

# ISYA 2024 – THE INTERSTELLAR MEDIUM (ISM): LECTURE 2. Atoms, Molecules & Dust

Frédéric GALLIANO

CEA Paris-Saclay, France

September 29, 2024

© 🛈 🕥 CC BY-SA 4.0

#### ATOMS & IONS

- A reminder of atomic physics
- The neutral gas
- The ionized gas

#### ATOMS & IONS

- A reminder of atomic physics
- The neutral gas
- The ionized gas

#### 2 MOLECULES IN SPACE

- The quantum molecular modes
- Molecular bonding
- Astrophysical molecular lines and features

#### 1) ATOMS & IONS

- A reminder of atomic physics
- The neutral gas
- The ionized gas

#### MOLECULES IN SPACE

- The quantum molecular modes
- Molecular bonding
- Astrophysical molecular lines and features

#### INTERSTELLAR DUST GRAINS

- Optical properties
- Grain heating & cooling
- State-of-the-art dust models

#### 1) ATOMS & IONS

- A reminder of atomic physics
- The neutral gas
- The ionized gas

#### MOLECULES IN SPACE

- The quantum molecular modes
- Molecular bonding
- Astrophysical molecular lines and features

#### INTERSTELLAR DUST GRAINS

- Optical properties
- Grain heating & cooling
- State-of-the-art dust models

#### 4 CONCLUSION

- Take-away points
- References

#### 1) ATOMS & IONS

- A reminder of atomic physics
- The neutral gas
- The ionized gas

#### 2 MOLECULES IN SPACE

- The quantum molecular modes
- Molecular bonding
- Astrophysical molecular lines and features

#### INTERSTELLAR DUST GRAINS

- Optical properties
- Grain heating & cooling
- State-of-the-art dust models

- Take-away points
- References

The Schrödinger equation applied to the H atom (see Bransden & Joachain 1983)

The Schrödinger equation applied to the H atom (see Bransden & Joachain 1983)

Assumptions:  $m_e/m_p \simeq 5 \times 10^{-4} \Rightarrow$  fixed nucleus & spherically symmetric potential.

The Schrödinger equation applied to the H atom (see Bransden & Joachain 1983)

Assumptions:  $m_e/m_p \simeq 5 \times 10^{-4} \Rightarrow$  fixed nucleus & spherically symmetric potential.



The Schrödinger equation applied to the H atom (see Bransden & Joachain 1983) Assumptions:  $m_e/m_p \simeq 5 \times 10^{-4} \Rightarrow$  fixed nucleus & spherically symmetric potential.

$$\overbrace{\begin{pmatrix} -\frac{\hbar^2}{2m_e} \overrightarrow{\nabla}^2 & -\frac{e^2}{4\pi\epsilon_0 r} \\ \\ kinetic energy & Coulomb potential \end{pmatrix}}$$

The Schrödinger equation applied to the H atom (see Bransden & Joachain 1983)

Assumptions:  $m_e/m_p \simeq 5 \times 10^{-4} \Rightarrow$  fixed nucleus & spherically symmetric potential.



The Schrödinger equation applied to the H atom (see Bransden & Joachain 1983)

Assumptions:  $m_e/m_p \simeq 5 \times 10^{-4} \Rightarrow$  fixed nucleus & spherically symmetric potential.



The Schrödinger equation applied to the H atom (see Bransden & Joachain 1983)

Assumptions:  $m_e/m_p \simeq 5 \times 10^{-4} \Rightarrow$  fixed nucleus & spherically symmetric potential.



**Solution: 1** Eigenvalues of E *i.e. energy levels*:  $E_n = -\frac{m_e e^4}{8h^2 \epsilon_0^2} \frac{1}{n^2}$ 

The Schrödinger equation applied to the H atom (see Bransden & Joachain 1983)

Assumptions:  $m_e/m_p \simeq 5 \times 10^{-4} \Rightarrow$  fixed nucleus & spherically symmetric potential.



**Solution:** 1 Eigenvalues of E *i.e. energy levels*:  $E_n = -\frac{m_e e^4}{8h^2 \epsilon_0^2} \frac{1}{n^2} \Rightarrow \left[ E_n = -\frac{13.6 \text{ eV}}{n^2} \right]$ 

The Schrödinger equation applied to the H atom (see Bransden & Joachain 1983)

Assumptions:  $m_e/m_p \simeq 5 \times 10^{-4} \Rightarrow$  fixed nucleus & spherically symmetric potential.



**Solution:** Eigenvalues of E *i.e. energy levels*:  $E_n = -\frac{m_e e^4}{8h^2 \epsilon_0^2} \frac{1}{n^2} \Rightarrow \begin{bmatrix} E_n = -\frac{13.6 \text{ eV}}{n^2} \end{bmatrix}$ 

2 A set of wave functions corresponding to each one of the possible energy levels  $\rightarrow$  combination of spherical harmonic functions.

The Schrödinger equation applied to the H atom (see Bransden & Joachain 1983)

Assumptions:  $m_e/m_p \simeq 5 \times 10^{-4} \Rightarrow$  fixed nucleus & spherically symmetric potential.



**Solution:** I Eigenvalues of E *i.e. energy levels*:  $E_n = -\frac{m_e e^4}{8h^2 \epsilon_0^2} \frac{1}{n^2} \Rightarrow \boxed{E_n = -\frac{13.6 \text{ eV}}{n^2}}.$ 

2 A set of wave functions corresponding to each one of the possible energy levels  $\rightarrow$  combination of spherical harmonic functions.

Quantum numbers characterizing each individual solution

The Schrödinger equation applied to the H atom (see Bransden & Joachain 1983)

Assumptions:  $m_e/m_p \simeq 5 \times 10^{-4} \Rightarrow$  fixed nucleus & spherically symmetric potential.



**Solution:** I Eigenvalues of E *i.e. energy levels*:  $E_n = -\frac{m_e e^4}{8h^2 \epsilon_0^2} \frac{1}{n^2} \Rightarrow \left[ E_n = -\frac{13.6 \text{ eV}}{n^2} \right].$ 

2 A set of wave functions corresponding to each one of the possible energy levels  $\rightarrow$  combination of *spherical harmonic* functions.

#### Quantum numbers characterizing each individual solution

| Name      | Symbol | Values              | Signification                                   |
|-----------|--------|---------------------|-------------------------------------------------|
| Principal | n      | $1,2,\ldots,\infty$ | Energy $(E \propto 1/n^2)$ or size of the shell |

The Schrödinger equation applied to the H atom (see Bransden & Joachain 1983)

Assumptions:  $m_e/m_p \simeq 5 \times 10^{-4} \Rightarrow$  fixed nucleus & spherically symmetric potential.



**Solution:** I Eigenvalues of E *i.e. energy levels*:  $E_n = -\frac{m_e e^4}{8h^2 \epsilon_0^2} \frac{1}{n^2} \Rightarrow \left[ E_n = -\frac{13.6 \text{ eV}}{n^2} \right].$ 

2 A set of wave functions corresponding to each one of the possible energy levels  $\rightarrow$  combination of *spherical harmonic* functions.

#### Quantum numbers characterizing each individual solution

| Name      | Symbol | Values              | Signification                                         |
|-----------|--------|---------------------|-------------------------------------------------------|
| Principal | n      | $1,2,\ldots,\infty$ | Energy $({\it E} \propto 1/n^2)$ or size of the shell |
| Azimuthal | I      | $0, 1, \ldots, n-1$ | Angular momentum ( $L \propto \sqrt{l(l+1)})$         |

The Schrödinger equation applied to the H atom (see Bransden & Joachain 1983)

Assumptions:  $m_e/m_p \simeq 5 \times 10^{-4} \Rightarrow$  fixed nucleus & spherically symmetric potential.



**Solution:** I Eigenvalues of E *i.e. energy levels*:  $E_n = -\frac{m_e e^4}{8h^2 \epsilon_0^2} \frac{1}{n^2} \Rightarrow \left[ E_n = -\frac{13.6 \text{ eV}}{n^2} \right].$ 

2 A set of wave functions corresponding to each one of the possible energy levels  $\rightarrow$  combination of *spherical harmonic* functions.

#### Quantum numbers characterizing each individual solution

| Name                  | Symbol              | Values                                    | Signification                                                                                |
|-----------------------|---------------------|-------------------------------------------|----------------------------------------------------------------------------------------------|
| Principal             | n                   | $1,2,\ldots,\infty$                       | Energy ( $E \propto 1/n^2$ ) or size of the shell                                            |
| Azimuthal<br>Magnetic | l<br>m <sub>l</sub> | $0, 1, \dots, n-1$<br>$l, l-1, \dots, -l$ | Angular momentum $(L \propto \sqrt{l(l+1)})$<br>Orientation (spherical harmonic combination) |

F. Galliano (CEA Paris-Saclay)

The Schrödinger equation applied to the H atom (see Bransden & Joachain 1983)

Assumptions:  $m_e/m_p \simeq 5 \times 10^{-4} \Rightarrow$  fixed nucleus & spherically symmetric potential.



**Solution:** I Eigenvalues of E *i.e. energy levels*: 
$$E_n = -\frac{m_e e^4}{8h^2 \epsilon_0^2} \frac{1}{n^2} \Rightarrow \left[ E_n = -\frac{13.6 \text{ eV}}{n^2} \right].$$

2 A set of wave functions corresponding to each one of the possible energy levels  $\rightarrow$  combination of *spherical harmonic* functions.

#### Quantum numbers characterizing each individual solution

| Name      | Symbol         | Values               | Signification                                                 |
|-----------|----------------|----------------------|---------------------------------------------------------------|
| Principal | n              | $1,2,\ldots,\infty$  | Energy ( ${\it E} \propto 1/{\it n}^2$ ) or size of the shell |
| Azimuthal | 1              | $0, 1, \ldots, n-1$  | Angular momentum ( $L \propto \sqrt{I(I+1)}$ )                |
| Magnetic  | $m_l$          | $I, I-1, \ldots, -I$ | Orientation (spherical harmonic combination)                  |
| Spin      | m <sub>s</sub> | +1/2, -1/2           | Magnetic moment (spin direction)                              |

F. Galliano (CEA Paris-Saclay)

At a given energy  $(n) \rightarrow$  different values of the angular momentum (I).

At a given energy  $(n) \rightarrow$  different values of the angular momentum (I).



#### mi=0

Credit: surfaces corresponding to 90 % probability presence of the electron (UC Davis Chemwiki).

F. Galliano (CEA Paris-Saclay)

l=0 (s)

ISM lecture 2 (ISYA 2024, Algiers)

At a given energy  $(n) \rightarrow$  different values of the angular momentum (I).





Credit: surfaces corresponding to 90 % probability presence of the electron (UC Davis Chemwiki).

F. Galliano (CEA Paris-Saclay)

l=0 (s)

l=1 (p)

ISM lecture 2 (ISYA 2024, Algiers)

At a given energy  $(n) \rightarrow \text{different values of the angular momentum } (l)$ .





Credit: surfaces corresponding to 90 % probability presence of the electron (UC Davis Chemwiki).

F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)

At a given energy  $(n) \rightarrow \text{different values of the angular momentum } (l)$ .



Credit: surfaces corresponding to 90 % probability presence of the electron (UC Davis Chemwiki).

Atoms | The Gross Structure of the H Atom: Resonant Lines



Atoms | The Gross Structure of the H Atom: Resonant Lines



Atoms | The Gross Structure of the H Atom: Resonant Lines



## Atoms | The Gross Structure of the H Atom: Resonant Lines



## Atoms | The Gross Structure of the H Atom: Resonant Lines



September 29, 2024

6 / 72

## Atoms | The Gross Structure of the H Atom: Resonant Lines



Atoms | The Gross Structure of the H Atom: Resonant Lines



6 / 72

Atoms | The Gross Structure of the H Atom: Resonant Lines


## **Gross structure**

V(r)∝1/r

n=2



# **Gross structure**

V(r)∝1/r



## **Gross structure**

V(r)∝1/r





## **Gross structure**

V(r)∝1/r





















• Other atoms  $\rightarrow$  the different orbitals have the same characteristics as for H.

- Other atoms  $\rightarrow$  the different orbitals have the same characteristics as for H.
- The lowest energy levels are filled first.

- Other atoms  $\rightarrow$  the different orbitals have the same characteristics as for H.
- The lowest energy levels are filled first.
- Pauli exclusion principle  $\rightarrow$  no more than 2 electrons per *I*, with antiparallel spins:  $\uparrow\downarrow$ .

- Other atoms → the different orbitals have the same characteristics as for H.
- The lowest energy levels are filled first.
- Pauli exclusion principle  $\rightarrow$  no more than 2 electrons per *I*, with antiparallel spins:  $\uparrow\downarrow$ .



- Other atoms → the different orbitals have the same characteristics as for H.
- The lowest energy levels are filled first.
- Pauli exclusion principle  $\rightarrow$  no more than 2 electrons per *I*, with antiparallel spins:  $\uparrow\downarrow$ .



### Filling the orbitals

- Other atoms → the different orbitals have the same characteristics as for H.
- The lowest energy levels are filled first.
- Pauli exclusion principle → no more than 2 electrons per I, with antiparallel spins: ↑↓.





 $m_s = +\frac{1}{2}$ 



### Filling the orbitals

- Other atoms → the different orbitals have the same characteristics as for H.
- The lowest energy levels are filled first.
- Pauli exclusion principle → no more than 2 electrons per I, with antiparallel spins: ↑↓.





 $m_s = +\frac{1}{2}$ 



### Filling the orbitals

- Other atoms → the different orbitals have the same characteristics as for H.
- The lowest energy levels are filled first.
- Pauli exclusion principle → no more than 2 electrons per I, with antiparallel spins: ↑↓.



#### Noble gas





### Filling the orbitals

- Other atoms → the different orbitals have the same characteristics as for H.
- The lowest energy levels are filled first.
- Pauli exclusion principle → no more than 2 electrons per I, with antiparallel spins: ↑↓.



#### Noble gas





### Filling the orbitals

- Other atoms → the different orbitals have the same characteristics as for H.
- The lowest energy levels are filled first.
- Pauli exclusion principle  $\rightarrow$  no more than 2 electrons per *I*, with antiparallel spins:  $\uparrow\downarrow$ .



## Noble gas Alkali metal Alkaline earth metal





### Filling the orbitals

- Other atoms → the different orbitals have the same characteristics as for H.
- The lowest energy levels are filled first.
- Pauli exclusion principle  $\rightarrow$  no more than 2 electrons per *I*, with antiparallel spins:  $\uparrow\downarrow$ .



## Noble gas Alkali metal Alkaline earth metal





### Filling the orbitals

- Other atoms → the different orbitals have the same characteristics as for H.
- The lowest energy levels are filled first.
- Pauli exclusion principle  $\rightarrow$  no more than 2 electrons per *I*, with antiparallel spins:  $\uparrow\downarrow$ .



Noble gas Alkali metal Alkaline earth metal Non metal







### Filling the orbitals

- Other atoms → the different orbitals have the same characteristics as for H.
- The lowest energy levels are filled first.
- Pauli exclusion principle  $\rightarrow$  no more than 2 electrons per *I*, with antiparallel spins:  $\uparrow\downarrow$ .



Noble gas Alkali metal Alkaline earth metal Non metal







### Filling the orbitals

- Other atoms → the different orbitals have the same characteristics as for H.
- The lowest energy levels are filled first.
- Pauli exclusion principle  $\rightarrow$  no more than 2 electrons per *I*, with antiparallel spins:  $\uparrow\downarrow$ .



Noble gas Alkali metal Alkaline earth metal Non metal Poor metal



| [He]2s <sup>2</sup> 2p <sup>3</sup> | [He]2s <sup>1</sup> 2p <sup>1</sup> | [He]2s <sup>1</sup> 2p <sup>1</sup> | [He]2s <sup>1</sup> 2p <sup>4</sup> | [He]2s*2p* | [He]2s <sup>2</sup> 2p <sup>4</sup> |
|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|------------|-------------------------------------|
| Z=5                                 | Z=6                                 | Z=7                                 | Z=8                                 | Z=9        | Z=10                                |
| В                                   | С                                   | N                                   | 0                                   | F          | Ne                                  |
| Boron                               | Carbon                              | Nitrogen                            | Oxygen                              | Fluorine   | Neon                                |
| A=10.81                             | A=12.01                             | A=14.01                             | A=16.00                             | A=19.00    | A=20.18                             |
| [Ne]3s'3p'                          | [Ne]35'3p'                          | [Ne]3s'3p'                          | [Ne]3s'3p'                          | [Ne]3s'3p' | [Ne]3s*3p*                          |
| Z=13                                | Z=14                                | Z=15                                | Z=16                                | Z=17       | Z=18                                |
| A                                   | Si                                  | Ρ                                   | S                                   | CI         | Ar                                  |
| Aluminium                           | Silicon                             | Phosphorus                          | Sulfur                              | Chlorine   | Argon                               |
| A=26.98                             | A=28.09                             | A=30.97                             | A=32.06                             | A=35.45    | A=39.95                             |



September 29, 2024



### Filling the orbitals

- Other atoms → the different orbitals have the same characteristics as for H.
- The lowest energy levels are filled first.
- Pauli exclusion principle  $\rightarrow$  no more than 2 electrons per *I*, with antiparallel spins:  $\uparrow\downarrow$ .



Noble gas Alkali metal Alkaline earth metal Non metal Poor metal



| [He]2s <sup>2</sup> 2p <sup>1</sup> | [He]2s <sup>1</sup> 2p <sup>1</sup> | [He]2s <sup>1</sup> 2p <sup>1</sup> | [He]2s <sup>1</sup> 2p <sup>4</sup> | [He]2s*2p*            | [He]2s <sup>1</sup> 2p <sup>1</sup> |
|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-----------------------|-------------------------------------|
| Z=5                                 | Z=6                                 | Z=7                                 | Z=8                                 | Z=9                   | Z=10                                |
| B                                   | С                                   | N                                   | 0                                   | F                     | Ne                                  |
| Boron                               | Carbon                              | Nitrogen                            | Oxygen                              | Fluorine              | Neon                                |
| A=10.81                             | A=12.01                             | A=14.01                             | A=16.00                             | A=19.00               | A=20.18                             |
| [Ne]3s'3p'                          | [Ne]3s'3p'                          | <sup>[Ne]35'3p'</sup>               | [Ne]35'3p'                          | <sup>[Ne]3s'3p'</sup> | [Ne]3s'3p*                          |
| Z=13                                | Z=14                                | Z=15                                | Z=16                                | Z=17                  | Z=18                                |
| A                                   | Si                                  | Ρ                                   | S                                   | C                     | Ar                                  |
| Aluminium                           | Silicon                             | Phosphorus                          | Sulfur                              | Chlorine              | Argon                               |
| A=26.98                             | A=28.09                             | A=30.97                             | A=32.06                             | A=35.45               | A=39.95                             |





ISM lecture 2 (ISYA 2024, Algiers)

Energy

4p

45

3d

3p

### Filling the orbitals

n=1

n=2

n=3

n=4

- Other atoms  $\rightarrow$  the different orbitals have the same characteristics as for H.
- ٠
- electrons per *I*, with antiparallel spins:  $\uparrow\downarrow$ .








# Atoms | First Ionization Potentials & Electron Affinity



#### Atoms | First Ionization Potentials & Electron Affinity



#### Atoms | First Ionization Potentials & Electron Affinity













|                                                    | Selection rules                       |  |
|----------------------------------------------------|---------------------------------------|--|
|                                                    |                                       |  |
|                                                    |                                       |  |
|                                                    |                                       |  |
|                                                    |                                       |  |
|                                                    |                                       |  |
|                                                    |                                       |  |
|                                                    |                                       |  |
| 6                                                  | · · · · · · · · · · · · · · · · · · · |  |
| Spontaneous emission rates (Einstein coefficients) |                                       |  |
|                                                    |                                       |  |

| Resonance lines                               |                                  |               |
|-----------------------------------------------|----------------------------------|---------------|
| Electric dipole                               |                                  |               |
|                                               | Selection rules                  |               |
| $\Delta J=0,\pm 1 \; (0 \nleftrightarrow 0)$  |                                  |               |
| $\Delta l = \pm 1$ (parity change)            |                                  |               |
| $\Delta L = 0, \pm 1 \ (0 \leftrightarrow 0)$ |                                  |               |
| $\Delta S = 0$                                |                                  |               |
| Spon                                          | taneous emission rates (Einstein | coefficients) |
|                                               |                                  |               |

| Resonance lines                                    |                 |  |
|----------------------------------------------------|-----------------|--|
| Electric dipole                                    |                 |  |
|                                                    | Selection rules |  |
| $\Delta J=0,\pm 1 \ (0 \nleftrightarrow 0)$        |                 |  |
| $\Delta l = \pm 1 \ (	ext{parity change})$         |                 |  |
| $\Delta n$ arbitrary                               |                 |  |
| $\Delta L = 0, \pm 1 \ (0 \nleftrightarrow 0)$     |                 |  |
| $\Delta S = 0$                                     |                 |  |
| Spontaneous emission rates (Einstein coefficients) |                 |  |
| $A_{ m res} \simeq 10^5 - 10^9 \; { m s}^{-1}$     |                 |  |

| Resonance lines                                    | Intercombination lines                              |  |
|----------------------------------------------------|-----------------------------------------------------|--|
| Electric dipole                                    | Electric quadrupole                                 |  |
|                                                    | Selection rules                                     |  |
| $\Delta J = 0, \pm 1 \; (0 \nleftrightarrow 0)$    | $\Delta J=0,\pm 1,\pm 2 \ (0 \nleftrightarrow 0,$   |  |
|                                                    | $1/2 \nleftrightarrow 1/2, \ 0 \nleftrightarrow 1)$ |  |
| $\Delta l = \pm 1$                                 | $\Delta l=0,\pm2$                                   |  |
| (parity change)                                    | (no parity change)                                  |  |
| $\Delta n$ arbitrary                               | $\Delta n$ arbitrary                                |  |
| $\Delta L = 0, \pm 1 \; (0 \nleftrightarrow 0)$    | $\Delta L=0,\pm1,\pm2$                              |  |
|                                                    | $(0 \nleftrightarrow 0, \ 0 \nleftrightarrow 1)$    |  |
| $\Delta S=0$                                       | $\Delta S = 0$                                      |  |
| Spontaneous emission rates (Einstein coefficients) |                                                     |  |
| $A_{ m res} \simeq 10^5 - 10^9 \; { m s}^{-1}$     |                                                     |  |

| Resonance lines                                    | Intercombination lines                                           |  |
|----------------------------------------------------|------------------------------------------------------------------|--|
| Electric dipole                                    | Electric quadrupole                                              |  |
|                                                    | Selection rules                                                  |  |
| $\Delta J = 0, \pm 1 \; (0 \nleftrightarrow 0)$    | $\Delta J=0,\pm1,\pm2$ (0 $\nleftrightarrow$ 0,                  |  |
|                                                    | $1/2 \nleftrightarrow 1/2, \ 0 \nleftrightarrow 1)$              |  |
| $\Delta l = \pm 1$                                 | $\Delta l=0,\pm2$                                                |  |
| (parity change)                                    | (no parity change)                                               |  |
| $\Delta n$ arbitrary                               | $\Delta n$ arbitrary                                             |  |
| $\Delta L = 0, \pm 1 \; (0 \nleftrightarrow 0)$    | $\Delta L=0,\pm1,\pm2$                                           |  |
|                                                    | $(0 \nleftrightarrow 0, \ 0 \nleftrightarrow 1)$                 |  |
| $\Delta S=0$                                       | $\Delta S = 0$                                                   |  |
| Spontaneous emission rates (Einstein coefficients) |                                                                  |  |
| $A_{ m res} \simeq 10^5 - 10^9 \; { m s}^{-1}$     | $A_{ m int}\simeq lpha^2 A_{ m res}\simeq 10^1-10^5~{ m s}^{-1}$ |  |

| Resonance lines                                    | Intercombination lines                                           |  |
|----------------------------------------------------|------------------------------------------------------------------|--|
| Electric dipole                                    | Electric quadrupole                                              |  |
|                                                    | Selection rules                                                  |  |
| $\Delta J = 0, \pm 1 \; (0 \nleftrightarrow 0)$    | $\Delta J=0,\pm 1,\pm 2 \ (0 \nleftrightarrow 0,$                |  |
|                                                    | $1/2 \nleftrightarrow 1/2, \ 0 \nleftrightarrow 1)$              |  |
| $\Delta l = \pm 1$                                 | $\Delta l=0,\pm2$                                                |  |
| (parity change)                                    | (no parity change)                                               |  |
| $\Delta n$ arbitrary                               | $\Delta n$ arbitrary                                             |  |
| $\Delta L = 0, \pm 1 \; (0 \nleftrightarrow 0)$    | $\Delta L=0,\pm1,\pm2$                                           |  |
|                                                    | $(0 \nleftrightarrow 0, \ 0 \nleftrightarrow 1)$                 |  |
| $\Delta S=0$                                       | $\Delta S = 0$                                                   |  |
| Spontaneous emission rates (Einstein coefficients) |                                                                  |  |
| $A_{ m res} \simeq 10^5 - 10^9 \; { m s}^{-1}$     | $A_{ m int}\simeq lpha^2 A_{ m res}\simeq 10^1-10^5~{ m s}^{-1}$ |  |

Fine-structure constant: 
$$lpha \equiv rac{e^2}{4\pi\epsilon_0\hbar c} \simeq rac{1}{137}$$
 (dimensionless).

| Resonance lines                                    | Intercombination lines                                           | Forbidden lines                             |
|----------------------------------------------------|------------------------------------------------------------------|---------------------------------------------|
| Electric dipole                                    | Electric quadrupole                                              | Magnetic dipole                             |
|                                                    | Selection rules                                                  |                                             |
| $\Delta J=0,\pm 1 \; (0 \nleftrightarrow 0)$       | $\Delta J=0,\pm 1,\pm 2 \ (0 \nleftrightarrow 0,$                | $\Delta J=0,\pm 1 \ (0 \nleftrightarrow 0)$ |
|                                                    | $1/2 \nleftrightarrow 1/2, \ 0 \nleftrightarrow 1)$              |                                             |
| $\Delta l=\pm 1$                                   | $\Delta l=0,\pm2$                                                | $\Delta I = 0$                              |
| (parity change)                                    | (no parity change)                                               |                                             |
| $\Delta n$ arbitrary                               | $\Delta n$ arbitrary                                             | $\Delta n = 0$                              |
| $\Delta L = 0, \pm 1 \; (0 \nleftrightarrow 0)$    | $\Delta L=0,\pm 1,\pm 2$                                         | $\Delta L = 0$                              |
|                                                    | $(0 \nleftrightarrow 0, \ 0 \nleftrightarrow 1)$                 |                                             |
| $\Delta S=0$                                       | $\Delta S=0$                                                     | $\Delta S=0$                                |
| Spontaneous emission rates (Einstein coefficients) |                                                                  |                                             |
| $A_{ m res} \simeq 10^5 - 10^9 \; { m s}^{-1}$     | $A_{ m int}\simeq lpha^2 A_{ m res}\simeq 10^1-10^5~{ m s}^{-1}$ |                                             |

Fine-structure constant: 
$$lpha\equivrac{e^2}{4\pi\epsilon_0\hbar c}\simeqrac{1}{137}$$
 (dimensionless).

| Resonance lines                                    | Intercombination lines                                           | Forbidden lines                                                  |
|----------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| Electric dipole                                    | Electric quadrupole                                              | Magnetic dipole                                                  |
|                                                    | Selection rules                                                  |                                                                  |
| $\Delta J = 0, \pm 1 \; (0 \nleftrightarrow 0)$    | $\Delta J=0,\pm 1,\pm 2$ (0 $\nleftrightarrow$ 0,                | $\Delta J=0,\pm 1 \ (0 \nleftrightarrow 0)$                      |
|                                                    | $1/2 \nleftrightarrow 1/2, \ 0 \nleftrightarrow 1)$              |                                                                  |
| $\Delta l = \pm 1$                                 | $\Delta l=0,\pm 2$                                               | $\Delta l = 0$                                                   |
| (parity change)                                    | (no parity change)                                               |                                                                  |
| $\Delta n$ arbitrary                               | $\Delta n$ arbitrary                                             | $\Delta n = 0$                                                   |
| $\Delta L = 0, \pm 1 \; (0 \nleftrightarrow 0)$    | $\Delta L=0,\pm1,\pm2$                                           | $\Delta L = 0$                                                   |
|                                                    | $(0 \nleftrightarrow 0, \ 0 \nleftrightarrow 1)$                 |                                                                  |
| $\Delta S=0$                                       | $\Delta S=0$                                                     | $\Delta S=0$                                                     |
| Spontaneous emission rates (Einstein coefficients) |                                                                  |                                                                  |
| $A_{ m res} \simeq 10^5 - 10^9 \; { m s}^{-1}$     | $A_{ m int}\simeq lpha^2 A_{ m res}\simeq 10^1-10^5~{ m s}^{-1}$ | $A_{ m for}\simeq lpha^4 A_{ m res}\simeq 10^{-4}-1~{ m s}^{-1}$ |

Fine-structure constant: 
$$lpha\equivrac{e^2}{4\pi\epsilon_0\hbar c}\simeqrac{1}{137}$$
 (dimensionless).

| Resonance lines                                    | Intercombination lines                                           | Forbidden lines                                                  |
|----------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| Electric dipole                                    | Electric quadrupole                                              | Magnetic dipole                                                  |
|                                                    | Selection rules                                                  |                                                                  |
| $\Delta J = 0, \pm 1 \; (0 \nleftrightarrow 0)$    | $\Delta J=0,\pm 1,\pm 2$ (0 $\nleftrightarrow$ 0,                | $\Delta J=0,\pm 1 \ (0 \nleftrightarrow 0)$                      |
|                                                    | $1/2 \nleftrightarrow 1/2, \ 0 \nleftrightarrow 1)$              |                                                                  |
| $\Delta l = \pm 1$                                 | $\Delta l=0,\pm 2$                                               | $\Delta l = 0$                                                   |
| (parity change)                                    | (no parity change)                                               |                                                                  |
| $\Delta n$ arbitrary                               | $\Delta n$ arbitrary                                             | $\Delta n = 0$                                                   |
| $\Delta L = 0, \pm 1 \; (0 \nleftrightarrow 0)$    | $\Delta L=0,\pm 1,\pm 2$                                         | $\Delta L = 0$                                                   |
|                                                    | $(0 \nleftrightarrow 0, \ 0 \nleftrightarrow 1)$                 |                                                                  |
| $\Delta S=0$                                       | $\Delta S=0$                                                     | $\Delta S=0$                                                     |
| Spontaneous emission rates (Einstein coefficients) |                                                                  |                                                                  |
| $A_{ m res} \simeq 10^{5} - 10^{9} \; { m s}^{-1}$ | $A_{ m int}\simeq lpha^2 A_{ m res}\simeq 10^1-10^5~{ m s}^{-1}$ | $A_{ m for}\simeq lpha^4 A_{ m res}\simeq 10^{-4}-1~{ m s}^{-1}$ |

Credit: adapted from Dopita & Sutherland (2003, Chap. 2) and Tielens (2005, Chap. 2).

Fine-structure constant: 
$$lpha \equiv rac{e^2}{4\pi\epsilon_0 \hbar c} \simeq rac{1}{137}$$
 (dimensionless).

Spectroscopic notation

| Resonance lines                                    | Intercombination lines                                           | Forbidden lines                                                  |
|----------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| Electric dipole                                    | Electric quadrupole                                              | Magnetic dipole                                                  |
|                                                    | Selection rules                                                  |                                                                  |
| $\Delta J=0,\pm 1 \; (0 \nleftrightarrow 0)$       | $\Delta J=0,\pm 1,\pm 2 \ (0 \nleftrightarrow 0,$                | $\Delta J=0,\pm 1 \; (0 \nleftrightarrow 0)$                     |
|                                                    | $1/2 \nleftrightarrow 1/2, \ 0 \nleftrightarrow 1)$              |                                                                  |
| $\Delta l = \pm 1$                                 | $\Delta l=0,\pm 2$                                               | $\Delta l = 0$                                                   |
| (parity change)                                    | (no parity change)                                               |                                                                  |
| $\Delta n$ arbitrary                               | $\Delta n$ arbitrary                                             | $\Delta n = 0$                                                   |
| $\Delta L = 0, \pm 1 \; (0 \nleftrightarrow 0)$    | $\Delta L=0,\pm 1,\pm 2$                                         | $\Delta L = 0$                                                   |
|                                                    | $(0 \nleftrightarrow 0, \ 0 \nleftrightarrow 1)$                 |                                                                  |
| $\Delta S=0$                                       | $\Delta S=0$                                                     | $\Delta S=0$                                                     |
| Spontaneous emission rates (Einstein coefficients) |                                                                  |                                                                  |
| $A_{ m res} \simeq 10^5 - 10^9 \; { m s}^{-1}$     | $A_{ m int}\simeq lpha^2 A_{ m res}\simeq 10^1-10^5~{ m s}^{-1}$ | $A_{ m for}\simeq lpha^4 A_{ m res}\simeq 10^{-4}-1~{ m s}^{-1}$ |

Credit: adapted from Dopita & Sutherland (2003, Chap. 2) and Tielens (2005, Chap. 2).

Fine-structure constant: 
$$lpha \equiv rac{e^2}{4\pi\epsilon_0 \hbar c} \simeq rac{1}{137}$$
 (dimensionless).

#### Spectroscopic notation

 $\texttt{I} \quad \mathsf{Charge of species noted in roman numeral: CI \Leftrightarrow \mathsf{C}^0, \ \mathsf{CII} \Leftrightarrow \mathsf{C}^+, \ \mathsf{CIII} \Leftrightarrow \mathsf{C}^{2+}, \ \textit{etc.}$ 

| Resonance lines                                    | Intercombination lines                                           | Forbidden lines                                                  |
|----------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| Electric dipole                                    | Electric quadrupole                                              | Magnetic dipole                                                  |
|                                                    | Selection rules                                                  |                                                                  |
| $\Delta J=0,\pm 1 \; (0 \nleftrightarrow 0)$       | $\Delta J=0,\pm 1,\pm 2 \ (0 \nleftrightarrow 0,$                | $\Delta J=0,\pm 1 \; (0 \nleftrightarrow 0)$                     |
|                                                    | $1/2 \nleftrightarrow 1/2, \ 0 \nleftrightarrow 1)$              |                                                                  |
| $\Delta l = \pm 1$                                 | $\Delta l = 0, \pm 2$                                            | $\Delta l = 0$                                                   |
| (parity change)                                    | (no parity change)                                               |                                                                  |
| $\Delta n$ arbitrary                               | $\Delta n$ arbitrary                                             | $\Delta n = 0$                                                   |
| $\Delta L = 0, \pm 1 \; (0 \nleftrightarrow 0)$    | $\Delta L=0,\pm 1,\pm 2$                                         | $\Delta L = 0$                                                   |
|                                                    | $(0 \nleftrightarrow 0, \ 0 \nleftrightarrow 1)$                 |                                                                  |
| $\Delta S=0$                                       | $\Delta S = 0$                                                   | $\Delta S=0$                                                     |
| Spontaneous emission rates (Einstein coefficients) |                                                                  |                                                                  |
| $A_{ m res} \simeq 10^5 - 10^9 \; { m s}^{-1}$     | $A_{ m int}\simeq lpha^2 A_{ m res}\simeq 10^1-10^5~{ m s}^{-1}$ | $A_{ m for}\simeq lpha^4 A_{ m res}\simeq 10^{-4}-1~{ m s}^{-1}$ |

Credit: adapted from Dopita & Sutherland (2003, Chap. 2) and Tielens (2005, Chap. 2).

Fine-structure constant: 
$$lpha \equiv rac{{
m e}^2}{4\pi\epsilon_0 \hbar c} \simeq rac{1}{137}$$
 (dimensionless).

#### Spectroscopic notation

- 1 Charge of species noted in roman numeral:  $CI \Leftrightarrow C^0$ ,  $CII \Leftrightarrow C^+$ ,  $CIII \Leftrightarrow C^{2+}$ , *etc.*
- 2 Forbidden lines between square brackets: e.g. [CII]<sub>158μm</sub> (forbidden), but CII<sub>1335Å</sub> (allowed).







#### Transition energy

 $h\nu_{21}\equiv E_2-E_1.$ 



#### **Transition energy**

 $h\nu_{21}\equiv E_2-E_1.$ 

Statistical equilibrium

F. Galliano (CEA Paris-Saclay)





 $h\nu_{21}\equiv E_2-E_1.$ 





| Transition energy                                                                             |                                   |                                     |
|-----------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|
| $h u_{21}\equiv E_2-E_1.$                                                                     |                                   |                                     |
| Statistical equilibrium                                                                       |                                   |                                     |
| $\underbrace{n_1 n_{\text{coll}} \gamma_{12}(T \text{coll})}_{\text{collisional excitation}}$ |                                   | $[\mathrm{cm}^{-3}\mathrm{s}^{-1}]$ |
| E Colliano (CEA Baric Saclay)                                                                 | ISM locture 2 (ISVA 2024 Algiore) | Sontombor 20, 2024 12 / 72          |













12 / 72







F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)

September 29, 2024

12 / 72



F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)

September 29, 2024

12 / 72














Line intensity, for a two-level atom, in the optically-thin limit, with no external radiation

Line intensity, for a two-level atom, in the optically-thin limit, with no external radiation

 $\frac{\mathrm{d}P_{21}}{\mathrm{d}V} \, [\mathrm{W/cm^3}]$ 

power emitted per unit volume

Line intensity, for a two-level atom, in the optically-thin limit, with no external radiation

 $\frac{\mathrm{d}P_{21}}{\mathrm{d}V} \, [\mathrm{W/cm}^3] = \underbrace{n_2 \, [\mathrm{cm}^{-3}]}_{n_2 \, \mathrm{cm}^{-3}}$ 

power emitted per unit volume

number of excited atoms per unit volume

Line intensity, for a two-level atom, in the optically-thin limit, with no external radiation

 $\underbrace{\frac{dP_{21}}{dV} [W/cm^3]}_{\text{dW}} = \underbrace{n_2 [cm^{-3}]}_{\text{emission rate per all}} \times \underbrace{A_{21} [s^{-1}]}_{\text{emission rate per all}}$ 



power emitted per unit volume

number of excited atoms per unit volume

emission rate per atom

Line intensity, for a two-level atom, in the optically-thin limit, with no external radiation

 $\frac{\mathrm{d}P_{21}}{\mathrm{d}V} \left[ \mathrm{W/cm}^3 \right] = \underbrace{n_2 \left[ \mathrm{cm}^{-3} \right]}_{\mathbf{M}} \times \underbrace{A_{21} \left[ \mathrm{s}^{-1} \right]}_{\mathbf{M}} \times \underbrace{h\nu_{21} \left[ \mathrm{J} \right]}_{\mathbf{M}}$ 



power emitted per unit volume

number of excited atoms per unit volume

emission rate per atom

single photon energy

Line intensity, for a two-level atom, in the optically-thin limit, with no external radiation









power emitted per unit volume

number of excited atoms per unit volume

emission rate per atom

single photon energy

**Detailed balance** (equilibrium between a process and its reverse):  $\frac{\gamma_{12}}{\gamma_{21}} = \frac{g_2}{g_1} \exp\left(-\frac{h\nu_{21}}{kT}\right)$ .



Statistical equilibrium:  $n_1 n_{coll} \gamma_{12} = n_2 n_{coll} \gamma_{21} + n_2 A_{21}$ 



Statistical equilibrium: 
$$n_1 n_{\text{coll}} \gamma_{12} = n_2 n_{\text{coll}} \gamma_{21} + n_2 A_{21} \Rightarrow \frac{n_2}{n_1} = \frac{\gamma_{12}}{\gamma_{21}} \frac{1}{1 + \frac{A_{21}}{n_{\text{coll}} \gamma_{21}}}$$





Low-density cooling function



#### Low-density cooling function

If  $A_{21} \gg n_{\text{coll}} \gamma_{21}$  & posing  $n_1 = X_1 n_{\text{coll}}$ 



#### Low-density cooling function

If 
$$A_{21} \gg n_{\text{coll}}\gamma_{21}$$
 & posing  $n_1 = X_1 n_{\text{coll}} \rightarrow \frac{\mathrm{d}P_{21}}{\mathrm{d}V} \simeq n_{\text{coll}}^2 h \nu_{21} X_1 \frac{\gamma_{21}}{A_{21}} \frac{g_2}{g_1} \exp\left(-\frac{h \nu_{21}}{kT}\right)$ 



#### Low-density cooling function

If 
$$A_{21} \gg n_{\text{coll}}\gamma_{21}$$
 & posing  $n_1 = X_1 n_{\text{coll}} \rightarrow \frac{\mathrm{d}P_{21}}{\mathrm{d}V} \simeq n_{\text{coll}}^2 h \nu_{21} X_1 \frac{\gamma_{21}}{A_{21}} \frac{g_2}{g_1} \exp\left(-\frac{h\nu_{21}}{kT}\right) \equiv n_{\text{coll}}^2 \underbrace{\Lambda_{21}(T)}_{\text{cooling function}}$ 



#### Low-density cooling function

If 
$$A_{21} \gg n_{\text{coll}}\gamma_{21}$$
 & posing  $n_1 = X_1 n_{\text{coll}} \rightarrow \frac{\mathrm{d}P_{21}}{\mathrm{d}V} \simeq n_{\text{coll}}^2 h \nu_{21} X_1 \frac{\gamma_{21}}{A_{21}} \frac{g_2}{g_1} \exp\left(-\frac{h\nu_{21}}{kT}\right) \equiv n_{\text{coll}}^2 \underbrace{\Lambda_{21}(T)}_{\text{cooling function}}$ 

Line surface brightness:  $l_{21} = \frac{1}{4\pi} \int_{\text{sightline s}} \frac{dP_{21}}{dV} ds$ 



ISM lecture 2 (ISYA 2024, Algiers)

### Two line emissivity regimes

#### Two line emissivity regimes

Optically-thin & no external radiation  $\Rightarrow$  no  $J_{21}$ .

#### Two line emissivity regimes

Optically-thin & no external radiation  $\Rightarrow$  no  $J_{21}$ .

$$rac{n_2}{n_1} = rac{g_2}{g_1} rac{\exp\left(-rac{h
u_{21}}{kT}
ight)}{1+rac{n_{
m crit}}{n_{
m coll}}}.$$

#### Two line emissivity regimes

Optically-thin & no external radiation  $\Rightarrow$  no  $J_{21}$ .

$$rac{n_2}{n_1} = rac{g_2}{g_1} rac{\exp\left(-rac{h
u_{21}}{kT}
ight)}{1+rac{n_{
m crit}}{n_{
m coll}}}.$$
Critical density:  $\boxed{n_{
m crit}(T|{
m coll}) \equiv rac{A_{21}}{\gamma_{21}(T)}}.$ 

F. Galliano (CEA Paris-Saclay)

#### Two line emissivity regimes

Optically-thin & no external radiation  $\Rightarrow$  no  $J_{21}$ .

$$\frac{n_2}{n_1} = \frac{g_2}{g_1} \frac{\exp\left(-\frac{h\nu_{21}}{kT}\right)}{1 + \frac{n_{crit}}{n_{coll}}}.$$
  
Critical density: 
$$\boxed{n_{crit}(T|\text{coll}) \equiv \frac{A_{21}}{\gamma_{21}(T)}}.$$

F. Galliano (CEA Paris-Saclay)

#### Two line emissivity regimes

Optically-thin & no external radiation  $\Rightarrow$  no  $J_{21}$ .

$$rac{n_2}{n_1} = rac{g_2}{g_1} rac{\exp\left(-rac{h
u_{21}}{kT}
ight)}{1+rac{n_{
m crit}}{n_{
m coll}}}.$$

Critical density:

$$\boxed{n_{\rm crit}(T|{\rm coll})\equiv\frac{A_{21}}{\gamma_{21}(T)}}$$

Line emissivity, with  $\overline{\rho_{\text{line}} \simeq n_1 \, [\text{X}_{\text{line}}/\text{H}] \, m_{\text{H}}}$ :

$$\epsilon_{21} \quad = \quad h\nu_{21}\frac{n_2}{\rho_{\text{line}}}A_{21}$$

#### Two line emissivity regimes

Optically-thin & no external radiation  $\Rightarrow$  no  $J_{21}$ .

$$rac{n_2}{n_1} = rac{g_2}{g_1} rac{\exp\left(-rac{h
u_{21}}{kT}
ight)}{1+rac{n_{ ext{crit}}}{n_{ ext{crown}}}}.$$

Critical density:

$$T| ext{coll})\equivrac{\mathcal{A}_{21}}{\gamma_{21}(T)}$$

Line emissivity, with  $ho_{\rm line} \simeq n_1 \, [{\rm X}_{\rm line}/{\rm H}] \, m_{\rm H}$ :

n<sub>crit</sub> (

$$\begin{split} \epsilon_{21} &= h\nu_{21}\frac{n_2}{\rho_{\text{line}}}A_{21} \\ &= \frac{h\nu_{21}}{m_{\text{H}}}\left[\frac{\mathsf{X}_{\text{line}}}{\mathsf{H}}\right]\frac{g_2}{g_1}A_{21}\frac{\exp\left(-\frac{h\nu_{21}}{kT}\right)}{1+\frac{n_{\text{crit}}}{n_{\text{coll}}}}. \end{split}$$

#### Two line emissivity regimes

Optically-thin & no external radiation  $\Rightarrow$  no  $J_{21}$ .

$$rac{n_2}{n_1} = rac{g_2}{g_1} rac{\exp\left(-rac{h
u_{21}}{kT}
ight)}{1+rac{n_{ ext{crit}}}{n_{ ext{coll}}}}.$$

Critical density:

$$T|\mathsf{coll})\equivrac{A_{21}}{\gamma_{21}(T)}$$

Line emissivity, with  $ho_{\rm line} \simeq n_1 \, [{\rm X}_{\rm line}/{\rm H}] \, m_{\rm H}$ :

 $n_{\rm crit}$ 

$$\begin{split} \epsilon_{21} &= h\nu_{21}\frac{n_2}{\rho_{\text{line}}}A_{21} \\ &= \frac{h\nu_{21}}{m_{\text{H}}}\left[\frac{\mathsf{X}_{\text{line}}}{\mathsf{H}}\right]\frac{g_2}{g_1}A_{21}\frac{\exp\left(-\frac{h\nu_{21}}{kT}\right)}{1+\frac{n_{\text{crit}}}{n_{\text{coll}}}}. \end{split}$$

Two regimes:

#### Two line emissivity regimes

Optically-thin & no external radiation  $\Rightarrow$  no  $J_{21}$ .

$$\frac{n_2}{n_1} = \frac{g_2}{g_1} \frac{\exp\left(-\frac{h\nu_{21}}{kT}\right)}{1 + \frac{n_{\text{crit}}}{n_{\text{coll}}}}.$$

Critical density:  $n_{crit}$ 

$$\neg |\text{coll}
angle \equiv rac{A_{21}}{\gamma_{21}(T)}.$$

Line emissivity, with  $\overline{\rho_{\text{line}} \simeq n_1 \, [\text{X}_{\text{line}}/\text{H}] \, m_{\text{H}}}$ :

$$\begin{split} \epsilon_{21} &= h\nu_{21}\frac{n_2}{\rho_{\text{line}}}A_{21} \\ &= \frac{h\nu_{21}}{m_{\text{H}}}\left[\frac{\mathsf{X}_{\text{line}}}{\mathsf{H}}\right]\frac{g_2}{g_1}A_{21}\frac{\exp\left(-\frac{h\nu_{21}}{kT}\right)}{1+\frac{n_{\text{crit}}}{n_{\text{coll}}}}. \end{split}$$

#### Two regimes:

 $n_{coll} \gg n_{crit}$ : collisional de-excitation dominates  $\Rightarrow \simeq LTE$ .

#### Two line emissivity regimes

Optically-thin & no external radiation  $\Rightarrow$  no  $J_{21}$ .

$$\frac{n_2}{n_1} = \frac{g_2}{g_1} \frac{\exp\left(-\frac{h\nu_{21}}{kT}\right)}{1 + \frac{n_{\text{crit}}}{n_{\text{coll}}}}.$$

Critical density:  $n_{crit}$ 

$$F(\operatorname{coll}) \equiv \frac{A_{21}}{\gamma_{21}(T)}$$

Line emissivity, with  $\overline{\rho_{\text{line}} \simeq n_1 \, [\text{X}_{\text{line}}/\text{H}] \, m_{\text{H}}}$ :

$$\begin{split} \epsilon_{21} &= h\nu_{21}\frac{n_2}{\rho_{\text{line}}}A_{21} \\ &= \frac{h\nu_{21}}{m_{\text{H}}}\left[\frac{\mathsf{X}_{\text{line}}}{\mathsf{H}}\right]\frac{g_2}{g_1}A_{21}\frac{\exp\left(-\frac{h\nu_{21}}{kT}\right)}{1+\frac{n_{\text{crit}}}{n_{\text{coll}}}}. \end{split}$$

#### Two regimes:

 $n_{coll} \gg n_{crit}$ : collisional de-excitation dominates  $\Rightarrow \simeq LTE.$ 

 $n_{\rm coll} \ll n_{\rm crit}$ : spontaneous emission dominates  $\Rightarrow$  less emissive.

# Two line emissivity regimes Example: the [CII]<sub>158µm</sub> line in an HI cloud Optically-thin & no external radiation $\Rightarrow$ no $J_{21}$ . $rac{n_2}{n_1} = rac{g_2}{g_1} rac{\exp\left(-rac{h u_{21}}{kT} ight)}{1+rac{n_{ m crit}}{n_{ m crit}}}.$ Critical density: $n_{crit}(T|coll) \equiv \frac{A_{21}}{\gamma_{21}(T)}$ . Line emissivity, with $\rho_{\text{line}} \simeq n_1 [X_{\text{line}}/\text{H}] m_{\text{H}}$ : $\epsilon_{21} = h\nu_{21} - A_{21}$ $= \frac{h\nu_{21}}{m_{H}} \left[ \frac{\mathsf{X}_{\mathsf{line}}}{\mathsf{H}} \right] \frac{g_2}{\sigma_1} A_{21} \frac{\exp\left(-\frac{h\nu_{21}}{kT}\right)}{1 + n_{\mathsf{crit}}}.$ Two regimes: $n_{coll} \gg n_{crit}$ : collisional de-excitation dominates $\Rightarrow \simeq LTE.$ $n_{coll} \ll n_{crit}$ : spontaneous emission dominates

 $\mathcal{R}_{coll} \ll n_{crit}$ : spontaneous emission dom  $\Rightarrow$  less emissive.

#### Two line emissivity regimes

Optically-thin & no external radiation  $\Rightarrow$  no  $J_{21}$ .

$$\frac{n_2}{n_1} = \frac{g_2}{g_1} \frac{\exp\left(-\frac{h\nu_{21}}{kT}\right)}{1 + \frac{n_{\text{crit}}}{n_{\text{crit}}}}.$$

Critical density:

$$\Gamma | \text{coll} = rac{A_{21}}{\gamma_{21}(T)}$$

Line emissivity, with  $ho_{
m line} \simeq n_1 \left[ {
m X}_{
m line} / {
m H} 
ight] m_{
m H}$ :

n<sub>crit</sub>(

$$\begin{aligned} \epsilon_{21} &= h\nu_{21}\frac{n_2}{\rho_{\text{line}}}A_{21} \\ &= \frac{h\nu_{21}}{m_{\text{H}}}\left[\frac{\mathsf{X}_{\text{line}}}{\mathsf{H}}\right]\frac{g_2}{g_1}A_{21}\frac{\exp\left(-\frac{h\nu_{21}}{kT}\right)}{1+\frac{n_{\text{crit}}}{n_{\text{coll}}}}. \end{aligned}$$

#### Two regimes:

 $n_{coll} \gg n_{crit}$ : collisional de-excitation dominates  $\Rightarrow \simeq LTE$ .

 $n_{\rm coll} \ll n_{\rm crit}$ : spontaneous emission dominates  $\Rightarrow$  less emissive. Example: the  $[CII]_{158\mu m}$  line in an HI cloud

• 
$$n_{\rm coll}=n_{\rm H},\ m_{\rm line}=12m_{\rm H},\ \lambda_{21}=158\ \mu{\rm m}.$$

#### Two line emissivity regimes

Optically-thin & no external radiation  $\Rightarrow$  no  $J_{21}$ .

$$\frac{n_2}{n_1} = \frac{g_2}{g_1} \frac{\exp\left(-\frac{h\nu_{21}}{kT}\right)}{1+\frac{n_{\text{crit}}}{n_{\text{crit}}}}.$$

Critical density:

$$|\mathsf{coll}) \equiv \frac{A_{21}}{\gamma_{21}(T)}$$

Line emissivity, with  $\overline{\rho_{\text{line}} \simeq n_1 \, [\text{X}_{\text{line}}/\text{H}] \, m_{\text{H}}}$ :

n<sub>crit</sub>(

$$\begin{aligned} \epsilon_{21} &= h\nu_{21}\frac{n_2}{\rho_{\text{line}}}A_{21} \\ &= \frac{h\nu_{21}}{m_{\text{H}}}\left[\frac{\mathsf{X}_{\text{line}}}{\mathsf{H}}\right]\frac{g_2}{g_1}A_{21}\frac{\exp\left(-\frac{h\nu_{21}}{kT}\right)}{1+\frac{n_{\text{crit}}}{n_{\text{coll}}}}. \end{aligned}$$

#### Two regimes:

 $n_{coll} \gg n_{crit}$ : collisional de-excitation dominates  $\Rightarrow \simeq LTE.$ 

 $n_{\rm coll} \ll n_{\rm crit}$ : spontaneous emission dominates  $\Rightarrow$  less emissive.

#### September 29, 2024

#### Example: the $[CII]_{158\mu m}$ line in an HI cloud

- $n_{
  m coll}=n_{
  m H}$ ,  $m_{
  m line}=12m_{
  m H}$ ,  $\lambda_{21}=158~\mu{
  m m}$ .
- Atomic data  $\rightarrow A_{21} = 2.4 \times 10^{-6} \text{ s}^{-1}$ ,  $g_1 = 2, g_2 = 4, n_{crit}(\text{HI}) = 2993 \text{ cm}^{-3}$ .



F. Galliano (CEA Paris-Saclay)










Credit: [HI]<sub>21 cm</sub> map of the Milky Way HI4PI Collaboration et al. (2016).



Credit: [HI]<sub>21 cm</sub> map of the Milky Way HI4PI Collaboration et al. (2016).

Tracing neutral Hydrogen in galaxies (Kalberla & Kerp, 2009; Walter et al., 2008)



Credit: [HI]<sub>21 cm</sub> map of the Milky Way HI4PI Collaboration et al. (2016).

#### Tracing neutral Hydrogen in galaxies (Kalberla & Kerp, 2009; Walter et al., 2008)

Absorption by atmosphere & dust negligible. Self-absorbed towards dense regions.



Credit: [HI]<sub>21 cm</sub> map of the Milky Way HI4PI Collaboration et al. (2016).

#### Tracing neutral Hydrogen in galaxies (Kalberla & Kerp, 2009; Walter et al., 2008)

- Absorption by atmosphere & dust negligible. Self-absorbed towards dense regions.
- Used to trace the spiral structure of galaxies and their rotation curves.



Credit: [HI]21 cm map of the Milky Way HI4PI Collaboration et al. (2016).

#### Tracing neutral Hydrogen in galaxies (Kalberla & Kerp, 2009; Walter et al., 2008)

- Absorption by atmosphere & dust negligible. Self-absorbed towards dense regions.
- Used to trace the spiral structure of galaxies and their rotation curves.
- Zeeman effect (energy level splitting by  $\overrightarrow{B}$ )  $\rightarrow$  magnetic field tracer.

F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)











Atomic data for  $HI_{21cm}$ 

•  $A_{21} = 2.9 \times 10^{-15} \text{ s}^{-1}$  $\simeq 1 \text{ every } 11 \text{ Myr.}$ 

• 
$$g_1 = 1 \& g_2 = 3.$$

•  $E_{21} = 5.87 \ \mu \text{eV} \Rightarrow$ exp $(-E_{21}/kT) \simeq 1$  for all relevant T.

Credit: Circinus,  $[H_{I}]_{21 \text{ cm}}$  mass (left) & radial velocity (right) (Jones et al., 1999).



Credit: Circinus, [H I]<sub>21 cm</sub> mass (left) & radial velocity (right) (Jones et al., 1999).



•  $n_{\rm crit} \simeq 3 \times 10^{-5} {\rm ~cm^{-3}}$  $\Rightarrow {\rm LTE regime.}$ 



Credit: Circinus, [H I]<sub>21 cm</sub> mass (left) & radial velocity (right) (Jones et al., 1999).

#### $H I_{21cm}$ as a neutral gas mass tracer (assuming no absorption)



Credit: Circinus, [H I]<sub>21 cm</sub> mass (left) & radial velocity (right) (Jones et al., 1999).

#### H I<sub>21cm</sub> as a neutral gas mass tracer (assuming no absorption)

Level population: 
$$\frac{n_2}{n_1} = \frac{g_2}{g_1} \exp\left(-\frac{h\nu_{21}}{kT}\right) = 3 \exp\left(-\frac{0.0682 \text{ K}}{T}\right) \simeq 3$$



Credit: Circinus, [H I]<sub>21 cm</sub> mass (left) & radial velocity (right) (Jones et al., 1999).

#### H I<sub>21cm</sub> as a neutral gas mass tracer (assuming no absorption)

Level population: 
$$\frac{n_2}{n_1} = \frac{g_2}{g_1} \exp\left(-\frac{h\nu_{21}}{kT}\right) = 3 \exp\left(-\frac{0.0682}{T}\right) \simeq 3 \Rightarrow n_2 \simeq \frac{3}{4}n(\text{H I}).$$



Credit: Circinus, [H I]<sub>21 cm</sub> mass (left) & radial velocity (right) (Jones et al., 1999).

# H I<sub>21cm</sub> as a neutral gas mass tracer (assuming no absorption) Level population: $\frac{n_2}{n_1} = \frac{g_2}{g_1} \exp\left(-\frac{h\nu_{21}}{kT}\right) = 3 \exp\left(-\frac{0.0682 \text{ K}}{T}\right) \simeq 3 \Rightarrow n_2 \simeq \frac{3}{4}n(\text{H I}).$ Emitted power: $L_{\text{H}_1} = h\nu_{21} \underbrace{M_{\text{H}_1}}_{\text{number of atoms}} A_{21}\frac{3}{4} \underbrace{\exp\left(-\frac{h\nu_{21}}{kT}\right)}_{\simeq 1}$

F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)



Credit: Circinus, [H I]<sub>21 cm</sub> mass (left) & radial velocity (right) (Jones et al., 1999).

# H I<sub>21cm</sub> as a neutral gas mass tracer (assuming no absorption) Level population: $\frac{n_2}{n_1} = \frac{g_2}{g_1} \exp\left(-\frac{h\nu_{21}}{kT}\right) = 3 \exp\left(-\frac{0.0682 \text{ K}}{T}\right) \simeq 3 \Rightarrow n_2 \simeq \frac{3}{4}n(\text{H I}).$ Emitted power: $L_{\text{H}_1} = h\nu_{21} \underbrace{M_{\text{H}_1}}_{\text{number of atoms}} A_{21}\frac{3}{4} \underbrace{\exp\left(-\frac{h\nu_{21}}{kT}\right)}_{\simeq 1} \Rightarrow \epsilon_{\text{H}_1} \equiv \frac{L_{\text{H}_1}}{M_{\text{H}_1}} \simeq 6.2 \times 10^{-9} L_{\odot}/M_{\odot}.$

F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)

#### Photo-ionization cross-sections

#### Photo-ionization cross-sections

hv>13.6 eV






















# Atoms | The Photo-Ionization Process



# Atoms | The Photo-Ionization Process



F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)

17 / 72

# Atoms | Radiative Recombination of Hydrogen

The recombination cascade





















#### Two limiting cases



#### Two limiting cases

Case A: recombination down to all levels:  $\alpha_{A}(T_{e}) \rightarrow \text{relevant for } \tau_{Ly} \ll 1.$ 



#### Two limiting cases

Case A: recombination down to all levels:  $\alpha_{\rm A}(T_{\rm e}) \rightarrow$  relevant for  $\tau_{\rm Ly} \ll 1$ .

**Case B:** recombination down to 
$$n > 1$$
:  
 $\alpha_{\rm B}(T_{\rm e}) \equiv \alpha_{\rm A}(T_{\rm e}) - \alpha_{\rm 1s}(T_{\rm e}) \rightarrow \text{relevant}$   
for  $\tau_{\rm Ly} \gg 1$ .









# Atoms | Recombination Lines & Emission Measure

 Lyman series line are resonantly scattered ⇒ they are re-absorbed by the gas in the case B.

- Lyman series line are resonantly scattered ⇒ they are re-absorbed by the gas in the case B.
- The strongest escaping ionic resonant lines are from the Balmer series:

- Lyman series line are resonantly scattered ⇒ they are re-absorbed by the gas in the case B.
- The strongest escaping ionic resonant lines are from the Balmer series:

 $\mathbf{H}\alpha$  line at  $\lambda = 6564.6$  Å ( $\in$  R band);

- Lyman series line are resonantly scattered ⇒ they are re-absorbed by the gas in the case B.
- The strongest escaping ionic resonant lines are from the Balmer series:

H $\alpha$  line at  $\lambda = 6564.6$  Å ( $\in$  R band); H $\beta$  line at  $\lambda = 4862.7$  Å ( $\in$  V band).

- Lyman series line are resonantly scattered ⇒ they are re-absorbed by the gas in the case B.
- The strongest escaping ionic resonant lines are from the Balmer series:

 $H\alpha$  line at  $\lambda$  = 6564.6 Å (∈ R band);  $H\beta$  line at  $\lambda$  = 4862.7 Å (∈ V band).

• In case B,  $I(H\alpha)/I(H\beta) \simeq 3$  (mild T dependence)

- Lyman series line are resonantly scattered ⇒ they are re-absorbed by the gas in the case B.
- The strongest escaping ionic resonant lines are from the Balmer series:

Hα line at  $\lambda = 6564.6$  Å ( $\in$  R band); Hβ line at  $\lambda = 4862.7$  Å ( $\in$  V band).

• In case B,  $I(H\alpha)/I(H\beta) \simeq 3$  (mild T dependence)  $\Rightarrow$  extinction estimator.

- Lyman series line are resonantly scattered ⇒ they are re-absorbed by the gas in the case B.
- The strongest escaping ionic resonant lines are from the Balmer series:

H $\alpha$  line at  $\lambda = 6564.6$  Å ( $\in$  R band); H $\beta$  line at  $\lambda = 4862.7$  Å ( $\in$  V band).

• In case B,  $I(H\alpha)/I(H\beta) \simeq 3$  (mild T dependence)  $\Rightarrow$  extinction estimator.

Line intensity & Emission Measure (EM)

- Lyman series line are resonantly scattered ⇒ they are re-absorbed by the gas in the case B.
- The strongest escaping ionic resonant lines are from the Balmer series:

Hα line at  $\lambda = 6564.6$  Å ( $\in$  R band); Hβ line at  $\lambda = 4862.7$  Å ( $\in$  V band).

• In case B,  $I(H\alpha)/I(H\beta) \simeq 3$  (mild T dependence)  $\Rightarrow$  extinction estimator.

## Line intensity & Emission Measure (EM)

• Optically-thin limit, below critical density:  $I_{\rm line} = \int_0^L \frac{n_e^2}{4\pi} \Lambda(T) \, {\rm d}s$ 

- Lyman series line are resonantly scattered ⇒ they are re-absorbed by the gas in the case B.
- The strongest escaping ionic resonant lines are from the Balmer series:

H $\alpha$  line at  $\lambda = 6564.6$  Å ( $\in$  R band); H $\beta$  line at  $\lambda = 4862.7$  Å ( $\in$  V band).

• In case B,  $I(H\alpha)/I(H\beta) \simeq 3$  (mild T dependence)  $\Rightarrow$  extinction estimator.

### Line intensity & Emission Measure (EM)

• Optically-thin limit, below critical density:  $I_{\text{line}} = \int_{0}^{L} \frac{n_{e}^{2}}{4\pi} \Lambda(T) \, \mathrm{d}s \propto \underbrace{EM}_{\text{cm}^{-6}\text{pc}} \times \Lambda(T);$ 

- Lyman series line are resonantly scattered ⇒ they are re-absorbed by the gas in the case B.
- The strongest escaping ionic resonant lines are from the Balmer series:

H $\alpha$  line at  $\lambda = 6564.6$  Å ( $\in$  R band); H $\beta$  line at  $\lambda = 4862.7$  Å ( $\in$  V band).

• In case B,  $I(H\alpha)/I(H\beta) \simeq 3$  (mild T dependence)  $\Rightarrow$  extinction estimator.

### Line intensity & Emission Measure (EM)

• Optically-thin limit, below critical density:  $I_{\text{line}} = \int_{0}^{L} \frac{n_{e}^{2}}{4\pi} \Lambda(T) \, \mathrm{d}s \propto \underbrace{EM}_{\text{cm}^{-6}\text{pc}} \times \Lambda(T);$ • With  $EM \equiv \int_{0}^{L} n_{e}^{2} \, \mathrm{d}s$ 

- Lyman series line are resonantly scattered ⇒ they are re-absorbed by the gas in the case B.
- The strongest escaping ionic resonant lines are from the Balmer series:

H $\alpha$  line at  $\lambda = 6564.6$  Å ( $\in$  R band); H $\beta$  line at  $\lambda = 4862.7$  Å ( $\in$  V band).

• In case B,  $I(H\alpha)/I(H\beta) \simeq 3$  (mild T dependence)  $\Rightarrow$  extinction estimator.

## Line intensity & Emission Measure (EM)

• Optically-thin limit, below critical density:  $I_{\text{line}} = \int_{0}^{L} \frac{n_e^2}{4\pi} \Lambda(T) \, \mathrm{d}s \propto \underbrace{EM}_{\text{cm}^{-6}\text{pc}} \times \Lambda(T);$ • With  $EM \equiv \int_{0}^{L} n_e^2 \, \mathrm{d}s \Rightarrow \underbrace{EM \simeq \langle n_e^2 \rangle L}.$ 

# Atoms | Recombination Lines & Emission Measure

### The Balmer line series

- Lyman series line are resonantly scattered ⇒ they are re-absorbed by the gas in the case B.
- The strongest escaping ionic resonant lines are from the Balmer series:

H $\alpha$  line at  $\lambda = 6564.6$  Å ( $\in$  R band); H $\beta$  line at  $\lambda = 4862.7$  Å ( $\in$  V band).

• In case B,  $I(H\alpha)/I(H\beta) \simeq 3$  (mild T dependence)  $\Rightarrow$  extinction estimator.

#### Line intensity & Emission Measure (EM)

• Optically-thin limit, below critical density:  $I_{\text{line}} = \int_{0}^{L} \frac{n_{e}^{2}}{4\pi} \Lambda(T) \, \mathrm{d}s \propto \underbrace{EM}_{\text{cm}^{-6}\text{pc}} \times \Lambda(T);$   $\int_{0}^{L} \underbrace{EM}_{\text{cm}^{-6}\text{pc}} \times \Lambda(T);$ 

• With 
$$EM \equiv \int_0 n_e^2 ds \Rightarrow \boxed{EM \simeq \langle n_e^2 \rangle L}.$$

## The Large Magellanic Cloud (LMC)



Credit:  $H\alpha$  +  $[S II]_{6725\text{\AA}}$  +  $[O III]_{5007\text{\AA}}$  (Smith et al., 2005).

# Atoms | Recombination Lines & Emission Measure

### The Balmer line series

- Lyman series line are resonantly scattered ⇒ they are re-absorbed by the gas in the case B.
- The strongest escaping ionic resonant lines are from the Balmer series:

H $\alpha$  line at  $\lambda = 6564.6$  Å ( $\in$  R band); H $\beta$  line at  $\lambda = 4862.7$  Å ( $\in$  V band).

• In case B,  $I(H\alpha)/I(H\beta) \simeq 3$  (mild T dependence)  $\Rightarrow$  extinction estimator.

#### Line intensity & Emission Measure (EM)

• Optically-thin limit, below critical density:  $I_{\text{line}} = \int_{0}^{L} \frac{n_{e}^{2}}{4\pi} \Lambda(T) \, \mathrm{ds} \propto \underbrace{EM}_{\text{cm}^{-6}\text{pc}} \times \Lambda(T);$ • With  $EM \equiv \int_{0}^{L} n_{e}^{2} \, \mathrm{ds} \Rightarrow \underbrace{EM \simeq \langle n_{e}^{2} \rangle L}_{e}.$ 

## The Large Magellanic Cloud (LMC)



Credit:  $H\alpha + [S_{II}]_{6725\text{\AA}} + [O_{III}]_{5007\text{\AA}}$  (Smith et al., 2005).

 $\Rightarrow$  H $\alpha$  traces essentially dense ionized gas (H II regions).

# Atoms | The Free-Free Continuum Emission
## Thermal plasma









Thermal plasma

### Thermal plasma

Bound-bound transitions: recombination lines. Free-bound transitions: first transition of the recombination cascade.







Bound-bound transitions: recombination lines. Free-bound transitions: first transition of the recombination cascade.







# Atoms | The Free-Free Continuum Emission



# Atoms | The Free-Free Continuum Emission



# Atoms | The Free-Free Continuum Emission

### Hydrogen free-free spectrum (Draine, 2011) Thermal plasma $\frac{\mathrm{d} \mathcal{P}_{\nu}^{\mathrm{ff}}}{\mathrm{d} V} \simeq 6.841 \times 10^{-47} \, \underbrace{g_{\mathrm{ff}}(\nu)}_{\mathrm{ff}} \, \sqrt{\frac{T}{10^4 \, \mathrm{K}}}$ Bound-bound transitions: recombination lines. Free-bound transitions: first transition of the Gaunt factor [W cm<sup>3</sup>/Hz] recombination cascade. $\times \exp\left(-\frac{h\nu}{kT}\right) n_e^2$ Free-free transitions: deceleration of a free electron by the charge of a proton $\rightarrow$ in $ightarrow g_{ m ff} \simeq 6.155 \left(rac{ u}{1 ext{ GHz}} ight)^{-0.118} \left(rac{T}{10^4 ext{ K}} ight)^{0.177}$ elastic collision. Photon, frequency, v [THz] 1000 100 10<sup>10</sup> Luminosity, vL<sup>,</sup> [L<sub>©</sub>] 10<sup>8</sup> Free e 10<sup>6</sup> Free-free $10^{2}$ 0.1 10 100 1000 Photon wavelength, $\lambda$ [ $\mu$ m]

## **Outline of the Lecture**

### **1** ATOMS & IONS

- A reminder of atomic physics
- The neutral gas
- The ionized gas

## MOLECULES IN SPACE

- The quantum molecular modes
- Molecular bonding
- Astrophysical molecular lines and features

### INTERSTELLAR DUST GRAINS

- Optical properties
- Grain heating & cooling
- State-of-the-art dust models

## 4 CONCLUSION

- Take-away points
- References





#### Photon frequency, v 10 PHz 100 THz 1 PHz 10 THz 1 THz 100 GHz Electronic 0. transitions $\omega_e = \sqrt{k_e/m_e}$ $\lambda \simeq 0.06 - 0.30 \,\mu\text{m}$ 0.01 Absorbance 0.001 $10^{-4}$ $10^{-5}$ 100 nm 10 µm 100 µm $1 \,\mu m$ 1 mm 1 cm Wavelength, $\lambda$ Ultraviolet vis. Near-IR Mid-IR Far-IR submm cm 10 eV 1eV 0.1 eV 10 meV 1 meV 0.1 meV Photon energy, $hv = hc/\lambda$ F. Galliano (CEA Paris-Saclay) ISM lecture 2 (ISYA 2024, Algiers) September 29, 2024 22 / 72



#### Photon frequency, v 10 PHz 100 THz 1 PHz 10 THz 1 THz 100 GHz Electronic 0. transitions $\omega_e = \sqrt{k_e/m_e}$ $\lambda \simeq 0.06 - 0.30 \,\mu\text{m}$ 0.01 Absorbance 0.001 $10^{-4}$ $10^{-5}$ 100 nm 100 µm $1 \,\mu m$ 10*µ*m 1 mm 1 cm Wavelength, $\lambda$ Ultraviolet vis. Near-IR Mid-IR Far-IR submm cm 10 eV 1eV 0.1 eV 10 meV 1 meV 0.1 meV Photon energy, $hv = hc/\lambda$ F. Galliano (CEA Paris-Saclay) ISM lecture 2 (ISYA 2024, Algiers) September 29, 2024 22 / 72

#### Photon frequency, v 10 PHz 100 THz 1 PHz 10 THz 1 THz 100 GHz Electronic 0. transitions $\omega_e = \sqrt{k_e/m_e}$ $\lambda \simeq 0.06 - 0.30 \,\mu\text{m}$ 0.01 Absorbance 0.001 $10^{-4}$ $10^{-5}$ 100 nm 100 µm $1 \,\mu m$ 10*µ*m 1 mm 1 cm Wavelength, $\lambda$ Ultraviolet vis. Near-IR Mid-IR Far-IR submm cm 10 eV 1eV 0.1 eV 10 meV 1 meV 0.1 meV <u>Photon</u> energy, $hv = hc/\lambda$ F. Galliano (CEA Paris-Saclav) ISM lecture 2 (ISYA 2024, Algiers) September 29, 2024 22 / 72

#### Photon frequency, v 10 PHz 1 PHz 100 THz 10 THz 1 THz 100 GHz Electronic 0. transitions $\omega_e = \sqrt{k_e/m_e}$ $\lambda \simeq 0.06 - 0.30 \,\mu\text{m}$ 0.01 Absorbance 0.001 $10^{-4}$ $10^{-5}$ 100 nm 100 µm $1 \,\mu m$ 10*µ*m 1 mm 1 cm Wavelength, $\lambda$ Ultraviolet vis. Near-IR Mid-IR Far-IR submm cm 10 eV 1eV 0.1 eV 10 meV 1 meV 0.1 meV Photon energy, $hv = hc/\lambda$ F. Galliano (CEA Paris-Saclav) ISM lecture 2 (ISYA 2024, Algiers) September 29, 2024 22 / 72



## Level notation

- Angular momentum of
  - a bonding electron:
  - $\lambda = 0 \Leftrightarrow \sigma, \ \lambda = 1 \Leftrightarrow$
  - $\pi$ ,  $\lambda = 2 \Leftrightarrow \delta$ , ...

### Level notation

- Angular momentum of a bonding electron:  $\lambda = 0 \Leftrightarrow \sigma, \ \lambda = 1 \Leftrightarrow$  $\pi, \ \lambda = 2 \Leftrightarrow \delta, \ldots$
- $\Lambda = \sum_{i} \lambda_{i}$ , for all electrons, with:  $\Lambda = 0 \Leftrightarrow \Sigma$ ,  $\Lambda = 1 \Leftrightarrow \Pi$ ,  $\Lambda = 2 \Leftrightarrow \Delta$ , ...

### Level notation

- Angular momentum of a bonding electron:  $\lambda = 0 \Leftrightarrow \sigma, \lambda = 1 \Leftrightarrow$  $\pi, \lambda = 2 \Leftrightarrow \delta, \dots$
- $\Lambda = \sum_{i} \lambda_{i}$ , for all electrons, with:  $\Lambda = 0 \Leftrightarrow \Sigma, \Lambda = 1 \Leftrightarrow \Pi, \Lambda = 2 \Leftrightarrow \Delta, \dots$
- Electronic levels are noted  $n = 1 \Leftrightarrow X$ ,  $n = 2 \Leftrightarrow A$ , n = $3 \Leftrightarrow B$ , ...  $\Rightarrow$  level notation:  $X^{2S+1}\Lambda$ .















F. Galliano (CEA Paris-Saclay)



F. Galliano (CEA Paris-Saclay)





F. Galliano (CEA Paris-Saclay)
## Molecules | Energy Levels of H<sub>2</sub>









#### Strong Bonds (several eV)



#### Weak Bonds (a few 0.1 eV)

#### Strong Bonds (several eV)



#### Weak Bonds (a few 0.1 eV)



(d) Van der Waals force: graphite

#### Strong Bonds (several eV)



#### Weak Bonds (a few 0.1 eV)



(d) Van der Waals force: graphite



(e) Hydrogen bridge: H<sub>2</sub>O ice

The principle of orbital hybridization

#### The principle of orbital hybridization





































#### $\sigma~{\rm bonds}$





Credit: acetylene (Chemistry Library, CC BY-NC 4.0).

#### $\sigma~{\rm bonds}$



 Overlap of 2 s, p or sp<sup>n</sup> orbitals.

Credit: acetylene (Chemistry Library, CC BY-NC 4.0).





#### $\sigma~{\rm bonds}$



Credit: acetylene (Chemistry Library, CC BY-NC 4.0).

- energy
- Overlap of 2 s, p or sp<sup>n</sup> orbitals.
- Rotational symmetry.
- Strongest covalent bond.


#### $\sigma~{\rm bonds}$



Credit: acetylene (Chemistry Library, CC BY-NC 4.0).

energy

- Overlap of 2 s, p or sp<sup>n</sup> orbitals.
- Rotational symmetry.
- Strongest covalent bond.



 $\pi~{\rm bonds}$ 

#### $\sigma~{\rm bonds}$



Credit: acetylene (Chemistry Library, CC BY-NC 4.0).

- energy
- Overlap of 2 s, p or sp<sup>n</sup> orbitals.
- Rotational symmetry.
- Strongest covalent bond.



# $\pi$ bonds



Credit: acetylene (Chemistry Library, CC BY-NC 4.0).

#### $\sigma$ bonds



Credit: acetylene (Chemistry Library, CC BY-NC 4.0).

- energy
- Overlap of 2 s, p or sp<sup>n</sup> orbitals.
- Rotational symmetry.
- Strongest covalent bond.



### $\pi \ {\rm bonds}$



Credit: acetylene (Chemistry Library, CC BY-NC 4.0).

• Side-by-side overlap of the 2 lobes of 2 p orbitals.

#### $\sigma$ bonds



Credit: acetylene (Chemistry Library, CC BY-NC 4.0).



- Overlap of 2 s, p or sp<sup>n</sup> orbitals.
- Rotational symmetry.
- Strongest covalent bond.



#### $\pi$ bonds



Credit: acetylene (Chemistry Library, CC BY-NC 4.0).



Side-by-side overlap of the 2 lobes of 2 p orbitals.

F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)

September 29, 2024

#### $\sigma~{\rm bonds}$



Credit: acetylene (Chemistry Library, CC BY-NC 4.0).

#### energy

- Overlap of 2 s, p or sp<sup>n</sup> orbitals.
- Rotational symmetry.
- Strongest covalent bond.



### $\pi$ bonds



Credit: acetylene (Chemistry Library, CC BY-NC 4.0).



- Side-by-side overlap of the 2 lobes of 2 p orbitals.
- Weaker than  $\sigma$  bonds.

F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)

September 29, 2024

# **Molecules** | Some Properties of the H<sub>2</sub> Molecule

## **General properties**

• Most abundant molecule in the Universe.

- Most abundant molecule in the Universe.
- Found in all regions with sufficient UV-shielding  $(A(V) \gtrsim 0.1)$ .

- Most abundant molecule in the Universe.
- Found in all regions with sufficient UV-shielding  $(A(V) \gtrsim 0.1)$ .
- Forms on dust grains (gas-phase formation inefficient).

- Most abundant molecule in the Universe.
- Found in all regions with sufficient UV-shielding  $(A(V) \gtrsim 0.1)$ .
- Forms on dust grains (gas-phase formation inefficient).

### Ortho / Para

- Most abundant molecule in the Universe.
- Found in all regions with sufficient UV-shielding  $(A(V) \gtrsim 0.1)$ .
- Forms on dust grains (gas-phase formation inefficient).

# Ortho / Para

• H<sub>2</sub> exists in two forms with parallel or antiparallel nuclear spins: 2/3 Ortho + 1/3 Para.

- Most abundant molecule in the Universe.
- Found in all regions with sufficient UV-shielding  $(A(V) \gtrsim 0.1)$ .
- Forms on dust grains (gas-phase formation inefficient).

# Ortho / Para

• H<sub>2</sub> exists in two forms with parallel or antiparallel nuclear spins: 2/3 Ortho + 1/3 Para.



- Most abundant molecule in the Universe.
- Found in all regions with sufficient UV-shielding  $(A(V) \gtrsim 0.1)$ .
- Forms on dust grains (gas-phase formation inefficient).

# Ortho / Para

• H<sub>2</sub> exists in two forms with parallel or antiparallel nuclear spins: 2/3 Ortho + 1/3 Para.



- Most abundant molecule in the Universe.
- Found in all regions with sufficient UV-shielding  $(A(V) \gtrsim 0.1)$ .
- Forms on dust grains (gas-phase formation inefficient).

# Ortho / Para

- H<sub>2</sub> exists in two forms with parallel or antiparallel nuclear spins: 2/3 Ortho + 1/3 Para.
- No radiative transitions (Ortho  $\leftrightarrow$  Para)



- Most abundant molecule in the Universe.
- Found in all regions with sufficient UV-shielding  $(A(V) \gtrsim 0.1)$ .
- Forms on dust grains (gas-phase formation inefficient).

# Ortho / Para

- H<sub>2</sub> exists in two forms with parallel or antiparallel nuclear spins: 2/3 Ortho + 1/3 Para.
- No radiative transitions (Ortho  $\leftrightarrow$  Para)  $\Rightarrow$  conversion on the grains.



# **Molecules** | Some Properties of the H<sub>2</sub> Molecule

### **General properties**

- Most abundant molecule in the Universe.
- Found in all regions with sufficient UV-shielding  $(A(V) \gtrsim 0.1)$ .
- Forms on dust grains (gas-phase formation inefficient).

# Ortho / Para

- H<sub>2</sub> exists in two forms with parallel or antiparallel nuclear spins: 2/3 Ortho + 1/3 Para.
- No radiative transitions (Ortho  $\leftrightarrow$  Para)  $\Rightarrow$  conversion on the grains.



## Consequence of the symmetry of $\ensuremath{\text{H}}_2$

- Most abundant molecule in the Universe.
- Found in all regions with sufficient UV-shielding  $(A(V) \gtrsim 0.1)$ .
- Forms on dust grains (gas-phase formation inefficient).

# Ortho / Para

- H<sub>2</sub> exists in two forms with parallel or antiparallel nuclear spins: 2/3 Ortho + 1/3 Para.
- No radiative transitions (Ortho  $\leftrightarrow$  Para)  $\Rightarrow$  conversion on the grains.



## Consequence of the symmetry of $H_2$

• No dipolar moment  $\Rightarrow$  no rotational lines

F. Galliano (CEA Paris-Saclay)

- Most abundant molecule in the Universe.
- Found in all regions with sufficient UV-shielding  $(A(V) \gtrsim 0.1)$ .
- Forms on dust grains (gas-phase formation inefficient).

# Ortho / Para

- H<sub>2</sub> exists in two forms with parallel or antiparallel nuclear spins: 2/3 Ortho + 1/3 Para.
- No radiative transitions (Ortho  $\leftrightarrow$  Para)  $\Rightarrow$  conversion on the grains.



### Consequence of the symmetry of $\ensuremath{\text{H}}_2$

- No dipolar moment  $\Rightarrow$  no rotational lines
- $\Rightarrow$  No line  $\lesssim$  300 K  $\rightarrow$  rovibrational MIR lines.

# Molecules | Some Properties of the H<sub>2</sub> Molecule

#### Consequence of the symmetry of H<sub>2</sub> General properties In No dipolar moment ⇒ no rotational lines Most abundant molecule in the Universe. $\Rightarrow$ No line $\lesssim$ 300 K $\rightarrow$ rovibrational MIR lines. Found in all regions with sufficient UVshielding $(A(V) \gtrsim 0.1)$ . NGC1097 (nucleus) 200 Forms on dust grains (gas-phase formation) H<sub>2</sub> 0-0 S(1 inefficient). 0-0 H<sub>2</sub> Ortho / Para • H<sub>2</sub> exists in two forms with parallel or antiparallel nuclear spins: 2/3 Ortho + 1/3Para. No radiative transitions (Ortho +> Para) $\Rightarrow$ conversion on the grains. Ortho Para 30 20<sup>L</sup> 10 20 Wavelength, $\lambda$ [ $\mu$ m] (Wu et al., 2018)

F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)

# **Molecules** | Some Properties of the H<sub>2</sub> Molecule

### **General properties**

- Most abundant molecule in the Universe.
- Found in all regions with sufficient UV-shielding  $(A(V) \gtrsim 0.1)$ .
- Forms on dust grains (gas-phase formation inefficient).

# Ortho / Para

- H<sub>2</sub> exists in two forms with parallel or antiparallel nuclear spins: 2/3 Ortho + 1/3 Para.
- No radiative transitions (Ortho  $\leftrightarrow$  Para)  $\Rightarrow$  conversion on the grains.



### Consequence of the symmetry of H<sub>2</sub>

- No dipolar moment  $\Rightarrow$  no rotational lines
- $\Rightarrow$  No line  $\lesssim$  300 K  $\rightarrow$  rovibrational MIR lines.



F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)

• Dense, UV-shielded regions  $(A(V) \gtrsim 1) \rightarrow$  molecules freeze on grains.

- Dense, UV-shielded regions  $(A(V) \gtrsim 1) \rightarrow$  molecules freeze on grains.
- Most abundant species: H<sub>2</sub>O, CO & CO<sub>2</sub>.

- Dense, UV-shielded regions  $(A(V) \gtrsim 1) \rightarrow$  molecules freeze on grains.
- Most abundant species: H<sub>2</sub>O, CO & CO<sub>2</sub>.
- Characteristic spectral signatures: MIR absorption bands.



















# Molecules | Molecule Freezing Threshold
#### Molecules | Molecule Freezing Threshold



29 / 72



F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)

30 / 72



F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)



F. Galliano (CEA Paris-Saclay)



F. Galliano (CEA Paris-Saclay)

#### **Vibrational modes**



#### **Vibrational modes**



















Laboratory data (Allamandola et al., 1999)

31 / 72



Laboratory data (Allamandola et al., 1999)



Laboratory data (Allamandola et al., 1999)



Laboratory data (Allamandola et al., 1999)

Astrophysical significance of PAHs



Laboratory data (Allamandola et al., 1999)

#### Astrophysical significance of PAHs

• Carry the bright mid-IR emission bands.



Laboratory data (Allamandola et al., 1999)

the neutral gas.

#### Astrophysical significance of PAHs

- Carry the bright mid-IR emission bands.
- Responsible for the photoelectric heating of

F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)

September 29, 2024



Laboratory data (Allamandola et al., 1999)

#### Astrophysical significance of PAHs

- Carry the bright mid-IR emission bands.
- Responsible for the photoelectric heating of

F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)

• Milky Way:  $\simeq 40\%$  of  $L_{\rm IR}$  & 15% of  $L_{\rm bol}$ .

the neutral gas.

September 29, 2024

The recent explosion of the detection of large molecules in the ISM

#### The recent explosion of the detection of large molecules in the ISM

• Guélin & Cernicharo (2022) count 256 species detected, using radiotelescopes.

The recent explosion of the detection of large molecules in the ISM

• Guélin & Cernicharo (2022) count 256 species detected, using radiotelescopes.



Credit:  $\lambda \simeq 2$  mm spectrum of the Orion-KL star-forming cloud with the IRAM-30m radiotelescope (Tercero et al., 2010).

F. Galliano (CEA Paris-Saclay)

#### The recent explosion of the detection of large molecules in the ISM

- Guélin & Cernicharo (2022) count 256 species detected, using radiotelescopes.
- $\bullet\,$  Relevant for understanding pre-biotic chemistry  $\rightarrow$  no amino acids found to date.



Credit:  $\lambda \simeq 2$  mm spectrum of the Orion-KL star-forming cloud with the IRAM-30m radiotelescope (Tercero et al., 2010).

F. Galliano (CEA Paris-Saclay)

#### The recent explosion of the detection of large molecules in the ISM

- Guélin & Cernicharo (2022) count 256 species detected, using radiotelescopes.
- $\bullet\,$  Relevant for understanding pre-biotic chemistry  $\rightarrow$  no amino acids found to date.
- Detection of NH<sub>2</sub>-CH<sub>2</sub>-CN, a precursor of glycine (Belloche et al., 2008).



Credit:  $\lambda \simeq 2$  mm spectrum of the Orion-KL star-forming cloud with the IRAM-30m radiotelescope (Tercero et al., 2010).

A century-old enigma

A century-old enigma

 Ubiquitous visible-to-near-IR absorption features (Heger, 1922).

A century-old enigma

 Ubiquitous visible-to-near-IR absorption features (Heger, 1922).



A century-old enigma

• Ubiquitous visible-to-near-IR absorption features (Heger, 1922).



A century-old enigma

- Ubiquitous visible-to-near-IR absorption features (Heger, 1922).
- Interstellar origin (Merrill, 1934).



A century-old enigma

- Ubiquitous visible-to-near-IR absorption features (Heger, 1922).
- More than 500 bands have been detected (Fan et al., 2019).

• Interstellar origin (Merrill, 1934).



A century-old enigma

- Ubiquitous visible-to-near-IR absorption features (Heger, 1922).
- Interstellar origin (Merrill, 1934).

- More than 500 bands have been detected (Fan et al., 2019).
- Origin still unknown.


Characteristics of the carriers

#### Characteristics of the carriers

• Line width  $\gtrsim 1~\text{\AA}$   $\Rightarrow$  no free-flying atoms.

#### Characteristics of the carriers

- Line width  $\gtrsim$  1 Å  $\Rightarrow$  no free-flying atoms.
- Must come from molecules with  $\simeq$  100 atoms (MacIsaac et al., 2022).

#### Characteristics of the carriers

- Line width  $\gtrsim$  1 Å  $\Rightarrow$  no free-flying atoms.
- Must come from molecules with  $\simeq$  100 atoms (MacIsaac et al., 2022).
- Cationic buckminsterfullerene  $(C_{60}^+) \Rightarrow 2$ , maybe 4 near-IR DIBs (Campbell et al. 2015; Walker et al. 2015).

#### Characteristics of the carriers

- Line width  $\gtrsim$  1 Å  $\Rightarrow$  no free-flying atoms.
- Must come from molecules with  $\simeq$  100 atoms (MacIsaac et al., 2022).
- Cationic buckminsterfullerene  $(C_{60}^+) \Rightarrow 2$ , maybe 4 near-IR DIBs (Campbell et al. 2015; Walker et al. 2015).



#### Buckminsterfullerene (C<sub>60</sub>)

#### Characteristics of the carriers

- Line width  $\gtrsim$  1 Å  $\Rightarrow$  no free-flying atoms.
- Must come from molecules with  $\simeq$  100 atoms (MacIsaac et al., 2022).
- Cationic buckminsterfullerene ( $C_{60}^+$ )  $\Rightarrow$  2, maybe 4 near-IR DIBs (Campbell et al. 2015; Walker et al. 2015).
- Buckminsterfullerene also detected in emission in the mid-IR (Cami et al., 2010).



Buckminsterfullerene (C<sub>60</sub>)

#### Characteristics of the carriers

- Line width  $\gtrsim$  1 Å  $\Rightarrow$  no free-flying atoms.
- Must come from molecules with  $\simeq$  100 atoms (MacIsaac et al., 2022).
- Cationic buckminsterfullerene ( $C_{60}^+$ )  $\Rightarrow$  2, maybe 4 near-IR DIBs (Campbell et al. 2015; Walker et al. 2015).
- Buckminsterfullerene also detected in emission in the mid-IR (Cami et al., 2010).



#### Buckminsterfullerene (C<sub>60</sub>)



(Cami et al. 2010; using the Spitzer space telescope)

#### **Outline of the Lecture**

#### **1** ATOMS & IONS

- A reminder of atomic physics
- The neutral gas
- The ionized gas

#### 2 MOLECULES IN SPACE

- The quantum molecular modes
- Molecular bonding
- Astrophysical molecular lines and features

#### INTERSTELLAR DUST GRAINS

- Optical properties
- Grain heating & cooling
- State-of-the-art dust models

- Take-away points
- References



Energy

Atom







Atom

Molecules







Number of atoms

The Fermi-Dirac distribution

The Fermi-Dirac distribution Energy distribution of electrons:

$$f(E) \equiv rac{1}{\exp\left(rac{E-E_{
m F}}{kT}
ight)+1}.$$

The Fermi-Dirac distribution Energy distribution of electrons:

$$f(E) \equiv rac{1}{\exp\left(rac{E-E_{
m F}}{kT}
ight)+1}.$$

**Fermi level,**  $E_{F}$ : maximum energy at T = 0 K.

The Fermi-Dirac distribution Energy distribution of electrons:

$$f(E) \equiv rac{1}{\exp\left(rac{E-E_{
m F}}{kT}
ight)+1}.$$

**Fermi level,**  $E_{F}$ : maximum energy at T = 0 K.

Fermi-Dirac distribution, f(E)

Energy, E



$$f(E) \equiv rac{1}{\exp\left(rac{E-E_{
m F}}{kT}
ight)+1}.$$

**Fermi level,**  $E_{F}$ : maximum energy at T = 0 K.















37 / 72



37 / 72





The Fermi-Dirac distribution Energy distribution of electrons:

$$f(E) \equiv rac{1}{\exp\left(rac{E-E_{
m F}}{kT}
ight)+1}.$$

**Fermi level,**  $E_{F}$ : maximum energy at T = 0 K.

#### Two and a half types of solids

- **Insulator (or dielectric):** solid where the valence electrons are tied to their nucleus.
- **Conductor:** solid where the valence electrons are free to roam the lattice.

**Semiconductor:** insulator at T = 0 K & conductor at ambient temperature.



37 / 72

The Fermi-Dirac distribution Energy distribution of electrons:

$$f(E) \equiv rac{1}{\exp\left(rac{E-E_{
m F}}{kT}
ight)+1}.$$

**Fermi level,**  $E_{F}$ : maximum energy at T = 0 K.

#### Two and a half types of solids

- **Insulator (or dielectric):** solid where the valence electrons are tied to their nucleus.
- **Conductor:** solid where the valence electrons are free to roam the lattice.

Semiconductor: insulator at T = 0 K & conductor at ambient temperature.



The Fermi-Dirac distribution Energy distribution of electrons:

$$f(E) \equiv rac{1}{\exp\left(rac{E-E_{
m F}}{kT}
ight)+1}.$$

**Fermi level,**  $E_{F}$ : maximum energy at T = 0 K.

#### Two and a half types of solids

- **Insulator (or dielectric):** solid where the valence electrons are tied to their nucleus.
- **Conductor:** solid where the valence electrons are free to roam the lattice.

Semiconductor: insulator at T = 0 K & conductor at ambient temperature.



### **Dust** | Structure of the Main Interstellar Grain Candidates

## **Dust** | Structure of the Main Interstellar Grain Candidates












#### Forsterite







Graphite



Enstatite



F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)

39 / 72



F. Galliano (CEA Paris-Saclay)



**Background Stars** 

**Dusty Cloud** 

F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)

September 29, 2024



**Background Stars** 



**Background Stars** 



**Background Stars** 



**Background Stars** 



**Background Stars** 













#### Absorption & scattering:

F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)

















**Absorption:** attenuation  $\Rightarrow$  function of  $Im(\epsilon_r)$ .



**Absorption:** attenuation  $\Rightarrow$  function of  $Im(\epsilon_r)$ .



**Absorption:** attenuation  $\Rightarrow$  function of Im( $\epsilon_r$ ). **Kramers-Kronig relations:** causality relations  $\Rightarrow \operatorname{Re}(\epsilon_r) = f[\operatorname{Im}(\epsilon_r)]$ .


**Absorption:** attenuation  $\Rightarrow$  function of Im( $\epsilon_r$ ). **Kramers-Kronig relations:** causality relations  $\Rightarrow \operatorname{Re}(\epsilon_r) = f[\operatorname{Im}(\epsilon_r)]$ .

# **Dust** | Idealized Optical Constants: Electrons as Harmonic Oscillators



**Absorption:** attenuation  $\Rightarrow$  function of  $\text{Im}(\epsilon_r)$ .

Kramers-Kronig relations: causality relations  $\Rightarrow \operatorname{Re}(\epsilon_r) = f[\operatorname{Im}(\epsilon_r)].$ 

# **Dust** | Idealized Optical Constants: Electrons as Harmonic Oscillators



**Absorption:** attenuation  $\Rightarrow$  function of  $Im(\epsilon_r)$ .

Kramers-Kronig relations: causality relations  $\Rightarrow \operatorname{Re}(\epsilon_r) = f[\operatorname{Im}(\epsilon_r)].$ 

# **Dust** | Idealized Optical Constants: Electrons as Harmonic Oscillators



**Absorption:** attenuation  $\Rightarrow$  function of  $\text{Im}(\epsilon_r)$ .

Kramers-Kronig relations: causality relations  $\Rightarrow \operatorname{Re}(\epsilon_r) = f[\operatorname{Im}(\epsilon_r)].$ 

### **Dust** | Dieletric Functions of Realistic Materials





(Optical properties from Draine 2003

ISM lecture 2 (ISYA 2024, Algiers)





F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)

September 29, 2024

Mie theory

Mie theory

Principle: solves absorption & scattering of a plane E.M. wave by a spherical homogeneous grain

Mie theory

**Principle:** solves absorption & scattering of a plane E.M. wave by a spherical homogeneous grain  $\rightarrow$  Maxwell equations + spherical harmonics expansion.

#### Mie theory

**Principle:** solves absorption & scattering of a plane E.M. wave by a spherical homogeneous grain  $\rightarrow$  Maxwell equations + spherical harmonics expansion.

#### Mie theory

**Principle:** solves absorption & scattering of a plane E.M. wave by a spherical homogeneous grain  $\rightarrow$  Maxwell equations + spherical harmonics expansion.

**Results:** depend only on  $x \equiv 2\pi a/\lambda$  (*a*: grain radius):

$$C_{\mathsf{abs}}(\lambda, a)$$

absorption cross-section

### Mie theory

Principle: solves absorption & scattering of a plane E.M. wave by a spherical homogeneous grain  $\rightarrow$  Maxwell equations + spherical harmonics expansion.

**Results:** depend only on  $x \equiv 2\pi a/\lambda$  (a: grain radius):





absorption cross-section

cross-section

#### Mie theory

Principle: solves absorption & scattering of a plane E.M. wave by a spherical homogeneous grain  $\rightarrow$  Maxwell equations + spherical harmonics expansion.

**Results:** depend only on  $x \equiv 2\pi a/\lambda$  (a: grain radius):







absorption cross-section

cross-section

absorption efficiency

**Principle:** solves absorption & scattering of a plane E.M. wave by a spherical homogeneous grain  $\rightarrow$  Maxwell equations + spherical harmonics expansion.



**Principle:** solves absorption & scattering of a plane E.M. wave by a spherical homogeneous grain  $\rightarrow$  Maxwell equations + spherical harmonics expansion.



**Principle:** solves absorption & scattering of a plane E.M. wave by a spherical homogeneous grain  $\rightarrow$  Maxwell equations + spherical harmonics expansion.



**Principle:** solves absorption & scattering of a plane E.M. wave by a spherical homogeneous grain  $\rightarrow$  Maxwell equations + spherical harmonics expansion.

**Results:** depend only on  $x \equiv 2\pi a/\lambda$  (*a*: grain radius):



#### Limit behaviors of the optical properties

**Principle:** solves absorption & scattering of a plane E.M. wave by a spherical homogeneous grain  $\rightarrow$  Maxwell equations + spherical harmonics expansion.

**Results:** depend only on  $x \equiv 2\pi a/\lambda$  (*a*: grain radius):



### Limit behaviors of the optical properties

Geometrical optics  $(x \gg 1)$ 

**Principle:** solves absorption & scattering of a plane E.M. wave by a spherical homogeneous grain  $\rightarrow$  Maxwell equations + spherical harmonics expansion.

**Results:** depend only on  $x \equiv 2\pi a/\lambda$  (*a*: grain radius):



### Limit behaviors of the optical properties

**Geometrical optics**  $(x \gg 1)$  grain  $\simeq$  screen:

**Principle:** solves absorption & scattering of a plane E.M. wave by a spherical homogeneous grain  $\rightarrow$  Maxwell equations + spherical harmonics expansion.

**Results:** depend only on  $x \equiv 2\pi a/\lambda$  (*a*: grain radius):



### Limit behaviors of the optical properties

**Geometrical optics**  $(x \gg 1)$  grain  $\simeq$  screen:

 $Q_{
m abs} \simeq 1$ 

**Principle:** solves absorption & scattering of a plane E.M. wave by a spherical homogeneous grain  $\rightarrow$  Maxwell equations + spherical harmonics expansion.

**Results:** depend only on  $x \equiv 2\pi a/\lambda$  (*a*: grain radius):



#### Limit behaviors of the optical properties

**Geometrical optics**  $(x \gg 1)$  grain  $\simeq$  screen:

 $Q_{
m abs} \simeq 1 \quad Q_{
m sca} \simeq 1$ 

**Principle:** solves absorption & scattering of a plane E.M. wave by a spherical homogeneous grain  $\rightarrow$  Maxwell equations + spherical harmonics expansion.

**Results:** depend only on  $x \equiv 2\pi a/\lambda$  (*a*: grain radius):



#### Limit behaviors of the optical properties

**Geometrical optics**  $(x \gg 1)$  grain  $\simeq$  screen:

 $Q_{
m abs} \simeq 1$   $Q_{
m sca} \simeq 1$   $\langle \cos heta 
angle \simeq 1.$ 

**Principle:** solves absorption & scattering of a plane E.M. wave by a spherical homogeneous grain  $\rightarrow$  Maxwell equations + spherical harmonics expansion.

**Results:** depend only on  $x \equiv 2\pi a/\lambda$  (*a*: grain radius):



#### Limit behaviors of the optical properties

**Geometrical optics**  $(x \gg 1)$  grain  $\simeq$  screen:

```
Q_{
m abs} \simeq 1 ~~ Q_{
m sca} \simeq 1 ~~ \langle \cos 	heta 
angle \simeq 1.
```

Rayleigh regime  $(x \ll 1)$ 

**Principle:** solves absorption & scattering of a plane E.M. wave by a spherical homogeneous grain  $\rightarrow$  Maxwell equations + spherical harmonics expansion.

**Results:** depend only on  $x \equiv 2\pi a/\lambda$  (*a*: grain radius):



#### Limit behaviors of the optical properties

**Geometrical optics**  $(x \gg 1)$  grain  $\simeq$  screen:

 $Q_{
m abs} \simeq 1$   $Q_{
m sca} \simeq 1$   $\langle \cos heta 
angle \simeq 1.$ 

**Rayleigh regime** ( $x \ll 1$ ) grain  $\simeq$  dipole:

**Principle:** solves absorption & scattering of a plane E.M. wave by a spherical homogeneous grain  $\rightarrow$  Maxwell equations + spherical harmonics expansion.

**Results:** depend only on  $x \equiv 2\pi a/\lambda$  (*a*: grain radius):



#### Limit behaviors of the optical properties

**Geometrical optics**  $(x \gg 1)$  grain  $\simeq$  screen:

$$Q_{
m abs} \simeq 1 ~~Q_{
m sca} \simeq 1 ~~\langle \cos heta 
angle \simeq 1.$$

**Rayleigh regime** ( $x \ll 1$ ) grain  $\simeq$  dipole:

$$Q_{
m abs} \propto \lambda^{-2}$$

**Principle:** solves absorption & scattering of a plane E.M. wave by a spherical homogeneous grain  $\rightarrow$  Maxwell equations + spherical harmonics expansion.

**Results:** depend only on  $x \equiv 2\pi a/\lambda$  (*a*: grain radius):



#### Limit behaviors of the optical properties

**Geometrical optics**  $(x \gg 1)$  grain  $\simeq$  screen:

$$Q_{
m abs} \simeq 1 ~~Q_{
m sca} \simeq 1 ~~\langle \cos heta 
angle \simeq 1.$$

**Rayleigh regime** ( $x \ll 1$ ) grain  $\simeq$  dipole:

$$Q_{
m abs} \propto \lambda^{-2} \quad Q_{
m sca} \propto \lambda^{-4}$$

**Principle:** solves absorption & scattering of a plane E.M. wave by a spherical homogeneous grain  $\rightarrow$  Maxwell equations + spherical harmonics expansion.

**Results:** depend only on  $x \equiv 2\pi a/\lambda$  (*a*: grain radius):



#### Limit behaviors of the optical properties

**Geometrical optics**  $(x \gg 1)$  grain  $\simeq$  screen:

$$Q_{
m abs} \simeq 1 ~~Q_{
m sca} \simeq 1 ~~\langle \cos heta 
angle \simeq 1.$$

**Rayleigh regime** ( $x \ll 1$ ) grain  $\simeq$  dipole:

$$Q_{
m abs} \propto \lambda^{-2} ~~ Q_{
m sca} \propto \lambda^{-4} ~~ \langle \cos heta 
angle \simeq 0.$$

| Geometrical optics |         |
|--------------------|---------|
|                    | Grain   |
|                    | photons |
|                    |         |
|                    |         |
|                    |         |
|                    |         |
|                    |         |
|                    |         |
|                    |         |
|                    |         |
|                    |         |
|                    |         |
|                    |         |
|                    |         |







F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)


F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)



F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)



F. Galliano (CEA Paris-Saclay)



F. Galliano (CEA Paris-Saclay)

Composite grains: Effective Medium Theory (EMT; Bohren & Huffman 1983).

Composite grains: Effective Medium Theory (EMT; Bohren & Huffman 1983).

Aggregates & arbitrary shapes: Discrete Dipole Approximation (DDA; Draine & Flatau 1994).

**Composite grains:** Effective Medium Theory (EMT; Bohren & Huffman 1983). **Aggregates & arbitrary shapes:** Discrete Dipole Approximation (DDA; Draine & Flatau 1994).

















Dust-induced polarization is widely used to study  $\overrightarrow{B}$ .



Dust-induced polarization is widely used to study  $\overrightarrow{B}$ .

(Planck Collaboration et al., 2020)



























F. Galliano (CEA Paris-Saclay)

49 / 72






















 $F_{
u}(\lambda) \propto$ 

 $F_
u(oldsymbol{\lambda}) \propto \qquad \qquad imes B_
u(oldsymbol{\lambda}, T)$ 

 $F_
u(oldsymbol{\lambda}) \propto \qquad imes (\lambda_0/oldsymbol{\lambda})^eta imes B_
u(oldsymbol{\lambda},T)$ 

 $F_
u(oldsymbol{\lambda}) \propto M_{ ext{dust}} imes (\lambda_0/oldsymbol{\lambda})^eta imes B_
u(oldsymbol{\lambda}, T)$ 





50 / 72



50 / 72





50 / 72









Distribution of harmonic oscillators in a solid lattice

Distribution of harmonic oscillators in a solid lattice

**Debye temperature:**  $\lambda_{\rm D} = 2d_{\rm at}$  is the shortest phonon wavelength possible  $\Rightarrow T_{\rm D} \equiv hc/\lambda_{\rm D}k$ .

Distribution of harmonic oscillators in a solid lattice

**Debye temperature:**  $\lambda_{\rm D} = 2d_{\rm at}$  is the shortest phonon wavelength possible  $\Rightarrow T_{\rm D} \equiv hc/\lambda_{\rm D}k$ .



F. Galliano (CEA Paris-Saclay)

Distribution of harmonic oscillators in a solid lattice

**Debye temperature:**  $\lambda_{\rm D} = 2d_{\rm at}$  is the shortest phonon wavelength possible  $\Rightarrow T_{\rm D} \equiv hc/\lambda_{\rm D}k$ .

**Dulong-Petit regime:** high temperature  $(T \gg T_D)$  limit:  $C(T) \simeq 3Nk \rightarrow$  classical expression.



F. Galliano (CEA Paris-Saclay)

#### Distribution of harmonic oscillators in a solid lattice

**Debye temperature:**  $\lambda_{\rm D} = 2d_{\rm at}$  is the shortest phonon wavelength possible  $\Rightarrow T_{\rm D} \equiv hc/\lambda_{\rm D}k$ .

**Dulong-Petit regime:** high temperature  $(T \gg T_D)$  limit:  $C(T) \simeq 3Nk \rightarrow$  classical expression.



F. Galliano (CEA Paris-Saclay)

51 / 72

#### Distribution of harmonic oscillators in a solid lattice

**Debye temperature:**  $\lambda_{\rm D} = 2d_{\rm at}$  is the shortest phonon wavelength possible  $\Rightarrow T_{\rm D} \equiv hc/\lambda_{\rm D}k$ . **Dulong-Petit regime:** high temperature  $(T \gg T_{\rm D})$  limit:  $C(T) \simeq 3Nk \rightarrow$  classical expression.

**Debye regime:** low temperature  $(T \ll T_D)$  limit:  $C(T) \propto T^3 \rightarrow$  accounts for mode quantification.



F. Galliano (CEA Paris-Saclay)

#### Distribution of harmonic oscillators in a solid lattice

**Debye temperature:**  $\lambda_{\rm D} = 2d_{\rm at}$  is the shortest phonon wavelength possible  $\Rightarrow T_{\rm D} \equiv hc/\lambda_{\rm D}k$ . **Dulong-Petit regime:** high temperature  $(T \gg T_{\rm D})$  limit:  $C(T) \simeq 3Nk \rightarrow$  classical expression. **Debye regime:** low temperature  $(T \ll T_{\rm D})$  limit:  $C(T) \propto T^3 \rightarrow$  accounts for mode quantification.



F. Galliano (CEA Paris-Saclay)

51 / 72

#### Distribution of harmonic oscillators in a solid lattice

**Debye temperature:**  $\lambda_{\rm D} = 2d_{\rm at}$  is the shortest phonon wavelength possible  $\Rightarrow T_{\rm D} \equiv hc/\lambda_{\rm D}k$ . **Dulong-Petit regime:** high temperature  $(T \gg T_{\rm D})$  limit:  $C(T) \simeq 3Nk \rightarrow$  classical expression. **Debye regime:** low temperature  $(T \ll T_{\rm D})$  limit:  $C(T) \propto T^3 \rightarrow$  accounts for mode quantification.



F. Galliano (CEA Paris-Saclay)

51 / 72

#### Distribution of harmonic oscillators in a solid lattice



#### Distribution of harmonic oscillators in a solid lattice



#### Distribution of harmonic oscillators in a solid lattice



#### Distribution of harmonic oscillators in a solid lattice



#### Distribution of harmonic oscillators in a solid lattice



# **Dust** | Stochastic Heating: Temperature Fluctuations


























Silicate (a=3 nm)





Silicate (a=3 nm)



































ISM lecture 2 (ISYA 2024, Algiers)

## **Dust** | What is a Dust Model? How is it Build & Used?

**Physical ingredients** 

#### **Physical ingredients**

• Set of optical properties & heat capacities: e.g. astrosilicates, PAHs, a-C(:H), etc.
#### **Physical ingredients**

- Set of optical properties & heat capacities: e.g. astrosilicates, PAHs, a-C(:H), etc.
- Size distribution of each species  $\rightarrow$  power-law, log-normal, etc.

#### **Physical ingredients**

- Set of optical properties & heat capacities: e.g. astrosilicates, PAHs, a-C(:H), etc.
- Size distribution of each species  $\rightarrow$  power-law, log-normal, *etc.*
- Abundances relative to the gas.

#### **Physical ingredients**

- Set of optical properties & heat capacities: e.g. astrosilicates, PAHs, a-C(:H), etc.
- Size distribution of each species  $\rightarrow$  power-law, log-normal, *etc.*
- Abundances relative to the gas.

#### **Empirical constraints**

Exclusively from the Galactic diffuse ISM  $\rightarrow$  well-studied, optically-thin & uniformly illuminated (*e.g.* Mathis et al., 1977; Désert et al., 1990; Draine & Li, 2001, 2007; Zubko et al., 2004; Compiègne et al., 2011; Jones et al., 2013; Guillet et al., 2017; Jones et al., 2017; Siebenmorgen, 2023; Hensley & Draine, 2023; Ysard et al., 2024).

#### **Physical ingredients**

- Set of optical properties & heat capacities: e.g. astrosilicates, PAHs, a-C(:H), etc.
- Size distribution of each species  $\rightarrow$  power-law, log-normal, etc.
- Abundances relative to the gas.

#### **Empirical constraints**

Exclusively from the Galactic diffuse ISM  $\rightarrow$  well-studied, optically-thin & uniformly illuminated (*e.g.* Mathis et al., 1977; Désert et al., 1990; Draine & Li, 2001, 2007; Zubko et al., 2004; Compiègne et al., 2011; Jones et al., 2013; Guillet et al., 2017; Jones et al., 2017; Siebenmorgen, 2023; Hensley & Draine, 2023; Ysard et al., 2024).

UV-MIR extinction;

#### **Physical ingredients**

- Set of optical properties & heat capacities: e.g. astrosilicates, PAHs, a-C(:H), etc.
- Size distribution of each species  $\rightarrow$  power-law, log-normal, etc.
- Abundances relative to the gas.

#### **Empirical constraints**

Exclusively from the Galactic diffuse ISM  $\rightarrow$  well-studied, optically-thin & uniformly illuminated (*e.g.* Mathis et al., 1977; Désert et al., 1990; Draine & Li, 2001, 2007; Zubko et al., 2004; Compiègne et al., 2011; Jones et al., 2013; Guillet et al., 2017; Jones et al., 2017; Siebenmorgen, 2023; Hensley & Draine, 2023; Ysard et al., 2024).

- UV-MIR extinction;
- IR emission;

#### **Physical ingredients**

- Set of optical properties & heat capacities: e.g. astrosilicates, PAHs, a-C(:H), etc.
- Size distribution of each species  $\rightarrow$  power-law, log-normal, *etc.*
- Abundances relative to the gas.

#### **Empirical constraints**

Exclusively from the Galactic diffuse ISM  $\rightarrow$  well-studied, optically-thin & uniformly illuminated (*e.g.* Mathis et al., 1977; Désert et al., 1990; Draine & Li, 2001, 2007; Zubko et al., 2004; Compiègne et al., 2011; Jones et al., 2013; Guillet et al., 2017; Jones et al., 2017; Siebenmorgen, 2023; Hensley & Draine, 2023; Ysard et al., 2024).

- UV-MIR extinction;
- IR emission;
- Depletions;

#### **Physical ingredients**

- Set of optical properties & heat capacities: e.g. astrosilicates, PAHs, a-C(:H), etc.
- Size distribution of each species  $\rightarrow$  power-law, log-normal, *etc.*
- Abundances relative to the gas.

#### **Empirical constraints**

Exclusively from the Galactic diffuse ISM  $\rightarrow$  well-studied, optically-thin & uniformly illuminated (*e.g.* Mathis et al., 1977; Désert et al., 1990; Draine & Li, 2001, 2007; Zubko et al., 2004; Compiègne et al., 2011; Jones et al., 2013; Guillet et al., 2017; Jones et al., 2017; Siebenmorgen, 2023; Hensley & Draine, 2023; Ysard et al., 2024).

UV-MIR extinction;

Visible & IR polarization;

- IR emission;
- Depletions;

#### **Physical ingredients**

- Set of optical properties & heat capacities: e.g. astrosilicates, PAHs, a-C(:H), etc.
- Size distribution of each species  $\rightarrow$  power-law, log-normal, etc.
- Abundances relative to the gas.

#### **Empirical constraints**

Exclusively from the Galactic diffuse ISM  $\rightarrow$  well-studied, optically-thin & uniformly illuminated (*e.g.* Mathis et al., 1977; Désert et al., 1990; Draine & Li, 2001, 2007; Zubko et al., 2004; Compiègne et al., 2011; Jones et al., 2013; Guillet et al., 2017; Jones et al., 2017; Siebenmorgen, 2023; Hensley & Draine, 2023; Ysard et al., 2024).

- UV-MIR extinction;
- IR emission;
- Depletions;

- Visible & IR polarization;
- Laboratory data;

#### **Physical ingredients**

- Set of optical properties & heat capacities: e.g. astrosilicates, PAHs, a-C(:H), etc.
- Size distribution of each species  $\rightarrow$  power-law, log-normal, etc.
- Abundances relative to the gas.

#### **Empirical constraints**

Exclusively from the Galactic diffuse ISM  $\rightarrow$  well-studied, optically-thin & uniformly illuminated (*e.g.* Mathis et al., 1977; Désert et al., 1990; Draine & Li, 2001, 2007; Zubko et al., 2004; Compiègne et al., 2011; Jones et al., 2013; Guillet et al., 2017; Jones et al., 2017; Siebenmorgen, 2023; Hensley & Draine, 2023; Ysard et al., 2024).

- UV-MIR extinction;
- IR emission;
- Depletions;

- Visible & IR polarization;
- Laboratory data;
- Broad knowledge from IDPs.

- Set of optical properties & heat capacities: e.g. astrosilicates, PAHs, a-C(:H), etc.
- Size distribution of each species  $\rightarrow$  power-law, log-normal, etc.
- Abundances relative to the gas.

#### **Empirical constraints**

Exclusively from the Galactic diffuse ISM  $\rightarrow$  well-studied, optically-thin & uniformly illuminated (*e.g.* Mathis et al., 1977; Désert et al., 1990; Draine & Li, 2001, 2007; Zubko et al., 2004; Compiègne et al., 2011; Jones et al., 2013; Guillet et al., 2017; Jones et al., 2017; Siebenmorgen, 2023; Hensley & Draine, 2023; Ysard et al., 2024).

- UV-MIR extinction;
- IR emission;
- Depletions;

- Visible & IR polarization;
- Laboratory data;
- Broad knowledge from IDPs.

#### Usefulness for studying galaxies @ all z:

 $\Rightarrow$  provides a framework to model observations & infer:

- Set of optical properties & heat capacities: e.g. astrosilicates, PAHs, a-C(:H), etc.
- Size distribution of each species  $\rightarrow$  power-law, log-normal, etc.
- Abundances relative to the gas.

#### **Empirical constraints**

Exclusively from the Galactic diffuse ISM  $\rightarrow$  well-studied, optically-thin & uniformly illuminated (*e.g.* Mathis et al., 1977; Désert et al., 1990; Draine & Li, 2001, 2007; Zubko et al., 2004; Compiègne et al., 2011; Jones et al., 2013; Guillet et al., 2017; Jones et al., 2017; Siebenmorgen, 2023; Hensley & Draine, 2023; Ysard et al., 2024).

- UV-MIR extinction;
- IR emission;
- Depletions;

- Visible & IR polarization;
- Laboratory data;
- Broad knowledge from IDPs.

#### Usefulness for studying galaxies @ all z:

- $\Rightarrow$  provides a framework to model observations & infer:
  - Total dust mass;

- Set of optical properties & heat capacities: e.g. astrosilicates, PAHs, a-C(:H), etc.
- Size distribution of each species  $\rightarrow$  power-law, log-normal, etc.
- Abundances relative to the gas.

#### **Empirical constraints**

Exclusively from the Galactic diffuse ISM  $\rightarrow$  well-studied, optically-thin & uniformly illuminated (*e.g.* Mathis et al., 1977; Désert et al., 1990; Draine & Li, 2001, 2007; Zubko et al., 2004; Compiègne et al., 2011; Jones et al., 2013; Guillet et al., 2017; Jones et al., 2017; Siebenmorgen, 2023; Hensley & Draine, 2023; Ysard et al., 2024).

- UV-MIR extinction;
- IR emission;
- Depletions;

- Visible & IR polarization;
- Laboratory data;
- Broad knowledge from IDPs.

#### Usefulness for studying galaxies @ all z:

 $\Rightarrow$  provides a framework to model observations & infer:

- Total dust mass;
- Heating *i.e.* varying U (starlight intensity);

- Set of optical properties & heat capacities: e.g. astrosilicates, PAHs, a-C(:H), etc.
- Size distribution of each species  $\rightarrow$  power-law, log-normal, etc.
- Abundances relative to the gas.

#### **Empirical constraints**

Exclusively from the Galactic diffuse ISM  $\rightarrow$  well-studied, optically-thin & uniformly illuminated (*e.g.* Mathis et al., 1977; Désert et al., 1990; Draine & Li, 2001, 2007; Zubko et al., 2004; Compiègne et al., 2011; Jones et al., 2013; Guillet et al., 2017; Jones et al., 2017; Siebenmorgen, 2023; Hensley & Draine, 2023; Ysard et al., 2024).

- UV-MIR extinction;
- IR emission;
- Depletions;

- Visible & IR polarization;
- Laboratory data;
- Broad knowledge from IDPs.

#### Usefulness for studying galaxies @ all z:

 $\Rightarrow$  provides a framework to model observations & infer:

- Total dust mass;
- Heating *i.e.* varying U (starlight intensity);
- Total thermally-emitted power;

- Set of optical properties & heat capacities: e.g. astrosilicates, PAHs, a-C(:H), etc.
- Size distribution of each species  $\rightarrow$  power-law, log-normal, etc.
- Abundances relative to the gas.

#### **Empirical constraints**

Exclusively from the Galactic diffuse ISM  $\rightarrow$  well-studied, optically-thin & uniformly illuminated (e.g. Mathis et al., 1977; Désert et al., 1990; Draine & Li, 2001, 2007; Zubko et al., 2004; Compiègne et al., 2011; Jones et al., 2013; Guillet et al., 2017; Jones et al., 2017; Siebenmorgen, 2023; Hensley & Draine, 2023; Ysard et al., 2024).

- UV-MIR extinction; Visible & IR polarization;
- IR emission:
- Depletions;

- Laboratorv data:
- Broad knowledge from IDPs.

#### Usefulness for studying galaxies @ all z:

 $\Rightarrow$  provides a framework to model observations & infer:

- Total dust mass:
- Heating *i.e.* varying U (starlight intensity);
- Total thermally-emitted power;

In a limited extent, the fraction of small grains.

#### **Physical ingredients**

- Set of optical properties & heat capacities: e.g. astrosilicates, PAHs, a-C(:H), etc.
- Size distribution of each species  $\rightarrow$  power-law, log-normal, etc.
- Abundances relative to the gas.

#### **Empirical constraints**

Exclusively from the Galactic diffuse ISM  $\rightarrow$  well-studied, optically-thin & uniformly illuminated (*e.g.* Mathis et al., 1977; Désert et al., 1990; Draine & Li, 2001, 2007; Zubko et al., 2004; Compiègne et al., 2011; Jones et al., 2013; Guillet et al., 2017; Jones et al., 2017; Siebenmorgen, 2023; Hensley & Draine, 2023; Ysard et al., 2024).

- UV-MIR extinction;
   Visible & If
- IR emission;
- Depletions;

- Visible & IR polarization;
- Laboratory data;
- Broad knowledge from IDPs.

#### Usefulness for studying galaxies @ all z:

 $\Rightarrow$  provides a framework to model observations & infer:

- Total dust mass;
- Heating *i.e.* varying U (starlight intensity);
- Total thermally-emitted power;

- In a limited extent, the fraction of small grains.
- ⇒ Bias due to the assumption of Galactic properties.

F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)











Selective extinction in magnitude

 $\mathcal{F}^{ ext{obs}}_
u(\lambda) = \mathcal{F}^{ ext{int}}_
u(\lambda) imes ext{exp}[- au(\lambda)]$ 

F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)



Selective extinction in magnitude

$${\sf F}_
u^{
m obs}(\lambda)={\sf F}_
u^{
m int}(\lambda) imes \exp[- au(\lambda)]$$

**Amplitude:**  $A(\lambda) = 1.086 \times \tau(\lambda)$ 

55 / 72



Selective extinction in magnitude

$${\sf F}_
u^{\sf obs}(\lambda)={\sf F}_
u^{\sf int}(\lambda) imes \exp[- au(\lambda)]$$

**Amplitude:**  $A(\lambda) = 1.086 \times \tau(\lambda) \propto N(H)$ 



Selective extinction in magnitude

$${\sf F}^{\sf obs}_
u(\lambda)={\sf F}^{\sf int}_
u(\lambda) imes {\sf exp}[- au(\lambda)]$$

**Amplitude:**  $A(\lambda) = 1.086 \times \tau(\lambda) \propto N(H)$ 

Slope: 
$$R(V) \equiv \frac{A(V)}{A(B) - A(V)}$$

F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)









F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)

September 29, 2024

55 / 72



F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)

55 / 72



F. Galliano (CEA Paris-Saclay)

ISM lecture 2 (ISYA 2024, Algiers)

### **Dust** | Panchromatic Parametric Extinction Law

### **Dust** | Panchromatic Parametric Extinction Law



56 / 72

### Dust | Panchromatic Parametric Extinction Law



### **Dust** | Dust Observables: the Infrared Emission

### **Dust** | Dust Observables: the Infrared Emission

High-Galactic-latitude SED



# **Dust** | Dust Observables: the Infrared Emission

High-Galactic-latitude SED



57 / 72
### **Dust** | Dust Observables: the Infrared Emission

High-Galactic-latitude SED



57 / 72

#### **Dust** | Dust Observables: the Infrared Emission

High-Galactic-latitude SED





N<sub>E</sub>  $\delta(E) \equiv \log$ gas depletion of E abundance in the gas

 $\delta(E)$  $\equiv \log$ depletion of E

 $\int_{gas} -\log\left(\frac{N_{\rm E}}{N_{\rm H}}\right)_{\odot}$ 

abundance in the gas

total abundance

 $\left(\frac{N_{\rm E}}{N_{\rm H}}\right)_{\rm gas} - \log\left(\frac{N_{\rm E}}{N_{\rm H}}\right)_{\odot} \simeq A_{\rm E} \times \underbrace{F_{\star}}_{\rm total descents} + B_{\rm E}$  (Jenkins, 2009)  $\delta(E)$  $\equiv \log$ depletion strength depletion of E

abundance in the gas

total abundance

















Pre-Solar grains locked-up in meteorites



Pre-Solar grains locked-up in meteorites



<sup>(</sup>Hoppe, 2010)

59 / 72

Pre-Solar grains locked-up in meteorites



<sup>(</sup>Hoppe, 2010)

59 / 72

 $\Rightarrow$  provides a sample of the types of solids in the ISM.

















See e.g. Zeegers et al. (2017) & Rogantini et al. (2020).



 $\Rightarrow$  constrain the grain structure.











(Demyk et al., 2017a,b)



(Demyk et al., 2017a,b)
## **Dust** | Laboratory Experiments on Dust Analogs



(Demyk et al., 2017a,b)

## **Dust** | Laboratory Experiments on Dust Analogs



Example: the THEMIS model (Jones et al., 2017)

heavily based on laboratory data.

- heavily based on laboratory data.
- a-C(:H) and coated amorphous silicates with Fe and FeS inclusions.

- heavily based on laboratory data.
- a-C(:H) and coated amorphous silicates with Fe and FeS inclusions.
- consistent with *Planck* data.

- heavily based on laboratory data.
- a-C(:H) and coated amorphous silicates with Fe and FeS inclusions.
- consistent with *Planck* data.



- heavily based on laboratory data.
- a-C(:H) and coated amorphous silicates with Fe and FeS inclusions.
- consistent with *Planck* data.



- heavily based on laboratory data.
- a-C(:H) and coated amorphous silicates with Fe and FeS inclusions.
- consistent with Planck data.



- heavily based on laboratory data.
- a-C(:H) and coated amorphous silicates with Fe and FeS inclusions.
- consistent with Planck data.







(THEMIS; Jones et al., 2017)















#### The MRN size distribution

The Mathis, Rumpl, & Nordsieck (1977, MRN) size distribution was the first attempt at accounting for the extinction curve with realistic grain optical properties:  $f_{MRN}(a) \propto a^{-3.5}$ .



#### The MRN size distribution

The Mathis, Rumpl, & Nordsieck (1977, MRN) size distribution was the first attempt at accounting for the extinction curve with realistic grain optical properties:  $f_{MRN}(a) \propto a^{-3.5}$ .



#### The MRN size distribution

The Mathis, Rumpl, & Nordsieck (1977, MRN) size distribution was the first attempt at accounting for the extinction curve with realistic grain optical properties:  $f_{MRN}(a) \propto a^{-3.5}$ .

Average grain surface area & volume



#### The MRN size distribution

The Mathis, Rumpl, & Nordsieck (1977, MRN) size distribution was the first attempt at accounting for the extinction curve with realistic grain optical properties:  $f_{MRN}(a) \propto a^{-3.5}$ .

Average grain surface area & volume Surface, dominated by small grains:



#### The MRN size distribution

The Mathis, Rumpl, & Nordsieck (1977, MRN) size distribution was the first attempt at accounting for the extinction curve with realistic grain optical properties:  $f_{MRN}(a) \propto a^{-3.5}$ .

Average grain surface area & volume Surface, dominated by small grains:

Volume, dominated by large grains:

$$\langle V_{\mathrm{dust}} 
angle_a = rac{4\pi}{3} \int_{a_-}^{a_+} f_{\mathrm{MRN}}(a) a^3 \, \mathrm{d}a$$
  
 $\propto \sqrt{a_+} - \sqrt{a_-} \simeq \sqrt{a_+}.$ 

64 / 72







65 / 72
























Galactic dust emissivity:  $\epsilon_{dust} \simeq 221 \times U L_{\odot}/M_{\odot}$ .

### **Outline of the Lecture**

### **1** ATOMS & IONS

- A reminder of atomic physics
- The neutral gas
- The ionized gas

### 2 MOLECULES IN SPACE

- The quantum molecular modes
- Molecular bonding
- Astrophysical molecular lines and features

### INTERSTELLAR DUST GRAINS

- Optical properties
- Grain heating & cooling
- State-of-the-art dust models

### 4 CONCLUSION

- Take-away points
- References

### **Conclusion** | Take-Away Points

Neutral & ionized atoms

Atoms & molecules are excited by collisions & photons. They can be de-excited by collisions, photons or spontaneously. A line with a low spontaneous emission rate is called "forbidden".

- Atoms & molecules are excited by collisions & photons. They can be de-excited by collisions, photons or spontaneously. A line with a low spontaneous emission rate is called "forbidden".
- 2 H<sup>0</sup> is opaque while H<sup>+</sup> is transparent to UV photons. The free-free emission is  $F_{\nu} \propto \nu^{-0.12}$ .

- Atoms & molecules are excited by collisions & photons. They can be de-excited by collisions, photons or spontaneously. A line with a low spontaneous emission rate is called "forbidden".
- 2 H<sup>0</sup> is opaque while H<sup>+</sup> is transparent to UV photons. The free-free emission is  $F_{\nu} \propto \nu^{-0.12}$ .
- 3 Above  $n_{crit}$ , the level populations are set by collisions  $\Rightarrow$  the line emissivity is constant.

- Atoms & molecules are excited by collisions & photons. They can be de-excited by collisions, photons or spontaneously. A line with a low spontaneous emission rate is called "forbidden".
- 2 H<sup>0</sup> is opaque while H<sup>+</sup> is transparent to UV photons. The free-free emission is  $F_{\nu} \propto \nu^{-0.12}$ .
- 3 Above  $n_{crit}$ , the level populations are set by collisions  $\Rightarrow$  the line emissivity is constant.

#### Molecules of astrophysical interest

- Atoms & molecules are excited by collisions & photons. They can be de-excited by collisions, photons or spontaneously. A line with a low spontaneous emission rate is called "forbidden".
- 2 H<sup>0</sup> is opaque while H<sup>+</sup> is transparent to UV photons. The free-free emission is  $F_{\nu} \propto \nu^{-0.12}$ .
- 3 Above  $n_{crit}$ , the level populations are set by collisions  $\Rightarrow$  the line emissivity is constant.

#### Molecules of astrophysical interest

Molecules have electronic bands in the UV (Lyman-Werner), vibrational & rovibrational lines in the mid-IR, & rotational lines in the submm.

- Atoms & molecules are excited by collisions & photons. They can be de-excited by collisions, photons or spontaneously. A line with a low spontaneous emission rate is called "forbidden".
- 2 H<sup>0</sup> is opaque while H<sup>+</sup> is transparent to UV photons. The free-free emission is  $F_{\nu} \propto \nu^{-0.12}$ .
- 3 Above  $n_{crit}$ , the level populations are set by collisions  $\Rightarrow$  the line emissivity is constant.

#### Molecules of astrophysical interest

- Molecules have electronic bands in the UV (Lyman-Werner), vibrational & rovibrational lines in the mid-IR, & rotational lines in the submm.
- 2 Strong molecular bonds are covalent (between 2 non-metals), ionic (between a metal & a non-metal) & metallic (between 2 metals). Van der Walls & H<sub>2</sub>O are weaker bonds.

- Atoms & molecules are excited by collisions & photons. They can be de-excited by collisions, photons or spontaneously. A line with a low spontaneous emission rate is called "forbidden".
- 2 H<sup>0</sup> is opaque while H<sup>+</sup> is transparent to UV photons. The free-free emission is  $F_{\nu} \propto \nu^{-0.12}$ .
- 3 Above  $n_{crit}$ , the level populations are set by collisions  $\Rightarrow$  the line emissivity is constant.

#### Molecules of astrophysical interest

- Molecules have electronic bands in the UV (Lyman-Werner), vibrational & rovibrational lines in the mid-IR, & rotational lines in the submm.
- 2 Strong molecular bonds are covalent (between 2 non-metals), ionic (between a metal & a non-metal) & metallic (between 2 metals). Van der Walls & H<sub>2</sub>O are weaker bonds.
- I H<sub>2</sub> is the most abundant molecule in the Universe. It does not have rotational lines. It exists in 2 forms: Ortho & Para.

- Atoms & molecules are excited by collisions & photons. They can be de-excited by collisions, photons or spontaneously. A line with a low spontaneous emission rate is called "forbidden".
- 2 H<sup>0</sup> is opaque while H<sup>+</sup> is transparent to UV photons. The free-free emission is  $F_{\nu} \propto \nu^{-0.12}$ .
- 3 Above  $n_{crit}$ , the level populations are set by collisions  $\Rightarrow$  the line emissivity is constant.

#### Molecules of astrophysical interest

- Molecules have electronic bands in the UV (Lyman-Werner), vibrational & rovibrational lines in the mid-IR, & rotational lines in the submm.
- 2 Strong molecular bonds are covalent (between 2 non-metals), ionic (between a metal & a non-metal) & metallic (between 2 metals). Van der Walls & H<sub>2</sub>O are weaker bonds.
- I H<sub>2</sub> is the most abundant molecule in the Universe. It does not have rotational lines. It exists in 2 forms: Ortho & Para.

#### Interstellar dust

- Atoms & molecules are excited by collisions & photons. They can be de-excited by collisions, photons or spontaneously. A line with a low spontaneous emission rate is called "forbidden".
- 2 H<sup>0</sup> is opaque while H<sup>+</sup> is transparent to UV photons. The free-free emission is  $F_{\nu} \propto \nu^{-0.12}$ .
- 3 Above  $n_{crit}$ , the level populations are set by collisions  $\Rightarrow$  the line emissivity is constant.

#### Molecules of astrophysical interest

- Molecules have electronic bands in the UV (Lyman-Werner), vibrational & rovibrational lines in the mid-IR, & rotational lines in the submm.
- 2 Strong molecular bonds are covalent (between 2 non-metals), ionic (between a metal & a non-metal) & metallic (between 2 metals). Van der Walls & H<sub>2</sub>O are weaker bonds.
- I H<sub>2</sub> is the most abundant molecule in the Universe. It does not have rotational lines. It exists in 2 forms: Ortho & Para.

#### Interstellar dust

Dust optical properties derive from the composition & solid-state structure of the grains.

- Atoms & molecules are excited by collisions & photons. They can be de-excited by collisions, photons or spontaneously. A line with a low spontaneous emission rate is called "forbidden".
- 2 H<sup>0</sup> is opaque while H<sup>+</sup> is transparent to UV photons. The free-free emission is  $F_{\nu} \propto \nu^{-0.12}$ .
- 3 Above  $n_{crit}$ , the level populations are set by collisions  $\Rightarrow$  the line emissivity is constant.

#### Molecules of astrophysical interest

- Molecules have electronic bands in the UV (Lyman-Werner), vibrational & rovibrational lines in the mid-IR, & rotational lines in the submm.
- 2 Strong molecular bonds are covalent (between 2 non-metals), ionic (between a metal & a non-metal) & metallic (between 2 metals). Van der Walls & H<sub>2</sub>O are weaker bonds.
- I H<sub>2</sub> is the most abundant molecule in the Universe. It does not have rotational lines. It exists in 2 forms: Ortho & Para.

#### Interstellar dust

- Dust optical properties derive from the composition & solid-state structure of the grains.
- 2 Large grains ( $a \gtrsim 0.02 \ \mu$ m) are at thermal equilibrium  $\Rightarrow$  grey body. Small grains ( $a \lesssim 0.02 \ \mu$ m) are stochastically heated  $\Rightarrow$  broader & hotter emission spectrum.

- Atoms & molecules are excited by collisions & photons. They can be de-excited by collisions, photons or spontaneously. A line with a low spontaneous emission rate is called "forbidden".
- 2 H<sup>0</sup> is opaque while H<sup>+</sup> is transparent to UV photons. The free-free emission is  $F_{\nu} \propto \nu^{-0.12}$ .
- 3 Above  $n_{crit}$ , the level populations are set by collisions  $\Rightarrow$  the line emissivity is constant.

#### Molecules of astrophysical interest

- Molecules have electronic bands in the UV (Lyman-Werner), vibrational & rovibrational lines in the mid-IR, & rotational lines in the submm.
- 2 Strong molecular bonds are covalent (between 2 non-metals), ionic (between a metal & a non-metal) & metallic (between 2 metals). Van der Walls & H<sub>2</sub>O are weaker bonds.
- I H<sub>2</sub> is the most abundant molecule in the Universe. It does not have rotational lines. It exists in 2 forms: Ortho & Para.

#### Interstellar dust

- Dust optical properties derive from the composition & solid-state structure of the grains.
- 2 Large grains ( $a \gtrsim 0.02 \ \mu$ m) are at thermal equilibrium  $\Rightarrow$  grey body. Small grains ( $a \lesssim 0.02 \ \mu$ m) are stochastically heated  $\Rightarrow$  broader & hotter emission spectrum.
- Oust models are constrained by emission, extinction, depletion & polarization of the diffuse Galactic ISM. Surface area is dominated by small grains. Volume is dominated by large grains.

# **Conclusion** | References (1/4)

- Allamandola, L. J., Hudgins, D. M., & Sandford, S. A. 1999, ApJ, 511, L115
- Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
- Belloche, A., Menten, K. M., Comito, C., et al. 2008, A&A, 482, 179
- Bohren, C. F. & Huffman, D. R. 1983, Absorption and scattering of light by small particles (Wiley)
- Boogert, A. C. A., Gerakines, P. A., & Whittet, D. C. B. 2015, ARA&A, 53, 541
- Bransden, B. & Joachain, C. 1983, Physics of atoms and molecules (Longman)
- Cami, J., Bernard-Salas, J., Peeters, E., & Malek, S. E. 2010, Science, 329, 1180
- Campbell, E. K., Holz, M., Gerlich, D., & Maier, J. P. 2015, Nature, 523, 322
- Compiègne, M., Verstraete, L., Jones, A., et al. 2011, A&A, 525, A103+
- Demyk, K., Meny, C., Leroux, H., et al. 2017a, A&A, 606, A50
- Demyk, K., Meny, C., Lu, X. H., et al. 2017b, A&A, 600, A123
- Désert, F.-X., Boulanger, F., & Puget, J. L. 1990, A&A, 237, 215
- Dopita, M. A. & Sutherland, R. S. 2003, Astrophysics of the diffuse universe (Springer)
- Draine, B. T. 2003, ApJ, 598, 1017
- Draine, B. T. 2011, Physics of the Interstellar and Intergalactic Medium (Princeton University Press)
- Draine, B. T. & Flatau, P. J. 1994, J. Opt. Soc. Am. A, 11, 1491
- Draine, B. T. & Li, A. 2001, ApJ, 551, 807

# **Conclusion** | References (2/4)

- Draine, B. T. & Li, A. 2007, ApJ, 657, 810
- Fan, H., Hobbs, L. M., Dahlstrom, J. A., et al. 2019, ApJ, 878, 151
- Galliano, F. 2022, HDR, Université Paris-Saclay
- Galliano, F., Galametz, M., & Jones, A. P. 2018, ARA&A, 56, 673
- Gordon, K. D., Clayton, G. C., Decleir, M., et al. 2023, ApJ, 950, 86
- Guélin, M. & Cernicharo, J. 2022, Frontiers in Astronomy and Space Sciences, 9, 787567
- Guhathakurta, P. & Draine, B. T. 1989, ApJ, 345, 230
- Guillet, V., Fanciullo, L., Verstraete, L., et al. 2017, ArXiv:1710.04598
- Heger, M. L. 1922, Lick Observatory Bulletin, 10, 141
- Hensley, B. S. & Draine, B. T. 2021, ApJ, 906, 73
- Hensley, B. S. & Draine, B. T. 2023, ApJ, 948, 55
- HI4PI Collaboration, Ben Bekhti, N., Flöer, L., et al. 2016, A&A, 594, A116
- Hoppe, P. 2010, in Nuclei in the Cosmos, 21
- Hummer, D. G. & Storey, P. J. 1987, MNRAS, 224, 801
- Jenkins, E. B. 2009, ApJ, 700, 1299
- Jenniskens, P. & Désert, F.-X. 1994, A&AS, 106
- Jones, A. P., Fanciullo, L., Köhler, M., et al. 2013, A&A, 558, A62
- Jones, A. P., Köhler, M., Ysard, N., Bocchio, M., & Verstraete, L. 2017, A&A, 602, A46

# **Conclusion** | References (3/4)

- Jones, K. L., Koribalski, B. S., Elmouttie, M., & Haynes, R. F. 1999, MNRAS, 302, 649
- Kalberla, P. M. W. & Kerp, J. 2009, ARA&A, 47, 27
- Krügel, E. 2003, The physics of interstellar dust (IoP)
- MacIsaac, H., Cami, J., Cox, N. L. J., et al. 2022, A&A, 662, A24
- Mathis, J. S., Mezger, P. G., & Panagia, N. 1983, A&A, 128, 212
- Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, ApJ, 217, 425
- Merrill, P. W. 1934, PASP, 46, 206
- Osterbrock, D. E. & Ferland, G. J. 2006, Astrophysics of gaseous nebulae and active galactic nuclei (University Science Books)
- Planck Collaboration, Aghanim, N., Akrami, Y., et al. 2020, A&A, 641, A12
- Rogantini, D., Costantini, E., Zeegers, S. T., et al. 2020, A&A, 641, A149
- Rybicky, G. B. & Lightman, A. P. 1979, Radiative processes in astrophysics (Wiley)
- Siebenmorgen, R. 2023, A&A, 670, A115
- Smith, R. C., Points, S. D., Chu, Y. H., et al. 2005, in American Astronomical Society Meeting Abstracts, Vol. 207, American Astronomical Society Meeting Abstracts, 25.07
- Tercero, B., Cernicharo, J., Pardo, J. R., & Goicoechea, J. R. 2010, A&A, 517, A96
- Tielens, A. 2021, Molecular Astrophysics (Cambridge University Press)
- Tielens, A. G. G. M. 2005, The Physics and Chemistry of the Interstellar Medium (Cambridge University Press)

# **Conclusion** | References (4/4)

Walker, G. A. H., Bohlender, D. A., Maier, J. P., & Campbell, E. K. 2015, ApJ, 812, L8

Walter, F., Brinks, E., de Blok, W. J. G., et al. 2008, AJ, 136, 2563

- Wu, R., Galliano, F., & Onaka, T. 2018, in The Cosmic Wheel and the Legacy of the AKARI Archive: From Galaxies and Stars to Planets and Life, ed. T. Ootsubo, I. Yamamura, K. Murata, & T. Onaka, 133–136
- Ysard, N., Jones, A. P., Guillet, V., et al. 2024, A&A, 684, A34
- Zeegers, S. T., Costantini, E., de Vries, C. P., et al. 2017, A&A, 599, A117
- Zubko, V., Dwek, E., & Arendt, R. G. 2004, ApJS, 152, 211
- Zubko, V. G., Mennella, V., Colangeli, L., & Bussoletti, E. 1996, MNRAS, 282, 1321