugebauer, G., & Houck, J. R. 1987, ARA&A, 25, 187
- Swings, P. & Rosenfeld, L. 1937, ApJ, 86, 483
- Takeda, M., Sakaki, N., Honda, K., et al. 2003, Astroparticle Physics, 19, 447
- Tauber, J. A., Mandolesi, N., Puget, J. L., et al. 2010, A&A, 520, A1
- Tielens, A. G. G. M. 2005, The Physics and Chemistry of the Interstellar Medium (Cambridge University Press)
- Trumpler, R. J. 1930, PASP, 42, 214
- Turing, A. M. 1937, Proceedings of the London Mathematical Society, s2-42, 230
- van de Hulst, H. C. 1945, Nederlandsch Tijdschrift voor Natuurkunde, 11, 210
- van den Broek d'Obrenan, C., Galliano, F., Minton, J., Botev, V., & Wu, R. 2023, Journal of Interdisciplinary Methodologies and Issues in Science (JIMIS, 11, 9388
- Walker, H. J. 2000, Astronomy and Geophysics, 41, 10
- Weinreb, S., Barrett, A. H., Meeks, M. L., & Henry, J. C. 1963, Nature, 200, 829
- Werner, M. W., Roellig, T. L., Low, F. J., et al. 2004, ApJS, 154, 1
- Williams, T. G., Sun, J., Barnes, A. T., et al. 2022, ApJ, 941, L27
- Wolfire, M. G., Vallini, L., & Chevance, M. 2022, ARA&A, 60, 247
- Young, E. T., Becklin, E. E., Marcum, P. M., et al. 2012, ApJ, 749, L17

F. Galliano (CEA Paris-Saclay)