ISYA 2024 – THE INTERSTELLAR MEDIUM (ISM): LECTURE 3. Heating & Cooling – The Phases of the ISM

Frédéric GALLIANO

CEA Paris-Saclay, France

October 1st, 2024

🐵 🛈 🛈 CC BY-SA 4.0

COOLING & HEATING OF THE GAS

- The gas heating processes
- The gas cooling function
- The five thermal phases of the ISM

1 COOLING & HEATING OF THE GAS

- The gas heating processes
- The gas cooling function
- The five thermal phases of the ISM

THE PRINCIPLES OF RADIATIVE TRANSFER

- The radiative transfer equation
- Solutions in simple cases
- Dust radiative transfer with more complex geometries

COOLING & HEATING OF THE GAS

- The gas heating processes
- The gas cooling function
- The five thermal phases of the ISM

THE PRINCIPLES OF RADIATIVE TRANSFER

- The radiative transfer equation
- Solutions in simple cases
- Dust radiative transfer with more complex geometries

STAR-FORMING REGIONS

- The Structure of Star-Forming Regions
- HII regions.
- PhotoDissociation Regions (PDRs)

COOLING & HEATING OF THE GAS

- The gas heating processes
- The gas cooling function
- The five thermal phases of the ISM

THE PRINCIPLES OF RADIATIVE TRANSFER

- The radiative transfer equation
- Solutions in simple cases
- Dust radiative transfer with more complex geometries

STAR-FORMING REGIONS

- The Structure of Star-Forming Regions
- HII regions
- PhotoDissociation Regions (PDRs)

4 CONCLUSION

- Take-away points
- References

COOLING & HEATING OF THE GAS

- The gas heating processes
- The gas cooling function
- The five thermal phases of the ISM

THE PRINCIPLES OF RADIATIVE TRANSFER

- The radiative transfer equation
- Solutions in simple cases
- Dust radiative transfer with more complex geometries

STAR-FORMING REGIONS

- The Structure of Star-Forming Regions
- HII regions
- PhotoDissociation Regions (PDRs)

- Take-away points
- References

The main neutral gas heating mechanism

 $[C II]_{158\mu m}$, $[O I]_{63\mu m} \rightarrow$ usually the brightest ISM lines in galaxies (e.g.; Cormier et al. 2019).

The main neutral gas heating mechanism

 $[C II]_{158\mu m}$, $[O I]_{63\mu m} \rightarrow$ usually the brightest ISM lines in galaxies (e.g.; Cormier et al. 2019).

A process dominated by small grains

The main neutral gas heating mechanism

 $[C II]_{158\mu m}$, $[O I]_{63\mu m} \rightarrow$ usually the brightest ISM lines in galaxies (e.g.; Cormier et al. 2019).

A process dominated by small grains

For PAHs & nanograins: absorption of a $h\nu\gtrsim 11$ eV photon \Rightarrow electron ejection probability high.

The main neutral gas heating mechanism

 $[C II]_{158\mu m}$, $[O I]_{63\mu m} \rightarrow$ usually the brightest ISM lines in galaxies (*e.g.*; Cormier et al. 2019).

A process dominated by small grains

For PAHs & nanograins: absorption of a $h\nu \gtrsim 11$ eV photon \Rightarrow electron ejection probability high. For medium / large grains: photon absorption within the grain \Rightarrow low diffusion probability of the electron to the surface.

The main neutral gas heating mechanism

 $[C II]_{158\mu m}$, $[O I]_{63\mu m} \rightarrow$ usually the brightest ISM lines in galaxies (*e.g.*; Cormier et al. 2019).

A process dominated by small grains

For PAHs & nanograins: absorption of a $h\nu\gtrsim 11$ eV photon \Rightarrow electron ejection probability high.

For medium / large grains: photon absorption within the grain \Rightarrow low diffusion probability of the electron to the surface.

Most of the grain cumulated area is in small sizes \Rightarrow PE dominated by PAHs & nanograins

The UV field:
$$G_0 \equiv \frac{\int_{0.0912 \, \mu m}^{0.24 \, \mu m} 4\pi J_\lambda(\lambda) \, d\lambda}{1.6 \times 10^{-6} \, \text{W/m}^2}$$

The UV field:
$$G_0 \equiv \frac{\int_{0.0912 \, \mu m}^{0.24 \, \mu m} 4\pi J_\lambda(\lambda) \, d\lambda}{1.6 \times 10^{-6} \, \text{W/m}^2}$$

The UV Interstellar Radiation Field (ISRF)

The UV field: $G_0 \equiv \frac{\int_{0.0912\,\mu m}^{0.24\,\mu m} 4\pi J_\lambda(\lambda) \,\mathrm{d}\lambda}{1.6 \times 10^{-6} \,\mathrm{W/m^2}}$ The charge parameter: $\gamma \equiv G_0 \sqrt{T}/n_{\rm e}$

The UV Interstellar Radiation Field (ISRF)

The UV field: $G_0 \equiv \frac{\int_{0.0912\,\mu m}^{0.24\,\mu m} 4\pi J_\lambda(\lambda) d\lambda}{1.6 \times 10^{-6} \text{ W/m}^2}$ The charge parameter: $\gamma \equiv G_0 \sqrt{T}/n_e$

The photoelectric effect on PAHs

The UV Interstellar Radiation Field (ISRF)

The UV field: $G_0 \equiv \frac{\int_{0.0912\,\mu m}^{0.24\,\mu m} 4\pi J_\lambda(\lambda) \,\mathrm{d}\lambda}{1.6 \times 10^{-6} \,\mathrm{W/m^2}}$ The charge parameter: $\gamma \equiv G_0 \sqrt{T}/n_e$

The photoelectric effect on PAHs

The UV Interstellar Radiation Field (ISRF)

The UV field: $G_0 \equiv \frac{\int_{0.0912\,\mu m}^{0.24\,\mu m} 4\pi J_\lambda(\lambda) d\lambda}{1.6 \times 10^{-6} \text{ W/m}^2}$ The charge parameter: $\gamma \equiv G_0 \sqrt{T}/n_e$

The UV Interstellar Radiation Field (ISRF)

The UV field: $G_0 \equiv \frac{\int_{0.0912 \, \mu m}^{0.24 \, \mu m} 4\pi J_\lambda(\lambda) d\lambda}{1.6 \times 10^{-6} \text{ W/m}^2}$ The charge parameter: $\gamma \equiv G_0 \sqrt{T}/n_e$

The UV Interstellar Radiation Field (ISRF)

The UV field: $G_0 \equiv \frac{\int_{0.0912\,\mu m}^{0.24\,\mu m} 4\pi J_\lambda(\lambda) d\lambda}{1.6 \times 10^{-6} \text{ W/m}^2}$ The charge parameter: $\gamma \equiv G_0 \sqrt{T}/n_e$

The UV Interstellar Radiation Field (ISRF) e\ Mathis et The UV field: $G_0 \equiv \frac{\int_{0.0912 \, \mu m}^{0.24 \, \mu m} 4\pi J_\lambda(\lambda) \, d\lambda}{1.6 \times 10^{-6} \, \text{W/m}^2}$ 4*πν*/ V/m G Ionizing 0.1 10 The charge parameter: $\gamma \equiv G_0 \sqrt{T}/n_e$ photons Wavelength, λ [μ m] The photoelectric effect on PAHs The photoelectric effect on grains UV photon (lp: ionization PAH potential) $\epsilon_{ extsf{PE}}^{ extsf{PAH}}(u) \simeq Y\left(rac{h u - I_{ extsf{P}}}{h u} ight)$

The UV Interstellar Radiation Field (ISRF)

The UV field: $G_0 \equiv \frac{\int_{0.0912 \, \mu m}^{0.24 \, \mu m} 4\pi J_\lambda(\lambda) \, d\lambda}{1.6 \times 10^{-6} \, W/m^2}$ The charge parameter: $\gamma \equiv G_0 \sqrt{T}/n_e$

The UV Interstellar Radiation Field (ISRF)

The UV field: $G_0 \equiv \frac{\int_{0.24 \, \mu m}^{0.24 \, \mu m} 4\pi J_\lambda(\lambda) \, d\lambda}{1.6 \times 10^{-6} \, W/m^2}$ The charge parameter: $\gamma \equiv G_0 \sqrt{T}/n_e$

The UV Interstellar Radiation Field (ISRF)

The UV field: $G_0 \equiv \frac{\int_{0.0912\,\mu m}^{0.24\,\mu m} 4\pi J_\lambda(\lambda) \,d\lambda}{1.6 \times 10^{-6} \,W/m^2}$ The charge parameter: $\gamma \equiv G_0 \sqrt{T}/n_e$

The UV Interstellar Radiation Field (ISRF)

The UV field: $G_0 \equiv \frac{\int_{0.0912\,\mu m}^{0.24\,\mu m} 4\pi J_\lambda(\lambda) \,d\lambda}{1.6 \times 10^{-6} \,W/m^2}$ The charge parameter: $\gamma \equiv G_0 \sqrt{T}/n_e$

The UV Interstellar Radiation Field (ISRF) e\ The UV field: $G_0 \equiv \frac{\int_{0.0912 \, \mu m}^{0.24 \, \mu m} 4\pi J_\lambda(\lambda) \, d\lambda}{1.6 \times 10^{-6} \, \text{W/m}^2}$ /u 10−6 G Ionizina 0.1 The charge parameter: $\gamma \equiv G_0 \sqrt{T} / n_e$ photons Wavelength, λ [μ m] The photoelectric effect on PAHs The photoelectric effect on grains UV photon UV photon _ Photo-electron Photo-electron (W: diffusion work (lp: ionization Grain PAH Φc: Coulomb potential) potential)

$$\epsilon_{\mathsf{PE}}^{\mathsf{PAH}}(\nu) \simeq Y\left(\frac{h\nu - I_{\mathsf{P}}}{h\nu}\right)$$
 $\epsilon_{\mathsf{PE}}^{\mathsf{grain}}(\nu) \simeq Y\left(\frac{h\nu - W - \phi_c}{h\nu}\right)$

Mathis et

(198)

The UV Interstellar Radiation Field (ISRF)

The UV field: $G_0 \equiv \frac{\int_{0.0912\,\mu m}^{0.24\,\mu m} 4\pi J_\lambda(\lambda) d\lambda}{1.6 \times 10^{-6} \text{ W/m}^2}$ The charge parameter: $\gamma \equiv G_0 \sqrt{T}/n_e$

Empirical heating rate (Bakes & Tielens, 1994; Wolfire et al., 2022)

The UV Interstellar Radiation Field (ISRF)

The UV field: $G_0 \equiv \frac{\int_{0.0912\,\mu m}^{0.24\,\mu m} 4\pi J_\lambda(\lambda) d\lambda}{1.6 \times 10^{-6} \text{ W/m}^2}$ The charge parameter: $\gamma \equiv G_0 \sqrt{T}/n_e$

Empirical heating rate (Bakes & Tielens, 1994; Wolfire et al., 2022)

$$\epsilon_{\rm PE} \simeq \frac{4.87 \times 10^{-2}}{1 + 4 \times 10^{-3} \gamma^{0.73}} + \frac{3.65 \times 10^{-2} (\,T/10^4 \,\,{\rm K})^{0.7}}{1 + 2 \times 10^{-2} \gamma}$$

F. Galliano (CEA Paris-Saclay)

ISM lecture 3 (ISYA 2024, Algiers)

The UV Interstellar Radiation Field (ISRF)

The UV field: $G_0 \equiv \frac{\int_{0.0912\,\mu m}^{0.24\,\mu m} 4\pi J_\lambda(\lambda) d\lambda}{1.6 \times 10^{-6} \text{ W/m}^2}$ The charge parameter: $\gamma \equiv G_0 \sqrt{T}/n_e$

Empirical heating rate (Bakes & Tielens, 1994; Wolfire et al., 2022)

$$\epsilon_{\text{PE}} \simeq \frac{4.87 \times 10^{-2}}{1 + 4 \times 10^{-3} \gamma^{0.73}} + \frac{3.65 \times 10^{-2} (T/10^4 \text{ K})^{0.7}}{1 + 2 \times 10^{-2} \gamma} \rightarrow \Gamma_{\text{PE}} = 10^{-31} \epsilon_{\text{PE}} G_0 \text{ [W]}.$$

F. Galliano (CEA Paris-Saclay)

ISM lecture 3 (ISYA 2024, Algiers)

The heating rate due to the photoionization of specie *i*

The heating rate due to the photoionization of specie i i H^0 (e.g. Tielens, 2005)

The heating rate due to the photoionization of specie *i*

The heating rate due to the photoionization of specie *i*

F. Galliano (CEA Paris-Saclay)

(e.g. Tielens, 2005)

The heating rate due to the photoionization of specie *i*

In the ionized gas

- Most electrons coming from the photoionization ${\rm H^0} + \gamma \rightarrow {\rm H^+} + e^-$.

- Most electrons coming from the photoionization ${\rm H^0} + \gamma \rightarrow {\rm H^+} + e^-$.
- \Rightarrow dominant heating process in H II.

- Most electrons coming from the photoionization $H^0 + \gamma \rightarrow H^+ + e^-$.
- \Rightarrow dominant heating process in H II.

- Most electrons coming from the photoionization $H^0 + \gamma \rightarrow H^+ + e^-$.
- \Rightarrow dominant heating process in H II.

 2×10^{4}

 3×10^{4}

Stellar effective temperature, T_{eff} [K]

 4×10^{4}

200 10°

 5×10^{4}

In the ionized gas

- Most electrons coming from the photoionization ${\rm H^0} + \gamma \rightarrow {\rm H^+} + e^-$.
- \Rightarrow dominant heating process in H II.

In the neutral gas

- Most electrons coming from photoionization ${\rm C}^0 + \gamma \rightarrow {\rm C}^+ + e^-$.

In the ionized gas

- Most electrons coming from the photoionization ${\rm H^0} + \gamma \rightarrow {\rm H^+} + e^-$.
- \Rightarrow dominant heating process in H II.

In the neutral gas

- Most electrons coming from photoionization ${\rm C}^0 + \gamma \rightarrow {\rm C}^+ + e^-$.
- At $Z \simeq Z_{\odot}$, $N(C)/N(H) \simeq 1.6 \times 10^{-4}$.

In the ionized gas

- Most electrons coming from the photoionization ${\rm H^0} + \gamma \rightarrow {\rm H^+} + e^-$.
- \Rightarrow dominant heating process in H II.

In the neutral gas

- Most electrons coming from photoionization ${\rm C}^0 + \gamma \rightarrow {\rm C}^+ + e^-$.
- At $Z \simeq Z_{\odot}$, $N(C)/N(H) \simeq 1.6 \times 10^{-4}$.
- \Rightarrow secondary heating source in HI.

 Low-energy CRs (1–10 MeV) are the most numerous.

- Low-energy CRs (1–10 MeV) are the most numerous.
- They penetrate dense clouds where there are no UV photons.

- Low-energy CRs (1–10 MeV) are the most numerous.
- They penetrate dense clouds where there are no UV photons.

• CR rate:
$$\zeta_{CR} \simeq (0.5-3) imes 10^{-16} \ {
m s}^{-1}$$
 .

- Low-energy CRs (1–10 MeV) are the most numerous.
- They penetrate dense clouds where there are no UV photons.

+ CR rate:
$$igg < \zeta_{CR} \simeq (0.5-3) imes 10^{-16} \ {
m s}^{-1}$$

 $ightarrow \ \Gamma_{CR} \simeq \zeta_{CR} imes 10 \ [eV/s].$

- Low-energy CRs (1–10 MeV) are the most numerous.
- They penetrate dense clouds where there are no UV photons.

$$ullet$$
 CR rate: $\Big| \ \zeta_{ ext{CR}} \simeq (0.5-3) imes 10^{-16} \ ext{s}^{-1} \Big|$

- \Rightarrow CRs are the most efficient heating source in dense molecular clouds.

- Low-energy CRs (1–10 MeV) are the most numerous.
- They penetrate dense clouds where there are no UV photons.

• CR rate:
$$\zeta_{ ext{CR}}\simeq(0.5-3) imes10^{-16}~ ext{s}^{-1}$$

- \Rightarrow CRs are the most efficient heating source in dense molecular clouds.

Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

- Low-energy CRs (1–10 MeV) are the most numerous.
- They penetrate dense clouds where there are no UV photons.

$$\bullet$$
 CR rate: $\left| \ \zeta_{ ext{CR}} \simeq (0.5-3) imes 10^{-16} \ ext{s}^{-1}
ight|$

- $ightarrow \ \Gamma_{CR} \simeq \zeta_{CR} imes 10 \ [eV/s].$
- \Rightarrow CRs are the most efficient heating source in dense molecular clouds.

- Low-energy CRs (1–10 MeV) are the most numerous.
- They penetrate dense clouds where there are no UV photons.

$$\bullet$$
 CR rate: $\left| \ \zeta_{ ext{CR}} \simeq (0.5-3) imes 10^{-16} \ ext{s}^{-1}
ight|$

- \Rightarrow CRs are the most efficient heating source in dense molecular clouds.

Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

- Low-energy CRs (1–10 MeV) are the most numerous.
- They penetrate dense clouds where there are no UV photons.

$$ullet$$
 CR rate: $\Big| \ \zeta_{ ext{CR}} \simeq (0.5-3) imes 10^{-16} \ ext{s}^{-1} \Big|$

- $ightarrow \ \Gamma_{CR} \simeq \zeta_{CR} imes 10 \ [eV/s].$
- \Rightarrow CRs are the most efficient heating source in dense molecular clouds.

Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

- Low-energy CRs (1–10 MeV) are the most numerous.
- They penetrate dense clouds where there are no UV photons.

• CR rate:
$$\Big| \zeta_{ ext{CR}} \simeq (0.5-3) imes 10^{-16} ext{ s}^{-1} \Big|$$

- $ightarrow \ \Gamma_{CR} \simeq \zeta_{CR} imes 10 \ [eV/s].$
- \Rightarrow CRs are the most efficient heating source in dense molecular clouds.

X-ray heating

Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

- Low-energy CRs (1–10 MeV) are the most numerous.
- They penetrate dense clouds where there are no UV photons.

• CR rate:
$$\left| \zeta_{\mathsf{CR}} \simeq (0.5-3) imes 10^{-16} \; \mathsf{s}^{-1}
ight|$$

- $ightarrow \ \Gamma_{CR} \simeq \zeta_{CR} imes 10 \ [eV/s].$
- \Rightarrow CRs are the most efficient heating source in dense molecular clouds.

X-ray heating

Similar interaction as cosmic rays but with lower energy.

Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

- Low-energy CRs (1–10 MeV) are the most numerous.
- They penetrate dense clouds where there are no UV photons.

• CR rate:
$$\left| \zeta_{\mathsf{CR}} \simeq (0.5-3) imes 10^{-16} \; \mathsf{s}^{-1}
ight|$$

- \Rightarrow CRs are the most efficient heating source in dense molecular clouds.

X-ray heating

- Similar interaction as cosmic rays but with lower energy.
- X-rays penetrate less deeply into clouds:

Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

- Low-energy CRs (1–10 MeV) are the most numerous.
- They penetrate dense clouds where there are no UV photons.

• CR rate:
$$\left| \zeta_{\mathsf{CR}} \simeq (0.5-3) imes 10^{-16} \; \mathsf{s}^{-1}
ight|$$

- \Rightarrow CRs are the most efficient heating source in dense molecular clouds.

X-ray heating

- Similar interaction as cosmic rays but with lower energy.
- X-rays penetrate less deeply into clouds:

Near bright X-ray sources: (binary, AGNs, etc.) \rightarrow only regions where it dominates.

- Low-energy CRs (1–10 MeV) are the most numerous.
- They penetrate dense clouds where there are no UV photons.

• CR rate:
$$\Big| \zeta_{ ext{CR}} \simeq (0.5-3) imes 10^{-16} ext{ s}^{-1} \Big|$$

- $ightarrow \ \Gamma_{CR} \simeq \zeta_{CR} imes 10 \ [eV/s].$
- \Rightarrow CRs are the most efficient heating source in dense molecular clouds.

X-ray heating

- Similar interaction as cosmic rays but with lower energy.
- X-rays penetrate less deeply into clouds:

Near bright X-ray sources: (binary, AGNs, etc.) \rightarrow only regions where it dominates. Diffuse X-ray background: $\Gamma_{XR} \simeq 10^{-33}$ [W/H].

- Low-energy CRs (1–10 MeV) are the most numerous.
- They penetrate dense clouds where there are no UV photons.

• CR rate:
$$\Big| \zeta_{ ext{CR}} \simeq (0.5-3) imes 10^{-16} ext{ s}^{-1} \Big|$$

- $ightarrow \ \Gamma_{CR} \simeq \zeta_{CR} imes 10 \ [eV/s].$
- \Rightarrow CRs are the most efficient heating source in dense molecular clouds.

X-ray heating

- Similar interaction as cosmic rays but with lower energy.
- X-rays penetrate less deeply into clouds:

Near bright X-ray sources: (binary, AGNs, etc.) \rightarrow only regions where it dominates. Diffuse X-ray background: $\Gamma_{XR} \simeq 10^{-33}$ [W/H].

Shock Heating

- Low-energy CRs (1–10 MeV) are the most numerous.
- They penetrate dense clouds where there are no UV photons.

• CR rate:
$$\Big| \zeta_{ ext{CR}} \simeq (0.5-3) imes 10^{-16} ext{ s}^{-1}$$

- $ightarrow \ \Gamma_{CR} \simeq \zeta_{CR} imes 10 \ [eV/s].$
- \Rightarrow CRs are the most efficient heating source in dense molecular clouds.

X-ray heating

- Similar interaction as cosmic rays but with lower energy.
- X-rays penetrate less deeply into clouds:

Near bright X-ray sources: (binary, AGNs, *etc.*) \rightarrow only regions where it dominates. Diffuse X-ray background: $\Gamma_{XR} \simeq 10^{-33}$ [W/H].

Shock Heating

• $\Gamma_{\text{shock}} \simeq 1/2 m_{\text{H}} v_{\text{shock}}^2 \times R_{\text{SN}} \times f_{\text{V}}$, w/ $v_{\text{shock}} \simeq 300$ km/s, $R_{\text{SN}} \simeq 1/(100$ year) & $f_{\text{V}} \simeq 2 \times 10^{-7}$.

- Low-energy CRs (1–10 MeV) are the most numerous.
- They penetrate dense clouds where there are no UV photons.

• CR rate:
$$\Big| \zeta_{ ext{CR}} \simeq (0.5-3) imes 10^{-16} ext{ s}^{-1}$$

- $ightarrow \ \Gamma_{CR} \simeq \zeta_{CR} imes 10 \ [eV/s].$
- \Rightarrow CRs are the most efficient heating source in dense molecular clouds.

X-ray heating

- Similar interaction as cosmic rays but with lower energy.
- X-rays penetrate less deeply into clouds:

Near bright X-ray sources: (binary, AGNs, *etc.*) \rightarrow only regions where it dominates. Diffuse X-ray background: $\Gamma_{XR} \simeq 10^{-33}$ [W/H].

Shock Heating

- $\Gamma_{\text{shock}} \simeq 1/2 m_{\text{H}} v_{\text{shock}}^2 \times R_{\text{SN}} \times f_{\text{V}}$, w/ $v_{\text{shock}} \simeq 300$ km/s, $R_{\text{SN}} \simeq 1/(100$ year) & $f_{\text{V}} \simeq 2 \times 10^{-7}$.
- \Rightarrow dominant heating process in the hot, intercloud, coronal gas.

Thermal Phases | Dust Cooling & Total ISM Cooling

Thermal Phases | Dust Cooling & Total ISM Cooling

• Gas & dust are not thermalized (e.g. $T_{gas}(WNM) \simeq 10^4$ K vs. $T_{dust}(WNM) \simeq 18$ K).

Thermal Phases | Dust Cooling & Total ISM Cooling

• Gas & dust are not thermalized (e.g. $T_{gas}(WNM) \simeq 10^4$ K vs. $T_{dust}(WNM) \simeq 18$ K).

• Dust dominates the energetic balance of the ISM: $L_{dust}^{cool} = L_{dust}^{abs} \simeq 30 \% L_{\star} \Rightarrow L_{gas}^{cool} \simeq 1 \% L_{dust}^{cool}$.

Thermal Phases | The Dominant Coolants of the ISM

Brightest Mid-IR Fine Structure Lines

Thermal Phases | The Dominant Coolants of the ISM

Brightest Mid-IR Fine Structure Lines

Thermal balance: $n \times \Gamma = n^2 \times \Lambda(T)$

Thermal balance:
$$n \times \Gamma = n^2 \times \Lambda(T) \Rightarrow \frac{P}{k} = \frac{T \times \Gamma}{\Lambda(T)}.$$

Thermal balance: $n \times \Gamma = n^2 \times \Lambda(T) \Rightarrow \frac{P}{k} = \frac{T \times \Gamma}{\Lambda(T)}$. In the ISM: $P/k \simeq 3000 \text{ K.cm}^{-3}$.

F. Galliano (CEA Paris-Saclav) ISM lecture 3 (ISYA 2024, Algiers)

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 12 / 46

Thermal Phases | Observations of the Bithermal Neutral Medium

F. Galliano (CEA Paris-Saclay)

([H I]_{21 cm} emission with CO contours; Kalberla & Kerp 2009)

Thermal Phases | Observations of the Bithermal Neutral Medium

([H I]_{21 cm} emission with CO contours; Kalberla & Kerp 2009)

 $\Rightarrow [H I]_{21 \text{ cm}}$ CNM absorption in front of WNM [H I]_{21 \text{ cm}} emission, without systematic association to CO.

F. Galliano (CEA Paris-Saclay)

Accounting for heating by shock & H^0 photoionization:

Accounting for heating by shock & H⁰ photoionization:

Accounting for heating by shock & H⁰ photoionization:

Accounting for heating by shock & $\ensuremath{\mathsf{H}^0}$ photoionization:

10⁵ Thermal pressure, *Plk* [K/cm³] 10⁴ *P/k*~3000 K/cm³ 1000 Warm Ionized Medium (WIM) $T \simeq 10^4 \text{ K}$ Heating dominated by 100 photoionization 0.01 0.1 10 100 0.001 1000 Gas density, n [cm⁻³] F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st. 2024 14 / 46

Accounting for heating by shock & H⁰ photoionization:

Thermal Phases | Observations of the Hot Ionized Medium (HIM)

Credit: eRosita all-sky survey (0.3–0.6 keV / 0.6–1 keV / 1–2.3 keV); J. Sanders, H. Brunner & the eSASS team (MPE); E. Churazov, M. Gilfanov (on behalf of IKI).

Diffuse molecular clouds: $n(H_2) = 10^2 - 10^3 \text{ cm}^{-3} \& T = 40 - 100 \text{ K}.$

Diffuse molecular clouds: $n(H_2) = 10^2 - 10^3 \text{ cm}^{-3} \& T = 40 - 100 \text{ K}.$ Dense molecular clouds: $n(H_2) = 10^3 - 10^6 \text{ cm}^{-3} \& T = 20 - 50 \text{ K}.$

Diffuse molecular clouds: $n(H_2) = 10^2 - 10^3 \text{ cm}^{-3} \& T = 40 - 100 \text{ K}.$ Dense molecular clouds: $n(H_2) = 10^3 - 10^6 \text{ cm}^{-3} \& T = 20 - 50 \text{ K}.$ Molecular cores: $n(H_2) = 10^6 - 10^7 \text{ cm}^{-3} \& T = 10 - 20 \text{ K}.$

Diffuse molecular clouds: $n(H_2) = 10^2 - 10^3 \text{ cm}^{-3} \& T = 40 - 100 \text{ K}.$ Dense molecular clouds: $n(H_2) = 10^3 - 10^6 \text{ cm}^{-3} \& T = 20 - 50 \text{ K}.$ Molecular cores: $n(H_2) = 10^6 - 10^7 \text{ cm}^{-3} \& T = 10 - 20 \text{ K}.$

F. Galliano (CEA Paris-Saclay)

ISM lecture 3 (ISYA 2024, Algiers)

October 1st, 2024

Thermal Phases | Summary of the Properties of the ISM Phases

Phase	Density	Temperature	Volume	Main	Main
	[cm ⁻³]	[K]	filling factor	heating	cooling

Phase	Density	Temperature	Volume	Main	Main
	[cm ⁻³]	[K]	filling factor	heating	cooling
Hot Ionized Medium (HIM)	$\simeq 0.003$	$\simeq 10^{6}$	$\simeq 50\%$	Shocks	Free-free

Phase	Density	Temperature	Volume	Main	Main
	[cm ⁻³]	[K]	filling factor	heating	cooling
Hot Ionized Medium (HIM)	$\simeq 0.003$	$\simeq 10^{6}$	$\simeq 50\%$	Shocks	Free-free
Warm Ion- ized Medium (WIM)	$\simeq 0.1$	$\simeq 10^4$	$\simeq 25 \%$	Photoionization	Optical lines

Phase	Density	Temperature	Volume	Main	Main
	[cm ⁻³]	[K]	filling factor	heating	cooling
Hot Ionized Medium (HIM)	$\simeq 0.003$	$\simeq 10^{6}$	$\simeq 50\%$	Shocks	Free-free
Warm Ion- ized Medium (WIM)	$\simeq 0.1$	$\simeq 10^4$	$\simeq 25 \%$	Photoionization	Optical lines
Warm Neu- tral Medium (WNM)	$\simeq 0.3$	$\simeq 10^4$	$\simeq 30$ %	Photoelectric effect	Lyα

Phase	Density	Temperature	Volume	Main	Main
	[cm ⁻³]	[K]	filling factor	heating	cooling
Hot Ionized Medium (HIM)	$\simeq 0.003$	$\simeq 10^{6}$	$\simeq 50\%$	Shocks	Free-free
Warm Ion- ized Medium (WIM)	$\simeq 0.1$	$\simeq 10^4$	$\simeq 25 \%$	Photoionization	Optical lines
Warm Neu- tral Medium (WNM)	$\simeq 0.3$	$\simeq 10^4$	$\simeq 30$ %	Photoelectric effect	Lylpha
Cold Neu- tral Medium (CNM)	$\simeq 30$	$\simeq 100$	$\simeq 1\%$	Photoelectric effect	[C II] _{158µm}

Phase	Density [cm ⁻³]	Temperature [K]	Volume filling factor	Main heating	Main cooling
Hot Ion- ized Medium (HIM)	$\simeq 0.003$	$\simeq 10^{6}$	$\simeq 50 \%$	Shocks	Free-free
Warm Ion- ized Medium (WIM)	$\simeq 0.1$	$\simeq 10^4$	$\simeq 25 \%$	Photoionization	Optical lines
Warm Neu- tral Medium (WNM)	$\simeq 0.3$	$\simeq 10^4$	$\simeq 30$ %	Photoelectric effect	Lyα
Cold Neu- tral Medium (CNM)	$\simeq 30$	$\simeq 100$	$\simeq 1\%$	Photoelectric effect	[C II] _{158µm}
Molecular clouds	$10^2 - 10^6$	10 - 50	$\simeq 0.01$ %	Cosmic rays	CO lines

Thermal Phases | The Multiphase Interstellar Dynamical Network

Hot Ionized Medium (HIM)

(adapted from P. van der Werf)

F. Galliano (CEA Paris-Saclay)

(adapted from P. van der Werf)

F. Galliano (CEA Paris-Saclay)

(adapted from P. van der Werf)

(adapted from P. van der Werf)

F. Galliano (CEA Paris-Saclay)

(adapted from P. van der Werf)

F. Galliano (CEA Paris-Saclay)

ISM lecture 3 (ISYA 2024, Algiers)

(adapted from P. van der Werf)

(adapted from P. van der Werf)

(adapted from P. van der Werf)

F. Galliano (CEA Paris-Saclay)

ISM lecture 3 (ISYA 2024, Algiers)

(adapted from P. van der Werf)

F. Galliano (CEA Paris-Saclay)

ISM lecture 3 (ISYA 2024, Algiers)

October 1st, 2024

ISM lecture 3 (ISYA 2024, Algiers)

October 1st, 2024

18 / 46

Outline of the Lecture

1 COOLING & HEATING OF THE GAS

- The gas heating processes
- The gas cooling function
- The five thermal phases of the ISM

THE PRINCIPLES OF RADIATIVE TRANSFER

- The radiative transfer equation
- Solutions in simple cases
- Dust radiative transfer with more complex geometries

STAR-FORMING REGIONS

- The Structure of Star-Forming Regions
- HII regions
- PhotoDissociation Regions (PDRs)

- Take-away points
- References

Spherical coordinate reminder

Spherical coordinate reminder

Solid angle: $d\Omega = \sin \theta d\theta d\phi$.

Spherical coordinate reminder

Solid angle: $d\Omega = \sin \theta d\theta d\phi$. **Polar**

Polar angle: $0 \le \theta < \pi$.

Spherical coordinate reminder

Solid angle: $d\Omega = \sin \theta d\theta d\phi$.

Polar angle: $0 \le \theta < \pi$.

Spherical coordinate reminder

Solid angle: $d\Omega = \sin \theta d\theta d\phi$.

Polar angle: $0 \le \theta < \pi$.

Azimuthal angle: $0 \le \phi < 2\pi$.

Specific & mean intensities

Spherical coordinate reminder

Solid angle: $d\Omega = \sin \theta d\theta d\phi$.

Polar angle: $0 \le \theta < \pi$.

Spherical coordinate reminder

Solid angle: $d\Omega = \sin\theta d\theta d\phi$.

Polar angle: $0 \le \theta < \pi$.

Spherical coordinate reminder

Solid angle: $d\Omega = \sin\theta d\theta d\phi$.

Polar angle: $0 \le \theta < \pi$.

Spherical coordinate reminder

Solid angle: $d\Omega = \sin \theta d\theta d\phi$.

Polar angle: $0 \le \theta < \pi$.

Spherical coordinate reminder

Solid angle: $d\Omega = \sin \theta d\theta d\phi$.

Polar angle: $0 \le \theta < \pi$.

Azimuthal angle: $0 \le \phi < 2\pi$.

Specific & mean intensities
Specific intensity:
$$l_{\nu}(\nu, \vec{r}, \theta, \phi) \equiv \frac{dE}{dt dA d\Omega d\nu}$$
.
Mean intensity: (0th order moment of l_{ν})
 $J_{\nu}(\nu, \vec{r}) \equiv \frac{1}{4\pi} \iint_{\Omega} l_{\nu}(\nu, \vec{r}, \theta, \phi) d\Omega$.

Spherical coordinate reminder

Solid angle: $d\Omega = \sin\theta d\theta d\phi$.

Polar angle: $0 \le \theta < \pi$.

Azimuthal angle: $0 \le \phi < 2\pi$.

Specific & mean intensities
Specific intensity:
$$l_{\nu}(\nu, \vec{r}, \theta, \phi) \equiv \frac{dE}{dt dA d\Omega d\nu}$$
.
Mean intensity: (0th order moment of l_{ν})
 $J_{\nu}(\nu, \vec{r}) \equiv \frac{1}{4\pi} \iint_{\Omega} I_{\nu}(\nu, \vec{r}, \theta, \phi) d\Omega$.
Isotropic radiation $\Rightarrow l_{\nu}(\nu, \vec{r}) = J_{\nu}(\nu, \vec{r})$.

Spherical coordinate reminder

Solid angle: $d\Omega = \sin \theta d\theta d\phi$. Polar angle: $0 \le \theta < \pi$. Azimuthal angle: $0 \le \phi < 2\pi$.

Specific & mean intensities	The net flux
Specific intensity: $I_{ u}(u,ec{r}, heta,\phi)\equiv rac{{ m d}E}{{ m d}t{ m d}A{ m d}\Omega{ m d} u}.$	
Mean intensity: $(0^{th}$ order moment of I_{ν})	
$J_ u(u,ec{r})\equiv rac{1}{4\pi} \iint\limits_\Omega I_ u(u,ec{r}, heta,\phi) { m d}\Omega.$	
Isotropic radiation $\Rightarrow I_{\nu}(\nu, \vec{r}) = J_{\nu}(\nu, \vec{r}).$	

Spherical coordinate reminder

Solid angle: $d\Omega = \sin \theta d\theta d\phi$.

Polar angle: $0 \le \theta < \pi$.

Azimuthal angle: $0 \le \phi < 2\pi$.

Specific & mean intensities Specific intensity: $l_{\nu}(\nu, \vec{r}, \theta, \phi) \equiv \frac{dE}{dtdAd\Omega d\nu}$. Mean intensity: (0th order moment of l_{ν}) $J_{\nu}(\nu, \vec{r}) \equiv \frac{1}{4\pi} \iint_{\Omega} l_{\nu}(\nu, \vec{r}, \theta, \phi) d\Omega$.

Isotropic radiation $\Rightarrow I_{\nu}(\nu, \vec{r}) = J_{\nu}(\nu, \vec{r}).$

The net flux

Net monochromatic flux: $(1^{\text{st}} \text{ order moment})$ of I_{ν} $F_{\nu}(\nu, \vec{r}) \equiv \iint_{\Omega} I_{\nu}(\nu, \vec{r}, \theta, \phi) \cos \theta \, \mathrm{d}\Omega.$

Spherical coordinate reminder

Solid angle: $d\Omega = \sin \theta d\theta d\phi$.

Polar angle: $0 \le \theta < \pi$.

Azimuthal angle: $0 \le \phi < 2\pi$.

Specific & mean intensities Specific intensity: $I_{\nu}(\nu, \vec{r}, \theta, \phi) \equiv \frac{dE}{dt dA d\Omega d\nu}$. Mean intensity: (0th order moment of I_{ν}) $J_{\nu}(\nu, \vec{r}) \equiv \frac{1}{4\pi} \iint_{\Omega} I_{\nu}(\nu, \vec{r}, \theta, \phi) d\Omega$.

Isotropic radiation $\Rightarrow I_{\nu}(\nu, \vec{r}) = J_{\nu}(\nu, \vec{r})$

The net flux

Net monochromatic flux: $(1^{\text{st}} \text{ order moment})$ of I_{ν} $F_{\nu}(\nu, \vec{r}) \equiv \iint_{\Omega} I_{\nu}(\nu, \vec{r}, \theta, \phi) \cos \theta \, \mathrm{d}\Omega.$

Spherical coordinate reminder

Solid angle: $d\Omega = \sin \theta d\theta d\phi$.

Polar angle: $0 \le \theta < \pi$.

Azimuthal angle: $0 \le \phi < 2\pi$.

Specific & mean intensities Specific intensity: $l_{\nu}(\nu, \vec{r}, \theta, \phi) \equiv \frac{dE}{dt dA d\Omega d\nu}$. Mean intensity: (0th order moment of l_{ν}) $J_{\nu}(\nu, \vec{r}) \equiv \frac{1}{4\pi} \iint_{\Omega} l_{\nu}(\nu, \vec{r}, \theta, \phi) d\Omega$.

Isotropic radiation $\Rightarrow I_{\nu}(\nu, \vec{r}) = J_{\nu}(\nu, \vec{r}).$

The net flux

Net monochromatic flux: $(1^{\text{st}} \text{ order moment})$ of I_{ν} $F_{\nu}(\nu, \vec{r}) \equiv \iint_{\Omega} I_{\nu}(\nu, \vec{r}, \theta, \phi) \cos \theta \, \mathrm{d}\Omega.$

Spherical coordinate reminder

Solid angle: $d\Omega = \sin \theta d\theta d\phi$.

Polar angle: $0 \le \theta < \pi$.

Azimuthal angle: $0 \le \phi < 2\pi$.

Specific & mean intensities T Specific intensity: $I_{\nu}(\nu, \vec{r}, \theta, \phi) \equiv \frac{dE}{dt dA d\Omega d\nu}$. Mean intensity: $(0^{\text{th}} \text{ order moment of } I_{\nu})$

The net flux

Net monochromatic flux: $(1^{\text{st}} \text{ order moment}$ of $I_{\nu})$ $F_{\nu}(\nu, \vec{r}) \equiv \iint_{\Omega} I_{\nu}(\nu, \vec{r}, \theta, \phi) \cos \theta \, \mathrm{d}\Omega.$

Specific intensity

 $J_{\nu}(\nu, \vec{r}) \equiv \frac{1}{4\pi} \iint_{\Omega} I_{\nu}(\nu, \vec{r}, \theta, \phi) \, \mathrm{d}\Omega.$ Isotropic radiation $\Rightarrow I_{\nu}(\nu, \vec{r}) = J_{\nu}(\nu, \vec{r}).$

ISM lecture 3 (ISYA 2024, Algiers)

Spherical coordinate reminder

Solid angle: $d\Omega = \sin\theta d\theta d\phi$.

Specific & mean intensities

Polar angle: $0 \le \theta < \pi$.

Azimuthal angle: $0 \le \phi < 2\pi$.

The net flux

Specific intensity: $I_{\nu}(\nu, \vec{r}, \theta, \phi) \equiv \frac{dE}{dtdAd\Omega d\nu}$. Mean intensity: (0th order moment of I_{ν}) $J_{\nu}(\nu, \vec{r}) \equiv \frac{1}{4\pi} \iint_{\Omega} I_{\nu}(\nu, \vec{r}, \theta, \phi) d\Omega$.

Isotropic radiation $\Rightarrow I_{\nu}(\nu, \vec{r}) = J_{\nu}(\nu, \vec{r}).$

Net monochromatic flux: (1st order moment of I_{ν}) $F_{\nu}(\nu, \vec{r}) \equiv \iint_{\Omega} I_{\nu}(\nu, \vec{r}, \theta, \phi) \cos \theta \, d\Omega.$ Isotropic case $\Rightarrow F_{\nu}(\nu, \vec{r}) = 0.$

Specific intensity

ISM lecture 3 (ISYA 2024, Algiers)

Spherical coordinate reminder

Solid angle: $d\Omega = \sin \theta d\theta d\phi$.

Specific & mean intensities

Polar angle: $0 \le \theta < \pi$.

Azimuthal angle: $0 \le \phi < 2\pi$.

The net flux

Specific intensity: $I_{\nu}(\nu, \vec{r}, \theta, \phi) \equiv \frac{dE}{dtdAd\Omega d\nu}$. Mean intensity: (0th order moment of I_{ν}) $J_{\nu}(\nu, \vec{r}) \equiv \frac{1}{4\pi} \iint_{\Omega} I_{\nu}(\nu, \vec{r}, \theta, \phi) d\Omega$.

Isotropic radiation $\Rightarrow I_{\nu}(\nu, \vec{r}) = J_{\nu}(\nu, \vec{r}).$

Net monochromatic flux: (1st order moment of I_{ν}) $F_{\nu}(\nu, \vec{r}) \equiv \iint_{\Omega} I_{\nu}(\nu, \vec{r}, \theta, \phi) \cos \theta \, d\Omega.$ Isotropic case $\Rightarrow F_{\nu}(\nu, \vec{r}) = 0.$

Hemispherical case $\Rightarrow F_{\nu}(\nu, \vec{r}) = \pi J_{\nu}(\nu, \vec{r}).$

Radiation pressure

Radiation pressure

Momentum flux carried by a photon of frequency ν : $p = h\nu/c$.

Radiation pressure

Momentum flux carried by a photon of frequency ν : $p = h\nu/c$. **Radiation pressure:** $(2^{nd} \text{ order moment of } I_{\nu})$ $P_{\nu} \equiv \iint_{\Omega} I_{\nu}(\nu, \vec{r}, \theta, \phi) \cos^2 \theta \, d\Omega.$
Radiation pressure

Momentum flux carried by a photon of frequency ν : $p = h\nu/c$. **Radiation pressure:** $(2^{nd} \text{ order moment of } I_{\nu})$ $P_{\nu} \equiv \iint_{\Omega} I_{\nu}(\nu, \vec{r}, \theta, \phi) \cos^2 \theta \, d\Omega.$

Radiation pressure

Radiation pressure

Momentum flux carried by a photon of frequency ν : $p = h\nu/c$. **Radiation pressure:** $(2^{nd} \text{ order moment of } I_{\nu})$ $P_{\nu} \equiv \iint_{\Omega} I_{\nu}(\nu, \vec{r}, \theta, \phi) \cos^2 \theta \, d\Omega.$

Radiation pressure

Momentum flux carried by a photon of frequency ν : $p = h\nu/c$. **Radiation pressure:** $(2^{nd} \text{ order moment of } I_{\nu})$ $P_{\nu} \equiv \iint_{\Omega} I_{\nu}(\nu, \vec{r}, \theta, \phi) \cos^2 \theta \, d\Omega.$

Radiation pressure

Momentum flux carried by a photon of frequency ν : $p = h\nu/c$. Radiation pressure: $(2^{nd} \text{ order moment of } I_{\nu})$ $P_{\nu} \equiv \iint_{\Omega} I_{\nu}(\nu, \vec{r}, \theta, \phi) \cos^2 \theta \, d\Omega.$ Energy density

Radiation pressure

Momentum flux carried by a photon of frequency ν : $p = h\nu/c$. **Radiation pressure:** $(2^{nd} \text{ order moment of } I_{\nu})$ $P_{\nu} \equiv \iint_{\Omega} I_{\nu}(\nu, \vec{r}, \theta, \phi) \cos^2 \theta \, d\Omega.$

Energy density
$$U_{\nu}(\nu, \vec{r}, \theta, \phi) \equiv \frac{dE}{dV d\Omega d\nu} = \frac{dE}{cdt dA d\Omega d\nu}$$

Radiation pressure

Momentum flux carried by a photon of frequency ν : $p = h\nu/c$. Radiation pressure: $(2^{nd} \text{ order moment of } l_{\nu})$ $P_{\nu} \equiv \iint_{\Omega} l_{\nu}(\nu, \vec{r}, \theta, \phi) \cos^2 \theta \, d\Omega.$

Energy density
$$U_{\nu}(\nu, \vec{r}, \theta, \phi) \equiv \frac{dE}{dV d\Omega d\nu} = \frac{dE}{c dt dA d\Omega d\nu}$$

Radiation pressure

Momentum flux carried by a photon of frequency ν : $p = h\nu/c$. **Radiation pressure:** $(2^{nd} \text{ order moment of } I_{\nu})$ $P_{\nu} \equiv \iint_{\Omega} I_{\nu}(\nu, \vec{r}, \theta, \phi) \cos^2 \theta \, d\Omega.$

Energy density
$$U_{\nu}(\nu, \vec{r}, \theta, \phi) \equiv \frac{dE}{dV d\Omega d\nu} = \frac{dE}{c dt dA d\Omega d\nu}$$

Radiation pressure

Momentum flux carried by a photon of frequency ν : $p = h\nu/c$. **Radiation pressure:** $(2^{nd} \text{ order moment of } I_{\nu})$ $P_{\nu} \equiv \iint_{\Omega} I_{\nu}(\nu, \vec{r}, \theta, \phi) \cos^2 \theta \, d\Omega.$

Energy density

$$U_{\nu}(\nu, \vec{r}, \theta, \phi) \equiv \frac{dE}{dV d\Omega d\nu} = \frac{dE}{c dt dA d\Omega d\nu}$$

$$\Rightarrow U_{\nu}(\nu, \vec{r}, \theta, \phi) = \frac{I_{\nu}(\nu, \vec{r}, \theta, \phi)}{c}.$$

Emission & absorption coefficient

F. Galliano (CEA Paris-Saclay)

Radiation pressure

Momentum flux carried by a photon of frequency ν : $p = h\nu/c$. **Radiation pressure:** $(2^{nd} \text{ order moment of } I_{\nu})$ $P_{\nu} \equiv \iint_{\Omega} I_{\nu}(\nu, \vec{r}, \theta, \phi) \cos^2 \theta \, d\Omega.$

Energy density

$$U_{\nu}(\nu, \vec{r}, \theta, \phi) \equiv \frac{dE}{dV d\Omega d\nu} = \frac{dE}{c dt dA d\Omega d\nu}$$

$$\Rightarrow U_{\nu}(\nu, \vec{r}, \theta, \phi) = \frac{I_{\nu}(\nu, \vec{r}, \theta, \phi)}{c}.$$

Emission & absorption coefficient

Emission coefficient:
$$j_{\nu}(
u, \overrightarrow{r}, \theta, \phi) \equiv rac{\mathrm{d}E_{\mathrm{em}}}{\mathrm{d}t\mathrm{d}V\mathrm{d}\Omega\mathrm{d}
u}.$$

F. Galliano (CEA Paris-Saclay)

Radiation pressure

Momentum flux carried by a photon of frequency ν : $p = h\nu/c$. **Radiation pressure:** $(2^{nd} \text{ order moment of } l_{\nu})$ $P_{\nu} \equiv \iint_{\Omega} l_{\nu}(\nu, \vec{r}, \theta, \phi) \cos^2 \theta \, d\Omega.$

Energy density

$$U_{\nu}(\nu, \vec{r}, \theta, \phi) \equiv \frac{dE}{dV d\Omega d\nu} = \frac{dE}{c dt dA d\Omega d\nu}$$

$$\Rightarrow U_{\nu}(\nu, \vec{r}, \theta, \phi) = \frac{I_{\nu}(\nu, \vec{r}, \theta, \phi)}{c}.$$

Emission & absorption coefficient

$$\begin{array}{ll} \text{Emission coefficient:} & \text{Extinction coefficient:} \\ j_{\nu}(\nu, \overrightarrow{\tau}, \theta, \phi) \equiv \frac{\mathrm{d}E_{\mathrm{em}}}{\mathrm{d}t\mathrm{d}V\mathrm{d}\Omega\mathrm{d}\nu}. & \alpha(\vec{r}, \nu) = \rho(\vec{r}) \times \kappa(\vec{r}, \nu). \end{array}$$

F. Galliano (CEA Paris-Saclay)

ISM lecture 3 (ISYA 2024, Algiers)

(Rybicky & Lightman, 1979; Steinacker et al., 2013)

F. Galliano (CEA Paris-Saclay)

ISM lecture 3 (ISYA 2024, Algiers)

F. Galliano	(CEA Paris-Saclay)
-------------	--------------------

F. Galliano (CEA Paris-Saclay)

|--|

 $\frac{\mathrm{d} I_{\nu}(\nu, \overrightarrow{\tau}, \theta, \phi)}{\mathrm{d} I} = -\underline{\alpha_{\mathrm{abs}}(\nu, \overrightarrow{\tau})} I_{\nu}(\nu, \overrightarrow{\tau}, \theta, \phi)$

absorption

F. Galliano	(CEA Paris-Saclay))
-------------	--------------------	---

 $\frac{\mathrm{d}I_{\nu}(\nu,\overrightarrow{r},\theta,\phi)}{\mathrm{d}I} = -\alpha_{\mathrm{abs}}(\nu,\overrightarrow{r})I_{\nu}(\nu,\overrightarrow{r},\theta,\phi)$

absorption

 $\frac{\mathrm{d}I_{\nu}(\nu,\overrightarrow{r},\theta,\phi)}{\mathrm{d}I} = -\alpha_{\mathrm{abs}}(\nu,\overrightarrow{r})I_{\nu}(\nu,\overrightarrow{r},\theta,\phi) - \alpha_{\mathrm{sca}}(\nu,\overrightarrow{r})I_{\nu}(\nu,\overrightarrow{r},\theta,\phi)$

absorption

scattering out of the sightline

 $\frac{\mathrm{d}I_{\nu}(\nu,\overrightarrow{r},\theta,\phi)}{\mathrm{d}I} = -\alpha_{\mathrm{abs}}(\nu,\overrightarrow{r})I_{\nu}(\nu,\overrightarrow{r},\theta,\phi) - \alpha_{\mathrm{sca}}(\nu,\overrightarrow{r})I_{\nu}(\nu,\overrightarrow{r},\theta,\phi)$

absorption

scattering out of the sightline

(Rybicky & Lightman, 1979; Steinacker et al., 2013)

22 / 46

Solve this $\forall \ \theta$, $\forall \ \phi$, $\forall \ \vec{r}$, $\forall \ \nu$

Solve this $\forall \theta, \forall \phi, \forall \vec{r}, \forall \nu \Rightarrow$ numerically intensive.

Transfer | The Concept of Optical Depth

The optical depth along a sightline

The optical depth along a sightline

Along a given sightline, I:

The optical depth along a sightline

Along a given sightline, *I*: $d\tau(\nu, I) = \alpha(\nu, I) dI$

Transfer | The Concept of Optical Depth

HIM	WNM	CNM	Molecular clouds
$n_{\rm H} = 0.003 \ {\rm cm}^{-3}$	$n_{\rm H} = 0.3 \ {\rm cm}^{-3}$	$n_{\rm H} = 30 {\rm ~cm^{-3}}$	$n_{\rm H} = 10^4 \ { m cm}^{-3}$

	HIM	WNM	CNM	Molecular clouds
	$n_{ m H} = 0.003~{ m cm}^{-3}$	$n_{\rm H} = 0.3 \ {\rm cm}^{-3}$	$n_{\rm H} = 30 {\rm ~cm^{-3}}$	$n_{ m H} = 10^4~{ m cm}^{-3}$
$I_{\text{mean}}(U)$	139 kpc	1.39 kpc	13.9 рс	0.0417 pc

	HIM	WNM	CNM	Molecular clouds
	$n_{ m H} = 0.003~{ m cm}^{-3}$	$n_{\rm H} = 0.3 \ {\rm cm}^{-3}$	$n_{\rm H} = 30 {\rm ~cm^{-3}}$	$n_{ m H} = 10^4~{ m cm}^{-3}$
$I_{mean}(U)$	139 kpc	1.39 kpc	13.9 pc	0.0417 pc
$I_{\rm mean}(B)$	177 kpc	1.77 kpc	17.7 pc	0.0532 pc

	HIM	WNM	CNM	Molecular clouds
	$n_{ m H} = 0.003~{ m cm}^{-3}$	$n_{\rm H} = 0.3 \ {\rm cm}^{-3}$	$n_{\rm H} = 30 {\rm ~cm^{-3}}$	$n_{ m H} = 10^4~{ m cm}^{-3}$
$I_{\rm mean}(U)$	139 kpc	1.39 kpc	13.9 рс	0.0417 pc
$I_{mean}(B)$	177 kpc	1.77 kpc	17.7 pc	0.0532 pc
$I_{mean}(V)$	223 kpc	2.23 kpc	22.3 рс	0.0669 pc

	HIM	WNM	CNM	Molecular clouds
	$n_{ m H} = 0.003~{ m cm}^{-3}$	$n_{\rm H} = 0.3 \ {\rm cm}^{-3}$	$n_{\rm H} = 30 \ {\rm cm}^{-3}$	$\mathit{n_{ m H}} = 10^4~{ m cm}^{-3}$
$I_{mean}(U)$	139 kpc	1.39 kpc	13.9 рс	0.0417 pc
$I_{mean}(B)$	177 kpc	1.77 kpc	17.7 pc	0.0532 pc
$I_{\rm mean}(V)$	223 kpc	2.23 kpc	22.3 pc	0.0669 pc
$I_{\rm mean}(R)$	275 kpc	2.75 kpc	27.5 рс	0.0824 pc

	HIM	WNM	CNM	Molecular clouds
	$n_{ m H} = 0.003~{ m cm}^{-3}$	$n_{\rm H} = 0.3 \ {\rm cm}^{-3}$	$n_{\rm H} = 30 \ {\rm cm}^{-3}$	$n_{ m H} = 10^4 \ { m cm}^{-3}$
$I_{mean}(U)$	139 kpc	1.39 kpc	13.9 рс	0.0417 pc
$I_{\rm mean}(B)$	177 kpc	1.77 kpc	17.7 pc	0.0532 pc
$I_{\rm mean}(V)$	223 kpc	2.23 kpc	22.3 pc	0.0669 pc
$I_{\rm mean}(R)$	275 kpc	2.75 kpc	27.5 pc	0.0824 pc
I _{mean} (I)	358 рс	3.58 kpc	35.8 pc	0.107 pc

	HIM	WNM	CNM	Molecular clouds
	$n_{ m H} = 0.003~{ m cm}^{-3}$	$n_{\rm H} = 0.3 \ {\rm cm}^{-3}$	$n_{\rm H} = 30 {\rm ~cm^{-3}}$	$\mathit{n_{ m H}}=10^4~{ m cm}^{-3}$
$I_{mean}(U)$	139 kpc	1.39 kpc	13.9 рс	0.0417 pc
$I_{\rm mean}(B)$	177 kpc	1.77 kpc	17.7 рс	0.0532 pc
$I_{\rm mean}(V)$	223 kpc	2.23 kpc	22.3 рс	0.0669 pc
$I_{\rm mean}(R)$	275 kpc	2.75 kpc	27.5 рс	0.0824 pc
I _{mean} (I)	358 pc	3.58 kpc	35.8 pc	0.107 pc
$I_{\text{mean}}(J)$	691 kpc	6.91 kpc	69.1 pc	0.207 pc

	HIM	WNM	CNM	Molecular clouds
	$n_{ m H} = 0.003~{ m cm}^{-3}$	$n_{\rm H} = 0.3 \ {\rm cm}^{-3}$	$n_{\rm H} = 30 {\rm ~cm^{-3}}$	$\mathit{n_{ m H}} = 10^4~{ m cm}^{-3}$
$I_{\rm mean}(U)$	139 kpc	1.39 kpc	13.9 рс	0.0417 pc
$I_{mean}(B)$	177 kpc	1.77 kpc	17.7 рс	0.0532 pc
$I_{\rm mean}(V)$	223 kpc	2.23 kpc	22.3 рс	0.0669 pc
$I_{\rm mean}(R)$	275 kpc	2.75 kpc	27.5 рс	0.0824 pc
I _{mean} (I)	358 pc	3.58 kpc	35.8 pc	0.107 pc
$I_{\text{mean}}(J)$	691 kpc	6.91 kpc	69.1 pc	0.207 pc
$I_{mean}(H)$	1021 kpc	10.2 kpc	102 pc	0.306 pc

	HIM	WNM	CNM	Molecular clouds
	$n_{ m H} = 0.003~{ m cm}^{-3}$	$n_{\rm H} = 0.3 \ {\rm cm}^{-3}$	$n_{\rm H} = 30 \ {\rm cm}^{-3}$	$\mathit{n_{ m H}} = 10^4~{ m cm}^{-3}$
$I_{mean}(U)$	139 kpc	1.39 kpc	13.9 рс	0.0417 pc
$I_{mean}(B)$	177 kpc	1.77 kpc	17.7 pc	0.0532 pc
$I_{\rm mean}(V)$	223 kpc	2.23 kpc	22.3 pc	0.0669 pc
$I_{\rm mean}(R)$	275 kpc	2.75 kpc	27.5 pc	0.0824 pc
I _{mean} (I)	358 pc	3.58 kpc	35.8 pc	0.107 pc
$I_{\rm mean}(J)$	691 kpc	6.91 kpc	69.1 pc	0.207 pc
$I_{\rm mean}(H)$	1021 kpc	10.2 kpc	102 pc	0.306 pc
$I_{\rm mean}(K)$	1734 kpc	17.3 kpc	173 рс	0.52 pc

Transfer equation:
$$\frac{dI_{\nu}}{dr} = 0$$

Transfer equation: $\frac{dI_{\nu}}{dr} = 0 \Rightarrow I_{\nu}(R_{\star}) = I_{\nu}(r) = B_{\nu}(T_{\star})$

(Rybicky & Lightman, 1979)

F. Galliano (CEA Paris-Saclay)

ISM lecture 3 (ISYA 2024, Algiers)

Transfer equation: $\frac{\mathrm{d}I_{\nu}}{\mathrm{d}r} = 0 \Rightarrow I_{\nu}(R_{\star}) = I_{\nu}(r) = B_{\nu}(T_{\star}) \leftarrow \text{energy conservation.}$

(Rybicky & Lightman, 1979)

F. Galliano (CEA Paris-Saclay)

ISM lecture 3 (ISYA 2024, Algiers)

October 1st, 2024

24 / 46

Transfer equation: $\frac{\overline{dI_{\nu}}}{dr} = 0 \Rightarrow I_{\nu}(R_{\star}) = I_{\nu}(r) = B_{\nu}(T_{\star}) \leftarrow \text{energy conservation.}$

(Rybicky & Lightman, 1979)

F. Galliano (CEA Paris-Saclay)

ISM lecture 3 (ISYA 2024, Algiers)

October 1st, 2024

24 / 46

Transfer equation: $\frac{dI_{\nu}}{dr} = 0 \Rightarrow I_{\nu}(R_{\star}) = I_{\nu}(r) = B_{\nu}(T_{\star}) \leftarrow \text{energy conservation.}$ **Angular size** at distance *r*: $\sin \alpha = \frac{R_{\star}}{r}$.

Transfer equation: $\frac{dI_{\nu}}{dr} = 0 \Rightarrow I_{\nu}(R_{\star}) = I_{\nu}(r) = B_{\nu}(T_{\star}) \leftarrow \text{energy conservation.}$ **Angular size** at distance $r: \sin \alpha = \frac{R_{\star}}{r}$.

(Rybicky & Lightman, 1979)

24 / 46

Transfer equation: $\frac{\mathrm{d}I_{\nu}}{\mathrm{d}r} = 0 \Rightarrow I_{\nu}(R_{\star}) = I_{\nu}(r) = B_{\nu}(T_{\star}) \leftarrow \text{ energy conservation.}$ Angular size at distance r: $\sin \alpha = \frac{R_{\star}}{r}$. Flux at r: $F_{\nu}(r) = \int_{0}^{2\pi} \int_{0}^{\alpha} I_{\nu} \cos \theta \, \mathrm{d}\theta \, \mathrm{d}\phi$

Transfer equation: $\frac{dI_{\nu}}{dr} = 0 \Rightarrow I_{\nu}(R_{\star}) = I_{\nu}(r) = B_{\nu}(T_{\star}) \leftarrow \text{energy conservation.}$ Angular size at distance r: $\sin \alpha = \frac{R_{\star}}{r}$. Flux at r: $F_{\nu}(r) = \int_{0}^{2\pi} \int_{0}^{\alpha} I_{\nu} \cos \theta \, d\theta \, d\phi = 2\pi B_{\nu}(T_{\star}) \int_{0}^{\alpha} \cos \theta \sin \theta \, d\theta$

Transfer equation: $\frac{dI_{\nu}}{dr} = 0 \Rightarrow I_{\nu}(R_{\star}) = I_{\nu}(r) = B_{\nu}(T_{\star}) \leftarrow \text{energy conservation.}$ Angular size at distance r: $\sin \alpha = \frac{R_{\star}}{r}$. Flux at r: $F_{\nu}(r) = \int_{0}^{2\pi} \int_{0}^{\alpha} I_{\nu} \cos \theta \, d\theta \, d\phi = 2\pi B_{\nu}(T_{\star}) \int_{0}^{\alpha} \cos \theta \sin \theta \, d\theta = \pi B_{\nu}(T_{\star}) \sin^{2} \alpha$

Transfer equation: $\frac{dI_{\nu}}{dr} = 0 \Rightarrow I_{\nu}(R_{\star}) = I_{\nu}(r) = B_{\nu}(T_{\star}) \leftarrow \text{energy conservation.}$ Angular size at distance $r: \sin \alpha = \frac{R_{\star}}{r}$. Flux at $r: F_{\nu}(r) = \int_{0}^{2\pi} \int_{0}^{\alpha} I_{\nu} \cos \theta \, d\theta \, d\phi = 2\pi B_{\nu}(T_{\star}) \int_{0}^{\alpha} \cos \theta \sin \theta \, d\theta = \pi B_{\nu}(T_{\star}) \sin^{2} \alpha$ $\Rightarrow F_{\nu}(r) = \pi B_{\nu}(T_{\star}) \left(\frac{R_{\star}}{r}\right)^{2}$.

Transfer equation: $\frac{dI_{\nu}}{dr} = 0 \Rightarrow I_{\nu}(R_{\star}) = I_{\nu}(r) = B_{\nu}(T_{\star}) \leftarrow \text{energy conservation.}$ Angular size at distance $r: \sin \alpha = \frac{R_{\star}}{r}$. Flux at $r: F_{\nu}(r) = \int_{0}^{2\pi} \int_{0}^{\alpha} I_{\nu} \cos \theta \, d\theta \, d\phi = 2\pi B_{\nu}(T_{\star}) \int_{0}^{\alpha} \cos \theta \sin \theta \, d\theta = \pi B_{\nu}(T_{\star}) \sin^{2} \alpha$ $\Rightarrow \left[F_{\nu}(r) = \pi B_{\nu}(T_{\star}) \left(\frac{R_{\star}}{r}\right)^{2} \right].$ Consistency check: $F_{\nu}(R_{\star}) = \pi B_{\nu}(T_{\star})$

Emission only

Emission only

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, $T = T_d$, with opacity κ .

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, $T = T_d$, with opacity κ .

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, $T = T_d$, with opacity κ . Transfer equation: $\frac{dI_{\nu}}{dL} = \rho(I)\kappa B_{\nu}(T_d)$.

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, $T = T_d$, with opacity κ . Transfer equation: $\frac{dI_{\nu}}{dI} = \rho(I)\kappa B_{\nu}(T_d)$. Surface brightness: $I_{\nu}(L) = \kappa B_{\nu}(T_d) \int_{o}^{L} \rho(I) dI = \langle \rho \rangle \kappa L \times B_{\nu}(T_d)$

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, $T = T_{d}$, with opacity κ . Transfer equation: $\frac{dI_{\nu}}{dI} = \rho(I)\kappa B_{\nu}(T_{d})$. Surface brightness: $I_{\nu}(L) = \kappa B_{\nu}(T_{d}) \int_{o}^{L} \rho(I) dI = \langle \rho \rangle \kappa L \times B_{\nu}(T_{d}) \Leftrightarrow I_{\nu}(L) = \tau(L) \times B_{\nu}(T_{d})$.

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, $T = T_d$, with opacity κ . Transfer equation: $\frac{dI_{\nu}}{dI} = \rho(I)\kappa B_{\nu}(T_d)$. Surface brightness: $I_{\nu}(L) = \kappa B_{\nu}(T_d) \int_{o}^{L} \rho(I) dI = \langle \rho \rangle \kappa L \times B_{\nu}(T_d) \Leftrightarrow \boxed{I_{\nu}(L) = \tau(L) \times B_{\nu}(T_d)}$.

Absorption only

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, $\overline{T} = T_d$, with opacity κ . Transfer equation: $\frac{dI_{\nu}}{dI} = \rho(I)\kappa B_{\nu}(T_d)$. Surface brightness: $I_{\nu}(L) = \kappa B_{\nu}(T_d) \int_{o}^{L} \rho(I) dI = \langle \rho \rangle \kappa L \times B_{\nu}(T_d) \Leftrightarrow \overline{I_{\nu}(L) = \tau(L) \times B_{\nu}(T_d)}$.

Absorption only

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, $T = T_{d}$, with opacity κ . Transfer equation: $\frac{dI_{\nu}}{dI} = \rho(I)\kappa B_{\nu}(T_{d})$. Surface brightness: $I_{\nu}(L) = \kappa B_{\nu}(T_{d}) \int_{o}^{L} \rho(I) dI = \langle \rho \rangle \kappa L \times B_{\nu}(T_{d}) \Leftrightarrow I_{\nu}(L) = \tau(L) \times B_{\nu}(T_{d})$.

Absorption only

Hypothesis: dust cloud, with opacity κ , in front of a star of specific intensity I_{ν}^{\star} .

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, $T = T_{d}$, with opacity κ . Transfer equation: $\frac{dI_{\nu}}{dI} = \rho(I)\kappa B_{\nu}(T_{d})$. Surface brightness: $I_{\nu}(L) = \kappa B_{\nu}(T_{d}) \int_{o}^{L} \rho(I) dI = \langle \rho \rangle \kappa L \times B_{\nu}(T_{d}) \Leftrightarrow I_{\nu}(L) = \tau(L) \times B_{\nu}(T_{d})$.

Hypothesis: dust cloud, with opacity κ , in front of a star of specific intensity I_{ν}^{\star} .
Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, $T = T_{d}$, with opacity κ . Transfer equation: $\frac{dI_{\nu}}{dI} = \rho(I)\kappa B_{\nu}(T_{d})$. Surface brightness: $I_{\nu}(L) = \kappa B_{\nu}(T_{d}) \int_{o}^{L} \rho(I) dI = \langle \rho \rangle \kappa L \times B_{\nu}(T_{d}) \Leftrightarrow I_{\nu}(L) = \tau(L) \times B_{\nu}(T_{d})$.

Hypothesis: dust cloud, with opacity κ , in front of a star of specific intensity I_{ν}^{\star} .

Transfer equation: $\frac{dI_{\nu}}{dI} = -\alpha(I)I_{\nu}$

F. Galliano (CEA Paris-Saclay)

ISM lecture 3 (ISYA 2024, Algiers)

October 1st, 2024

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, $T = T_{d}$, with opacity κ . Transfer equation: $\frac{dI_{\nu}}{dI} = \rho(I)\kappa B_{\nu}(T_{d})$. Surface brightness: $I_{\nu}(L) = \kappa B_{\nu}(T_{d}) \int_{o}^{L} \rho(I) dI = \langle \rho \rangle \kappa L \times B_{\nu}(T_{d}) \Leftrightarrow I_{\nu}(L) = \tau(L) \times B_{\nu}(T_{d})$.

Hypothesis: dust cloud, with opacity κ , in front of a star of specific intensity I_{ν}^{\star} .

Transfer equation:
$$\frac{\mathrm{d}I_{\nu}}{\mathrm{d}I} = -\alpha(I)I_{\nu} \Rightarrow I_{\nu} = I_{\nu}^{\star} \exp\left[-\kappa \int_{0}^{L} \alpha \,\mathrm{d}I\right]$$

F. Galliano (CEA Paris-Saclay)

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, $T = T_{d}$, with opacity κ . Transfer equation: $\frac{dI_{\nu}}{dI} = \rho(I)\kappa B_{\nu}(T_{d})$. Surface brightness: $I_{\nu}(L) = \kappa B_{\nu}(T_{d}) \int_{o}^{L} \rho(I) dI = \langle \rho \rangle \kappa L \times B_{\nu}(T_{d}) \Leftrightarrow I_{\nu}(L) = \tau(L) \times B_{\nu}(T_{d})$.

Hypothesis: dust cloud, with opacity κ , in front of a star of specific intensity I_{ν}^{\star} .

Transfer equation:
$$\frac{\mathrm{d}I_{\nu}}{\mathrm{d}I} = -\alpha(I)I_{\nu} \Rightarrow I_{\nu} = I_{\nu}^{\star} \exp\left[-\kappa \int_{0}^{L} \alpha \,\mathrm{d}I\right] \Leftrightarrow \boxed{I_{\nu}(I) = I_{\nu}^{\star} \exp\left[-\tau(L)\right]}.$$

F. Galliano (CEA Paris-Saclay)

ISM lecture 3 (ISYA 2024, Algiers)

Transfer equation: can be simplified using τ instead of I as a parameter: $\frac{dI_{\nu}}{d\tau} = -I_{\nu} + \underbrace{S_{\nu}}_{\text{source function}}$. **Solution:** $I_{\nu}(\tau) = I_{\nu}^{\star} \exp(-\tau) + \int_{0}^{\tau} \exp(\tau' - \tau) \times S_{\nu}(\tau') d\tau'$

Transfer equation: can be simplified using τ instead of I as a parameter: $\frac{dI_{\nu}}{d\tau} = -I_{\nu} + \underbrace{S_{\nu}}_{\text{source function}}$ Solution: $I_{\nu}(\tau) = I_{\nu}^{\star} \exp(-\tau) + \int_{0}^{\tau} \exp(\tau' - \tau) \times S_{\nu}(\tau') d\tau'$ $\Rightarrow I_{\nu} = \underbrace{I_{\nu}^{\star} \exp(-\tau)}_{\text{stellar extinction}} + \underbrace{I_{\nu} \exp(-\tau)}_$

Transfer equation: can be simplified using τ instead of l as a parameter: $\frac{dI_{\nu}}{d\tau} = -I_{\nu} + \underbrace{S_{\nu}}_{\text{source function}}$ Solution: $I_{\nu}(\tau) = I_{\nu}^{\star} \exp(-\tau) + \int_{0}^{\tau} \exp(\tau' - \tau) \times S_{\nu}(\tau') d\tau'$ $\Rightarrow I_{\nu} = \underbrace{I_{\nu}^{\star} \exp(-\tau)}_{\text{stellar extinction}} + \underbrace{B_{\nu}(T_{d}) \times [1 - \exp(-\tau)]}_{\text{cloud self-absorption}}.$

Transfer equation: can be simplified using τ instead of I as a parameter: $\frac{dI_{\nu}}{d\tau} = -I_{\nu} + -I_{\nu}$ Solution: $I_{\nu}(\tau) = I_{\nu}^{\star} \exp(-\tau) + \int_{0}^{\tau} \exp(\tau' - \tau) \times S_{\nu}(\tau') d\tau'$ source function $\Rightarrow I_{\nu} = I_{\nu}^{\star} \exp(-\tau) + B_{\nu}(\tilde{T}_{d}) \times [1 - \exp(-\tau)].$ stellar extinction cloud self-absorption **Optically thin:** $\tau \ll 1 \Rightarrow I_{\nu}^{\text{cloud}} \simeq \tau B_{\nu}(T_{\text{d}}) \rightarrow \text{"grey body"}.$ **Optically thick:** $\tau \gg 1 \Rightarrow I_{\nu}^{\text{cloud}} \simeq B_{\nu}(T_{\text{d}}) \rightarrow \text{``black body''}.$ 10 $\tau_{\rm V} = 0.01$ $\tau_{\rm V} = 0.1$ $\tau_{\rm V} = 1$ $\tau_{V} = 10$ $\tau_{\rm V} = 100$ $\tau_{\rm V} = 1000$ $\tau_{\rm V} = 10^4$ $\tau_{\rm V} = 10^{5}$ 0.1 10 100 1000 Wavelength, λ [μ m] F. Galliano (CEA Paris-Saclav) ISM lecture 3 (ISYA 2024, Algiers) October 1st. 2024 26 / 46

Radiastronomy convention

Radiastronomy convention

Rayleigh-Jeans approximation: $h\nu \ll kT \Rightarrow B_{\nu}(T) \simeq \frac{2kT\nu^2}{c^2}$.

Radiastronomy convention

Rayleigh-Jeans approximation: $h\nu \ll kT \Rightarrow B_{\nu}(T) \simeq \frac{2kT\nu^2}{c^2}$.

Brightness temperature: $T_{
m b}\equiv rac{l_{
u}c^2}{2k
u^2}.$

Radiastronomy convention

Rayleigh-Jeans approximation: $h\nu \ll kT \Rightarrow B_{\nu}(T) \simeq \frac{2kT\nu^2}{c^2}$.

Brightness temperature: $T_{
m b}\equiv rac{l_{
u}c^2}{2k
u^2}.$

Measuring HI gas temperature ("spin temperature")

Radiastronomy convention

Rayleigh-Jeans approximation: $h\nu \ll kT \Rightarrow B_{\nu}(T) \simeq rac{2kT\nu^2}{c^2}$.

Brightness temperature: ${\cal T}_{
m b}\equiv rac{l_{
u}c^2}{2k
u^2}.$

Measuring HI gas temperature ("spin temperature")

Radiastronomy convention

Rayleigh-Jeans approximation: $h\nu \ll kT \Rightarrow B_{\nu}(T) \simeq \frac{2kT\nu^2}{c^2}$.

Brightness temperature: $T_{\rm b} \equiv \frac{I_{\nu}c^2}{2k\nu^2}.$

Measuring HI gas temperature ("spin temperature")

Background source through a cloud: $T_{b}^{on} = T_{QSO} \exp{(-\tau)} + T_{H_{\perp}} [1 - \exp(-\tau)]$.

Radiastronomy convention

Rayleigh-Jeans approximation: $h\nu \ll kT \Rightarrow B_{\nu}(T) \simeq \frac{2kT\nu^2}{c^2}$.

Brightness temperature: $T_{\rm b} \equiv \frac{I_{\nu}c^2}{2k\nu^2}.$

Measuring HI gas temperature ("spin temperature")

Background source through a cloud: $T_{b}^{on} = T_{QSO} \exp{(-\tau)} + T_{H_{\perp}} [1 - \exp(-\tau)]$.

Radiastronomy convention

Rayleigh-Jeans approximation: $h\nu \ll kT \Rightarrow B_{\nu}(T) \simeq \frac{2kT\nu^2}{c^2}$.

Brightness temperature: $T_{\rm b} \equiv \frac{I_{\nu}c^2}{2k\nu^2}$.

Measuring HI gas temperature ("spin temperature")

Background source through a cloud: $T_{b}^{on} = T_{QSO} \exp(-\tau) + T_{H_{I}} [1 - \exp(-\tau)].$ Cloud alone: $T_{b}^{off} = T_{H_{I}} [1 - \exp(-\tau)].$

Radiastronomy convention

Rayleigh-Jeans approximation: $h\nu \ll kT \Rightarrow B_{\nu}(T) \simeq \frac{2kT\nu^2}{c^2}$.

Brightness temperature: $T_{\rm b} \equiv rac{I_{
u}c^2}{2k
u^2}.$

Measuring HI gas temperature ("spin temperature")

Background source through a cloud: $T_{b}^{on} = T_{QSO} \exp(-\tau) + T_{H_{I}} [1 - \exp(-\tau)].$ Cloud alone: $T_{b}^{off} = T_{H_{I}} [1 - \exp(-\tau)].$ Solution: (1) $\tau = \ln \frac{T_{QSO}}{T_{b}^{on} - T_{b}^{off}}$

Radiastronomy convention

Rayleigh-Jeans approximation: $h\nu \ll kT \Rightarrow B_{\nu}(T) \simeq \frac{2kT\nu^2}{c^2}$.

Brightness temperature: $T_{\rm b} \equiv \frac{I_{\nu}c^2}{2k\nu^2}$.

Measuring HI gas temperature ("*spin temperature*")

Background source through a cloud: $T_{b}^{on} = T_{QSO} \exp(-\tau) + T_{H_{I}} [1 - \exp(-\tau)].$ Cloud alone: $T_{b}^{off} = T_{H_{I}} [1 - \exp(-\tau)].$ $T_{OSO} = T_{off}^{off}$

Solution: (1)
$$\tau = \ln \frac{r_{\text{QSO}}}{T_{\text{b}}^{\text{on}} - T_{\text{b}}^{\text{off}}}$$
 (2) $T_{\text{H}_{1}} = \frac{r_{\text{b}}}{1 - \exp(-\tau)}$.

Transfer | Monte Carlo Radiative Transfer

Transfer | Monte Carlo Radiative Transfer

Drawing random photons in an arbitrary geometry

Sources of photons can be stars at any position \rightarrow large number of photons at every wavelength.

Sources of photons can be stars at any position \rightarrow large number of photons at every wavelength.

Sources of photons can be stars at any position \rightarrow large number of photons at every wavelength. **Multiple scattering** are then accounted for randomly, keeping in memory the weight of the ray.

Star

Sources of photons can be stars at any position \rightarrow large number of photons at every wavelength. **Multiple scattering** are then accounted for randomly, keeping in memory the weight of the ray.

Sources of photons can be stars at any position \rightarrow large number of photons at every wavelength. **Multiple scattering** are then accounted for randomly, keeping in memory the weight of the ray. **Iterative process** is required to compute atomic & molecular level populations & dust heating.

(De Looze et al., 2012)

(De Looze et al., 2012)

F. Galliano (CEA Paris-Saclay)

(De Looze et al., 2012)

Usefulness of these models:

 Large-scale geometry: disk scale-height, opacity, etc.

(De Looze et al., 2012)

Usefulness of these models:

- Large-scale geometry: disk scale-height, opacity, etc.
- Contribution to dust heating of ≠ stellar populations.

(De Looze et al., 2012)

Usefulness of these models:

- Large-scale geometry: disk scale-height, opacity, etc.
- Contribution to dust heating of ≠ stellar populations.

Simulations:

Monte Carlo radiative transfer models can also be used to post-process numerical simulations of star-forming regions or galaxies \Rightarrow synthetic observables.

F. Galliano (CEA Paris-Saclay)

Outline of the Lecture

1 COOLING & HEATING OF THE GAS

- The gas heating processes
- The gas cooling function
- The five thermal phases of the ISM

2 THE PRINCIPLES OF RADIATIVE TRANSFER

- The radiative transfer equation
- Solutions in simple cases
- Dust radiative transfer with more complex geometries

STAR-FORMING REGIONS

- The Structure of Star-Forming Regions
- HII regions

3

PhotoDissociation Regions (PDRs)

4 CONCLUSION

- Take-away points
- References

WIM: thermally stable phase ionized by diffuse UV photons escaping from H II regions.

WIM: thermally stable phase ionized by diffuse UV photons escaping from H II regions. H II regions: short-lived, localized region ionized by nearby star cluster.

WIM: thermally stable phase ionized by diffuse UV photons escaping from H II regions. H II regions: short-lived, localized region ionized by nearby star cluster.

WIM: thermally stable phase ionized by diffuse UV photons escaping from H II regions. H II regions: short-lived, localized region ionized by nearby star cluster.

WIM: thermally stable phase ionized by diffuse UV photons escaping from H II regions. H II regions: short-lived, localized region ionized by nearby star cluster.

WIM: thermally stable phase ionized by diffuse UV photons escaping from H II regions. H II regions: short-lived, localized region ionized by nearby star cluster.

WIM: thermally stable phase ionized by diffuse UV photons escaping from H II regions. H II regions: short-lived, localized region ionized by nearby star cluster.

F. Galliano (CEA Paris-Saclay)

(Habart et al., 2024)

F. Galliano (CEA Paris-Saclay)

SF regions | Large Scales: The Large Magellanic Cloud

Credit: J. C. Canonne, N. Outters, P. Bernhard, D. Chaplain, L. Bourgon.

SF regions | Large Scales: The Large Magellanic Cloud

Credit: J. C. Canonne, N. Outters, P. Bernhard, D. Chaplain, L. Bourgon.

SF regions | Large Scales: The Large Magellanic Cloud

Credit: J. C. Canonne, N. Outters, P. Bernhard, D. Chaplain, L. Bourgon.

SF regions | Public Photoionization & Photodissociation Codes

Name	Scope	Reference	Download link
------	-------	-----------	---------------

(adapted from B. Godard)

Name	Scope	Reference	Download link
CLOUDY	H II regions, AGNs,	Ferland et al. (2013,	https://www.nublado.org
	XDRs, PDRs (3D)	2017)	

(adapted from B. Godard)
Name	Scope	Reference	Download link
CLOUDY	H II regions, AGNs,	Ferland et al. (2013,	https://www.nublado.org
	XDRs, PDRs (3D)	2017)	
MAPPINGS V	H II regions, shocks	Allen et al. (2008);	https://mappings.anu.edu.au/
		Sutherland & Dopita (2017)	

Name	Scope	Reference	Download link
CLOUDY	H II regions, AGNs,	Ferland et al. (2013,	https://www.nublado.org
	XDRs, PDRs (3D)	2017)	
MAPPINGS V	H II regions, shocks	Allen et al. (2008);	https://mappings.anu.edu.au/
		Sutherland & Dopita	
		(2017)	
Meudon PDR	PDRs	Le Petit et al.	https://ism.obspm.fr
		(2006); Le Bourlot	
		et al. (2012)	

Name	Scope	Reference	Download link
CLOUDY	H II regions,	Ferland et al.	https://www.nublado.org
	AGNs, XDRs,	(2013, 2017)	
	PDRs (3D)		
MAPPINGS V	H II regions,	Allen et al.	https://mappings.anu.edu.au/
	shocks	(2008); Suther-	
		land & Dopita	
		(2017)	
Meudon PDR	PDRs	Le Petit et al.	https://ism.obspm.fr
		(2006); Le Bour-	
		lot et al. (2012)	
Kosma- $ au$	PDRs	Röllig et al.	https://hera.ph1.uni-koeln.de/~pdr/
		(2006, 2013)	

Name	Scope	Reference	Download link
CLOUDY	H II regions,	Ferland et al.	https://www.nublado.org
	AGNs, XDRs,	(2013, 2017)	
	PDRs (3D)		
MAPPINGS V	H II regions,	Allen et al.	https://mappings.anu.edu.au/
	shocks	(2008); Suther-	
		land & Dopita	
		(2017)	
Meudon PDR	PDRs	Le Petit et al.	https://ism.obspm.fr
		(2006); Le Bour-	
		lot et al. (2012)	
Kosma- $ au$	PDRs	Röllig et al.	https://hera.ph1.uni-koeln.de/~pdr/
		(2006, 2013)	
UCL PDR	PDRs (3D)	Bell et al. (2005);	https://uclchem.github.io/
		Bisbas et al.	
		(2012)	

The size of an HII region (Strömgren, 1939)

The size of an HII region (Strömgren, 1939)

$$\underbrace{Q_0}_{\substack{\nu_{Ly}}} = \int_{\nu_{Ly}}^{\infty} \frac{L_{\nu}}{h\nu} \, \mathrm{d}\nu$$

ISM lecture 3 (ISYA 2024, Algiers)

SF regions | Effects of Density & Stellar Type on HII Region Sizes

SF regions | Effects of Density & Stellar Type on HII Region Sizes

SF regions | Effects of Density & Stellar Type on HII Region Sizes

SF regions | Effects of Density & Stellar Type on HII Region Sizes

SF regions | Effects of Density & Stellar Type on HII Region Sizes

SF regions | Effects of Density & Stellar Type on HII Region Sizes

SF regions | Effects of Density & Stellar Type on HII Region Sizes

SF regions | Effects of Density & Stellar Type on HII Region Sizes

SF regions | Effects of Density & Stellar Type on HII Region Sizes

SF regions | Effects of Density & Stellar Type on HII Region Sizes

SF regions | The Modeled Spectrum of an HII Region

SF regions | The Modeled Spectrum of an HII Region

SF regions | The Modeled Spectrum of an HII Region

Using Dust Emission

Using Dust Emission

 Young stars are extremelly luminous & enshrouded with dust.

Using Dust Emission

- Young stars are extremelly luminous & enshrouded with dust.
- $\Rightarrow \ L_{\rm OB} \simeq L_{\rm IR}.$

Using Dust Emission

- Young stars are extremelly luminous & enshrouded with dust.
- $\Rightarrow L_{\rm OB} \simeq L_{\rm IR}.$
- ⇒ SFR $[M_{\odot}/yr] \simeq 10^{-10} \times L_{IR} [L_{\odot}]$, with reasonable assumptions about the *Initial Mass Function* (IMF), burst age & metallicity (Kennicutt, 1998).

Using Dust Emission

- Young stars are extremelly luminous & enshrouded with dust.
- $\Rightarrow L_{\rm OB} \simeq L_{\rm IR}.$
- ⇒ SFR $[M_{\odot}/yr] \simeq 10^{-10} \times L_{IR} [L_{\odot}]$, with reasonable assumptions about the *Initial Mass Function* (IMF), burst age & metallicity (Kennicutt, 1998).

Accounting for escaping UV photons

(Hao et al., 2011; Boquien et al., 2016)

Using Dust Emission

- Young stars are extremelly luminous & enshrouded with dust.
- $\Rightarrow L_{\rm OB} \simeq L_{\rm IR}.$
- ⇒ SFR $[M_{\odot}/\text{yr}] \simeq 10^{-10} \times L_{\text{IR}} [L_{\odot}]$, with reasonable assumptions about the *Initial Mass Function* (IMF), burst age & metallicity (Kennicutt, 1998).

Accounting for escaping UV photons

Photons absorbed by the dust: traced by L_{IR} .

(Hao et al., 2011; Boquien et al., 2016)

Using Dust Emission

- Young stars are extremelly luminous & enshrouded with dust.
- $\Rightarrow L_{\rm OB} \simeq L_{\rm IR}.$
- ⇒ SFR $[M_{\odot}/yr] \simeq 10^{-10} \times L_{IR} [L_{\odot}]$, with reasonable assumptions about the *Initial Mass Function* (IMF), burst age & metallicity (Kennicutt, 1998).

Accounting for escaping UV photons

Photons absorbed by the dust: traced by L_{IR} .

Escaping photons: traced by far-UV or $H\alpha$ measurements.

(Hao et al., 2011; Boquien et al., 2016)

SF regions | The Physics of PhotoDissociation Regions (PDRs)

SF regions | The Physics of PhotoDissociation Regions (PDRs)

The relevance of PDRs

SF regions | The Physics of PhotoDissociation Regions (PDRs)

The relevance of PDRs

• PDRs: continuation of H ${\rm II}$ regions where all ionizing photons have been absorbed \Rightarrow H⁰.

- PDRs: continuation of H II regions where all ionizing photons have been absorbed \Rightarrow H⁰.
- PDR
 ⇔ UV-illuminated edges of molecular clouds. Broader nomenclature: most neutral & molecular clouds bathed with UV photons are PDRs.

- PDRs: continuation of H II regions where all ionizing photons have been absorbed \Rightarrow H⁰.
- They harbor a rich variety of chemical reactions \rightarrow H₂.

(cf. Bron et al. 2014)

39 / 46

- PDRs: continuation of H II regions where all ionizing photons have been absorbed \Rightarrow H⁰.
- They harbor a rich variety of chemical reactions \rightarrow H₂.

- PDRs: continuation of H II regions where all ionizing photons have been absorbed \Rightarrow H⁰.
- They harbor a rich variety of chemical reactions \rightarrow H₂.

- PDRs: continuation of H II regions where all ionizing photons have been absorbed \Rightarrow H⁰.
- They harbor a rich variety of chemical reactions \rightarrow H₂.

- PDRs: continuation of H II regions where all ionizing photons have been absorbed \Rightarrow H⁰.
- They harbor a rich variety of chemical reactions \rightarrow H₂.

- PDRs: continuation of H II regions where all ionizing photons have been absorbed \Rightarrow H⁰.
- They harbor a rich variety of chemical reactions \rightarrow H₂.

- PDRs: continuation of H II regions where all ionizing photons have been absorbed \Rightarrow H⁰.
- They harbor a rich variety of chemical reactions \rightarrow H₂.

- PDRs: continuation of H II regions where all ionizing photons have been absorbed \Rightarrow H⁰.
- They harbor a rich variety of chemical reactions \rightarrow H₂.

- PDRs: continuation of H II regions where all ionizing photons have been absorbed \Rightarrow H⁰.
- They harbor a rich variety of chemical reactions \rightarrow H₂.

F. Galliano (CEA Paris-Saclay)

ISM lecture 3 (ISYA 2024, Algiers)

Measuring molecular gas masses

 $\bullet \ H_2 \ symmetry \Rightarrow no \ rotational \ lines$

Measuring molecular gas masses

• H₂ symmetry \Rightarrow no rotational lines \Rightarrow Rely on CO to trace molecular gas.

- H₂ symmetry \Rightarrow no rotational lines \Rightarrow Rely on CO to trace molecular gas.
- CO photodissociation at low $Z \rightarrow \simeq$ 70-100 % of H₂ not traced by CO (Madden et al., 2020).

- H₂ symmetry \Rightarrow no rotational lines \Rightarrow Rely on CO to trace molecular gas.
- CO photodissociation at low $Z \rightarrow \simeq$ 70-100 % of H₂ not traced by CO (Madden et al., 2020).

- H₂ symmetry \Rightarrow no rotational lines \Rightarrow Rely on CO to trace molecular gas.
- CO photodissociation at low $Z \rightarrow \simeq$ 70-100 % of H₂ not traced by CO (Madden et al., 2020).

SF regions | The CO-Dark Gas

Measuring molecular gas masses

- H₂ symmetry \Rightarrow no rotational lines \Rightarrow Rely on CO to trace molecular gas.
- CO photodissociation at low $Z \rightarrow \simeq$ 70-100 % of H₂ not traced by CO (Madden et al., 2020).

Outline of the Lecture

1 COOLING & HEATING OF THE GAS

- The gas heating processes
- The gas cooling function
- The five thermal phases of the ISM

2 THE PRINCIPLES OF RADIATIVE TRANSFER

- The radiative transfer equation
- Solutions in simple cases
- Dust radiative transfer with more complex geometries

STAR-FORMING REGIONS

- The Structure of Star-Forming Regions
- HII regions
- PhotoDissociation Regions (PDRs)

4 CONCLUSION

- Take-away points
- References

Balance between gas heating & cooling – the phases of the ISM

Balance between gas heating & cooling – the phases of the ISM

 The Cold Neutral Medium (CNM; n ≃ 30 cm⁻³; T ≃ 100 K) & the Warm Neutral Medium (WNM; n ≃ 0.3 cm⁻³; T ≃ 10⁴ K) are at pressure equilibrium → the only 2 stable H I phases.

Balance between gas heating & cooling – the phases of the ISM

- The Cold Neutral Medium (CNM; n ≃ 30 cm⁻³; T ≃ 100 K) & the Warm Neutral Medium (WNM; n ≃ 0.3 cm⁻³; T ≃ 10⁴ K) are at pressure equilibrium → the only 2 stable H I phases.
- So are the Warm Ionized Medium (WIM; n ≃ 0.1 cm⁻³; T = 10⁴ K) & the Hot Ionized Medium (HIM; n ≃ 0.003 cm⁻³; T ≃ 10⁶ K; ≃ 50% of the volume of the Galaxy).

Balance between gas heating & cooling – the phases of the ISM

- The Cold Neutral Medium (CNM; n ≃ 30 cm⁻³; T ≃ 100 K) & the Warm Neutral Medium (WNM; n ≃ 0.3 cm⁻³; T ≃ 10⁴ K) are at pressure equilibrium → the only 2 stable H I phases.
- So are the Warm Ionized Medium (WIM; n ≃ 0.1 cm⁻³; T = 10⁴ K) & the Hot Ionized Medium (HIM; n ≃ 0.003 cm⁻³; T ≃ 10⁶ K; ≃ 50% of the volume of the Galaxy).
- Molecular clouds exhibit a large range of densities ($n \simeq 10^2 10^6$ cm⁻³).

Balance between gas heating & cooling – the phases of the ISM

- The Cold Neutral Medium (CNM; n ≃ 30 cm⁻³; T ≃ 100 K) & the Warm Neutral Medium (WNM; n ≃ 0.3 cm⁻³; T ≃ 10⁴ K) are at pressure equilibrium → the only 2 stable H I phases.
- So are the Warm Ionized Medium (WIM; n ≃ 0.1 cm⁻³; T = 10⁴ K) & the Hot Ionized Medium (HIM; n ≃ 0.003 cm⁻³; T ≃ 10⁶ K; ≃ 50% of the volume of the Galaxy).
- Molecular clouds exhibit a large range of densities ($n\simeq 10^2-10^6$ cm $^{-3}$).

Radiative transfer

Balance between gas heating & cooling – the phases of the ISM

- The Cold Neutral Medium (CNM; n ≃ 30 cm⁻³; T ≃ 100 K) & the Warm Neutral Medium (WNM; n ≃ 0.3 cm⁻³; T ≃ 10⁴ K) are at pressure equilibrium → the only 2 stable H I phases.
- So are the Warm Ionized Medium (WIM; n ≃ 0.1 cm⁻³; T = 10⁴ K) & the Hot Ionized Medium (HIM; n ≃ 0.003 cm⁻³; T ≃ 10⁶ K; ≃ 50% of the volume of the Galaxy).
- Molecular clouds exhibit a large range of densities ($n \simeq 10^2 10^6$ cm⁻³).

Radiative transfer

 The radiative transfer equations solves the propagation of light in the ISM, accounting for absorption, scattering out & in the sightline & emission by the ISM.

Balance between gas heating & cooling – the phases of the ISM

- The Cold Neutral Medium (CNM; n ≃ 30 cm⁻³; T ≃ 100 K) & the Warm Neutral Medium (WNM; n ≃ 0.3 cm⁻³; T ≃ 10⁴ K) are at pressure equilibrium → the only 2 stable H I phases.
- So are the Warm Ionized Medium (WIM; n ≃ 0.1 cm⁻³; T = 10⁴ K) & the Hot Ionized Medium (HIM; n ≃ 0.003 cm⁻³; T ≃ 10⁶ K; ≃ 50% of the volume of the Galaxy).
- Molecular clouds exhibit a large range of densities ($n \simeq 10^2 10^6$ cm⁻³).

Radiative transfer

- The radiative transfer equations solves the propagation of light in the ISM, accounting for absorption, scattering out & in the sightline & emission by the ISM.
- The optical depth, $au(\lambda)$, is related to the mean free path of photons.

- The Cold Neutral Medium (CNM; n ≃ 30 cm⁻³; T ≃ 100 K) & the Warm Neutral Medium (WNM; n ≃ 0.3 cm⁻³; T ≃ 10⁴ K) are at pressure equilibrium → the only 2 stable H I phases.
- So are the Warm Ionized Medium (WIM; n ≃ 0.1 cm⁻³; T = 10⁴ K) & the Hot Ionized Medium (HIM; n ≃ 0.003 cm⁻³; T ≃ 10⁶ K; ≃ 50% of the volume of the Galaxy).
- Molecular clouds exhibit a large range of densities ($n \simeq 10^2 10^6$ cm⁻³).

Radiative transfer

- The radiative transfer equations solves the propagation of light in the ISM, accounting for absorption, scattering out & in the sightline & emission by the ISM.
- The optical depth, $au(\lambda)$, is related to the mean free path of photons.
- The Monte Carlo method is the most flexible solution when dealing with complex geometries.

Balance between gas heating & cooling – the phases of the ISM

- The Cold Neutral Medium (CNM; n ≃ 30 cm⁻³; T ≃ 100 K) & the Warm Neutral Medium (WNM; n ≃ 0.3 cm⁻³; T ≃ 10⁴ K) are at pressure equilibrium → the only 2 stable H I phases.
- So are the Warm Ionized Medium (WIM; n ≃ 0.1 cm⁻³; T = 10⁴ K) & the Hot Ionized Medium (HIM; n ≃ 0.003 cm⁻³; T ≃ 10⁶ K; ≃ 50% of the volume of the Galaxy).
- Molecular clouds exhibit a large range of densities ($n \simeq 10^2 10^6$ cm⁻³).

Radiative transfer

- The radiative transfer equations solves the propagation of light in the ISM, accounting for absorption, scattering out & in the sightline & emission by the ISM.
- The optical depth, $au(\lambda)$, is related to the mean free path of photons.
- The Monte Carlo method is the most flexible solution when dealing with complex geometries.

Star-forming regions

- The Cold Neutral Medium (CNM; n ≃ 30 cm⁻³; T ≃ 100 K) & the Warm Neutral Medium (WNM; n ≃ 0.3 cm⁻³; T ≃ 10⁴ K) are at pressure equilibrium → the only 2 stable H I phases.
- So are the Warm Ionized Medium (WIM; n ≃ 0.1 cm⁻³; T = 10⁴ K) & the Hot Ionized Medium (HIM; n ≃ 0.003 cm⁻³; T ≃ 10⁶ K; ≃ 50% of the volume of the Galaxy).
- Molecular clouds exhibit a large range of densities ($n \simeq 10^2 10^6$ cm⁻³).

Radiative transfer

- The radiative transfer equations solves the propagation of light in the ISM, accounting for absorption, scattering out & in the sightline & emission by the ISM.
- The optical depth, $au(\lambda)$, is related to the mean free path of photons.
- The Monte Carlo method is the most flexible solution when dealing with complex geometries.

Star-forming regions

• The size of H II regions, the Strömgren radius, is determined by the photoionization equilibrium.

- The Cold Neutral Medium (CNM; n ≃ 30 cm⁻³; T ≃ 100 K) & the Warm Neutral Medium (WNM; n ≃ 0.3 cm⁻³; T ≃ 10⁴ K) are at pressure equilibrium → the only 2 stable H I phases.
- So are the Warm Ionized Medium (WIM; n ≃ 0.1 cm⁻³; T = 10⁴ K) & the Hot Ionized Medium (HIM; n ≃ 0.003 cm⁻³; T ≃ 10⁶ K; ≃ 50% of the volume of the Galaxy).
- Molecular clouds exhibit a large range of densities ($n \simeq 10^2 10^6$ cm⁻³).

Radiative transfer

- The radiative transfer equations solves the propagation of light in the ISM, accounting for absorption, scattering out & in the sightline & emission by the ISM.
- The optical depth, $au(\lambda)$, is related to the mean free path of photons.
- The Monte Carlo method is the most flexible solution when dealing with complex geometries.

Star-forming regions

- The size of H II regions, the Strömgren radius, is determined by the photoionization equilibrium.
- PhotoDissociation Regions (PDRs) harbor complex chemistry at the UV-illuminated edge of molecular clouds.

- The Cold Neutral Medium (CNM; n ≃ 30 cm⁻³; T ≃ 100 K) & the Warm Neutral Medium (WNM; n ≃ 0.3 cm⁻³; T ≃ 10⁴ K) are at pressure equilibrium → the only 2 stable H I phases.
- So are the Warm Ionized Medium (WIM; n ≃ 0.1 cm⁻³; T = 10⁴ K) & the Hot Ionized Medium (HIM; n ≃ 0.003 cm⁻³; T ≃ 10⁶ K; ≃ 50% of the volume of the Galaxy).
- Molecular clouds exhibit a large range of densities ($n \simeq 10^2 10^6$ cm⁻³).

Radiative transfer

- The radiative transfer equations solves the propagation of light in the ISM, accounting for absorption, scattering out & in the sightline & emission by the ISM.
- The optical depth, $au(\lambda)$, is related to the mean free path of photons.
- The Monte Carlo method is the most flexible solution when dealing with complex geometries.

Star-forming regions

- The size of H II regions, the Strömgren radius, is determined by the photoionization equilibrium.
- PhotoDissociation Regions (PDRs) harbor complex chemistry at the UV-illuminated edge of molecular clouds.
- At low metallicity, the photodissociation of CO biases molecular mass estimates.

- Allen, M. G., Groves, B. A., Dopita, M. A., Sutherland, R. S., & Kewley, L. J. 2008, ApJS, 178, 20
- Bakes, E. L. O. & Tielens, A. G. G. M. 1994, ApJ, 427, 822
- Bell, T. A., Viti, S., Williams, D. A., Crawford, I. A., & Price, R. J. 2005, MNRAS, 357, 961
- Bisbas, T. G., Bell, T. A., Viti, S., Yates, J., & Barlow, M. J. 2012, MNRAS, 427, 2100
- Boquien, M., Kennicutt, R., Calzetti, D., et al. 2016, A&A, 591, A6
- Bron, E., Le Bourlot, J., & Le Petit, F. 2014, A&A, 569, A100
- Cormier, D., Abel, N. P., Hony, S., et al. 2019, A&A, 626, A23
- Dalgarno, A. & McCray, R. A. 1972, ARA&A, 10, 375
- Dame, T. M., Hartmann, D., & Thaddeus, P. 2001, ApJ, 547, 792
- De Looze, I., Baes, M., Bendo, G. J., et al. 2012, MNRAS, 427, 2797
- Dopita, M. A. & Sutherland, R. S. 2003, Astrophysics of the diffuse universe (Springer)
- Draine, B. T. 2011, Physics of the Interstellar and Intergalactic Medium (Princeton University Press)
- Ferland, G. J., Chatzikos, M., Guzmán, F., et al. 2017, RMxAA, 53, 385
- Ferland, G. J., Porter, R. L., van Hoof, P. A. M., et al. 2013, RMxAA, 49, 137
- Galliano, F. 2022, HDR, Université Paris-Saclay
- Habart, E., Peeters, E., Berné, O., et al. 2024, A&A, 685, A73

Conclusion | References (2/3)

- Hao, C.-N., Kennicutt, R. C., Johnson, B. D., et al. 2011, ApJ, 741, 124
- Kalberla, P. M. W. & Kerp, J. 2009, ARA&A, 47, 27
- Kennicutt, Jr., R. C. 1998, ApJ, 498, 541
- Kimura, H. 2016, MNRAS, 459, 2751
- Krügel, E. 2003, The physics of interstellar dust (IoP)
- Le Bourlot, J., Le Petit, F., Pinto, C., Roueff, E., & Roy, F. 2012, A&A, 541, A76
- Le Petit, F., Nehmé, C., Le Bourlot, J., & Roueff, E. 2006, ApJS, 164, 506
- Madden, S. C., Cormier, D., Hony, S., et al. 2020, A&A, 643, A141
- Mathis, J. S., Mezger, P. G., & Panagia, N. 1983, A&A, 128, 212
- Osterbrock, D. E. & Ferland, G. J. 2006, Astrophysics of gaseous nebulae and active galactic nuclei (University Science Books)
- Röllig, M., Ossenkopf, V., Jeyakumar, S., Stutzki, J., & Sternberg, A. 2006, A&A, 451, 917
- Röllig, M., Szczerba, R., Ossenkopf, V., & Glück, C. 2013, A&A, 549, A85
- Rybicky, G. B. & Lightman, A. P. 1979, Radiative processes in astrophysics (Wiley)
- Schure, K. M., Kosenko, D., Kaastra, J. S., Keppens, R., & Vink, J. 2009, A&A, 508, 751
- Steinacker, J., Baes, M., & Gordon, K. D. 2013, ARA&A, 51, 63
- Strömgren, B. 1939, ApJ, 89, 526
- Sutherland, R. S. & Dopita, M. A. 2017, ApJS, 229, 34

Conclusion | References (3/3)

- Tielens, A. 2021, Molecular Astrophysics (Cambridge University Press)
- Tielens, A. G. G. M. 2005, The Physics and Chemistry of the Interstellar Medium (Cambridge University Press)
- Weingartner, J. C. & Draine, B. T. 2001, ApJS, 134, 263
- Wolfire, M. G., Hollenbach, D., McKee, C. F., Tielens, A. G. G. M., & Bakes, E. L. O. 1995, ApJ, 443, 152
- Wolfire, M. G., Vallini, L., & Chevance, M. 2022, ARA&A, 60, 247