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Thermal Phases | The PhotoElectric (PE) Heating

The main neutral gas heating mechanism

[C ii]158µm, [O i]63µm → usually the brightest ISM lines in galaxies (e.g.; Cormier et al. 2019).

A process dominated by small grains

For PAHs & nanograins: absorption of a hν ≳ 11 eV photon ⇒ electron ejection probability high.
For medium / large grains: photon absorption within the grain ⇒ low diffusion probability of the

electron to the surface.
Most of the grain cumulated area is in small sizes ⇒ PE dominated by PAHs & nanograins .
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Thermal Phases | The Photoelectric Heating Efficiency

The UV Interstellar Radiation Field (ISRF)

The UV field: G0 ≡

∫ 0.24 µm
0.0912 µm 4πJλ(λ) dλ

1.6× 10−6 W/m2

The charge parameter: γ ≡ G0
√

T/ne

The photoelectric effect on PAHs

ϵPAH
PE (ν) ≃ Y

(hν − IP

hν

)

The photoelectric effect on grains

ϵgrain
PE (ν) ≃ Y

(hν −W − ϕc

hν

)

Empirical heating rate (Bakes & Tielens, 1994; Wolfire et al., 2022)

ϵPE ≃
4.87× 10−2

1 + 4× 10−3γ0.73 +
3.65× 10−2(T/104 K)0.7

1 + 2× 10−2γ
→ ΓPE = 10−31ϵPEG0 [W].
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Thermal Phases | Photoionization Heating

The heating rate due to the photoionization of specie i

Γi
PI =

∫ ∞

νi

4πJν(ν)
hν︸ ︷︷ ︸

photon rate

× αi (ν)︸︷︷︸
cross-section

× h(ν − νi )︸ ︷︷ ︸
excess energy

dν,

hνi : photoionization potential.

(e.g. Tielens, 2005)

In the ionized gas

Most electrons coming from the photoion-
ization H0 + γ → H+ + e− .

⇒ dominant heating process in H ii.

In the neutral gas

Most electrons coming from photoioniza-
tion C0 + γ → C+ + e− .
At Z ≃ Z⊙, N(C)/N(H) ≃ 1.6× 10−4.

⇒ secondary heating source in H i.
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Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

Low-energy CRs (1–10 MeV) are the most
numerous.
They penetrate dense clouds where there
are no UV photons.

CR rate: ζCR ≃ (0.5− 3)× 10−16 s−1 .

→ ΓCR ≃ ζCR × 10 [eV/s].
⇒ CRs are the most efficient heating source

in dense molecular clouds.

X-ray heating

Similar interaction as cosmic rays but with lower energy.
X-rays penetrate less deeply into clouds:

Near bright X-ray sources: (binary, AGNs, etc.) → only regions where it dominates.
Diffuse X-ray background: ΓXR ≃ 10−33 [W/H].

Shock Heating

Γshock ≃ 1/2mHv2
shock × RSN × fV, w/ vshock ≃ 300 km/s, RSN ≃ 1/(100 year) & fV ≃ 2× 10−7.

⇒ dominant heating process in the hot, intercloud, coronal gas.

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 7 / 46



Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

Low-energy CRs (1–10 MeV) are the most
numerous.
They penetrate dense clouds where there
are no UV photons.

CR rate: ζCR ≃ (0.5− 3)× 10−16 s−1 .

→ ΓCR ≃ ζCR × 10 [eV/s].
⇒ CRs are the most efficient heating source

in dense molecular clouds.

X-ray heating

Similar interaction as cosmic rays but with lower energy.
X-rays penetrate less deeply into clouds:

Near bright X-ray sources: (binary, AGNs, etc.) → only regions where it dominates.
Diffuse X-ray background: ΓXR ≃ 10−33 [W/H].

Shock Heating

Γshock ≃ 1/2mHv2
shock × RSN × fV, w/ vshock ≃ 300 km/s, RSN ≃ 1/(100 year) & fV ≃ 2× 10−7.

⇒ dominant heating process in the hot, intercloud, coronal gas.

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 7 / 46



Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

Low-energy CRs (1–10 MeV) are the most
numerous.

They penetrate dense clouds where there
are no UV photons.

CR rate: ζCR ≃ (0.5− 3)× 10−16 s−1 .

→ ΓCR ≃ ζCR × 10 [eV/s].
⇒ CRs are the most efficient heating source

in dense molecular clouds.

X-ray heating

Similar interaction as cosmic rays but with lower energy.
X-rays penetrate less deeply into clouds:

Near bright X-ray sources: (binary, AGNs, etc.) → only regions where it dominates.
Diffuse X-ray background: ΓXR ≃ 10−33 [W/H].

Shock Heating

Γshock ≃ 1/2mHv2
shock × RSN × fV, w/ vshock ≃ 300 km/s, RSN ≃ 1/(100 year) & fV ≃ 2× 10−7.

⇒ dominant heating process in the hot, intercloud, coronal gas.

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 7 / 46



Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

Low-energy CRs (1–10 MeV) are the most
numerous.
They penetrate dense clouds where there
are no UV photons.

CR rate: ζCR ≃ (0.5− 3)× 10−16 s−1 .

→ ΓCR ≃ ζCR × 10 [eV/s].
⇒ CRs are the most efficient heating source

in dense molecular clouds.

X-ray heating

Similar interaction as cosmic rays but with lower energy.
X-rays penetrate less deeply into clouds:

Near bright X-ray sources: (binary, AGNs, etc.) → only regions where it dominates.
Diffuse X-ray background: ΓXR ≃ 10−33 [W/H].

Shock Heating

Γshock ≃ 1/2mHv2
shock × RSN × fV, w/ vshock ≃ 300 km/s, RSN ≃ 1/(100 year) & fV ≃ 2× 10−7.

⇒ dominant heating process in the hot, intercloud, coronal gas.

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 7 / 46



Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

Low-energy CRs (1–10 MeV) are the most
numerous.
They penetrate dense clouds where there
are no UV photons.

CR rate: ζCR ≃ (0.5− 3)× 10−16 s−1 .

→ ΓCR ≃ ζCR × 10 [eV/s].
⇒ CRs are the most efficient heating source

in dense molecular clouds.

X-ray heating

Similar interaction as cosmic rays but with lower energy.
X-rays penetrate less deeply into clouds:

Near bright X-ray sources: (binary, AGNs, etc.) → only regions where it dominates.
Diffuse X-ray background: ΓXR ≃ 10−33 [W/H].

Shock Heating

Γshock ≃ 1/2mHv2
shock × RSN × fV, w/ vshock ≃ 300 km/s, RSN ≃ 1/(100 year) & fV ≃ 2× 10−7.

⇒ dominant heating process in the hot, intercloud, coronal gas.

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 7 / 46



Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

Low-energy CRs (1–10 MeV) are the most
numerous.
They penetrate dense clouds where there
are no UV photons.

CR rate: ζCR ≃ (0.5− 3)× 10−16 s−1 .

→ ΓCR ≃ ζCR × 10 [eV/s].

⇒ CRs are the most efficient heating source
in dense molecular clouds.

X-ray heating

Similar interaction as cosmic rays but with lower energy.
X-rays penetrate less deeply into clouds:

Near bright X-ray sources: (binary, AGNs, etc.) → only regions where it dominates.
Diffuse X-ray background: ΓXR ≃ 10−33 [W/H].

Shock Heating

Γshock ≃ 1/2mHv2
shock × RSN × fV, w/ vshock ≃ 300 km/s, RSN ≃ 1/(100 year) & fV ≃ 2× 10−7.

⇒ dominant heating process in the hot, intercloud, coronal gas.

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 7 / 46



Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

Low-energy CRs (1–10 MeV) are the most
numerous.
They penetrate dense clouds where there
are no UV photons.

CR rate: ζCR ≃ (0.5− 3)× 10−16 s−1 .

→ ΓCR ≃ ζCR × 10 [eV/s].
⇒ CRs are the most efficient heating source

in dense molecular clouds.

X-ray heating

Similar interaction as cosmic rays but with lower energy.
X-rays penetrate less deeply into clouds:

Near bright X-ray sources: (binary, AGNs, etc.) → only regions where it dominates.
Diffuse X-ray background: ΓXR ≃ 10−33 [W/H].

Shock Heating

Γshock ≃ 1/2mHv2
shock × RSN × fV, w/ vshock ≃ 300 km/s, RSN ≃ 1/(100 year) & fV ≃ 2× 10−7.

⇒ dominant heating process in the hot, intercloud, coronal gas.

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 7 / 46



Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

Low-energy CRs (1–10 MeV) are the most
numerous.
They penetrate dense clouds where there
are no UV photons.

CR rate: ζCR ≃ (0.5− 3)× 10−16 s−1 .

→ ΓCR ≃ ζCR × 10 [eV/s].
⇒ CRs are the most efficient heating source

in dense molecular clouds.

X-ray heating

Similar interaction as cosmic rays but with lower energy.
X-rays penetrate less deeply into clouds:

Near bright X-ray sources: (binary, AGNs, etc.) → only regions where it dominates.
Diffuse X-ray background: ΓXR ≃ 10−33 [W/H].

Shock Heating

Γshock ≃ 1/2mHv2
shock × RSN × fV, w/ vshock ≃ 300 km/s, RSN ≃ 1/(100 year) & fV ≃ 2× 10−7.

⇒ dominant heating process in the hot, intercloud, coronal gas.

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 7 / 46



Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

Low-energy CRs (1–10 MeV) are the most
numerous.
They penetrate dense clouds where there
are no UV photons.

CR rate: ζCR ≃ (0.5− 3)× 10−16 s−1 .

→ ΓCR ≃ ζCR × 10 [eV/s].
⇒ CRs are the most efficient heating source

in dense molecular clouds.

X-ray heating

Similar interaction as cosmic rays but with lower energy.
X-rays penetrate less deeply into clouds:

Near bright X-ray sources: (binary, AGNs, etc.) → only regions where it dominates.
Diffuse X-ray background: ΓXR ≃ 10−33 [W/H].

Shock Heating

Γshock ≃ 1/2mHv2
shock × RSN × fV, w/ vshock ≃ 300 km/s, RSN ≃ 1/(100 year) & fV ≃ 2× 10−7.

⇒ dominant heating process in the hot, intercloud, coronal gas.

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 7 / 46



Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

Low-energy CRs (1–10 MeV) are the most
numerous.
They penetrate dense clouds where there
are no UV photons.

CR rate: ζCR ≃ (0.5− 3)× 10−16 s−1 .

→ ΓCR ≃ ζCR × 10 [eV/s].
⇒ CRs are the most efficient heating source

in dense molecular clouds.

X-ray heating

Similar interaction as cosmic rays but with lower energy.
X-rays penetrate less deeply into clouds:

Near bright X-ray sources: (binary, AGNs, etc.) → only regions where it dominates.
Diffuse X-ray background: ΓXR ≃ 10−33 [W/H].

Shock Heating

Γshock ≃ 1/2mHv2
shock × RSN × fV, w/ vshock ≃ 300 km/s, RSN ≃ 1/(100 year) & fV ≃ 2× 10−7.

⇒ dominant heating process in the hot, intercloud, coronal gas.

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 7 / 46



Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

Low-energy CRs (1–10 MeV) are the most
numerous.
They penetrate dense clouds where there
are no UV photons.

CR rate: ζCR ≃ (0.5− 3)× 10−16 s−1 .

→ ΓCR ≃ ζCR × 10 [eV/s].
⇒ CRs are the most efficient heating source

in dense molecular clouds.

X-ray heating

Similar interaction as cosmic rays but with lower energy.
X-rays penetrate less deeply into clouds:

Near bright X-ray sources: (binary, AGNs, etc.) → only regions where it dominates.
Diffuse X-ray background: ΓXR ≃ 10−33 [W/H].

Shock Heating

Γshock ≃ 1/2mHv2
shock × RSN × fV, w/ vshock ≃ 300 km/s, RSN ≃ 1/(100 year) & fV ≃ 2× 10−7.

⇒ dominant heating process in the hot, intercloud, coronal gas.

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 7 / 46



Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

Low-energy CRs (1–10 MeV) are the most
numerous.
They penetrate dense clouds where there
are no UV photons.

CR rate: ζCR ≃ (0.5− 3)× 10−16 s−1 .

→ ΓCR ≃ ζCR × 10 [eV/s].
⇒ CRs are the most efficient heating source

in dense molecular clouds.

X-ray heating

Similar interaction as cosmic rays but with lower energy.
X-rays penetrate less deeply into clouds:

Near bright X-ray sources: (binary, AGNs, etc.) → only regions where it dominates.
Diffuse X-ray background: ΓXR ≃ 10−33 [W/H].

Shock Heating

Γshock ≃ 1/2mHv2
shock × RSN × fV, w/ vshock ≃ 300 km/s, RSN ≃ 1/(100 year) & fV ≃ 2× 10−7.

⇒ dominant heating process in the hot, intercloud, coronal gas.

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 7 / 46



Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

Low-energy CRs (1–10 MeV) are the most
numerous.
They penetrate dense clouds where there
are no UV photons.

CR rate: ζCR ≃ (0.5− 3)× 10−16 s−1 .

→ ΓCR ≃ ζCR × 10 [eV/s].
⇒ CRs are the most efficient heating source

in dense molecular clouds.

X-ray heating
Similar interaction as cosmic rays but with lower energy.

X-rays penetrate less deeply into clouds:

Near bright X-ray sources: (binary, AGNs, etc.) → only regions where it dominates.
Diffuse X-ray background: ΓXR ≃ 10−33 [W/H].

Shock Heating

Γshock ≃ 1/2mHv2
shock × RSN × fV, w/ vshock ≃ 300 km/s, RSN ≃ 1/(100 year) & fV ≃ 2× 10−7.

⇒ dominant heating process in the hot, intercloud, coronal gas.

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 7 / 46



Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

Low-energy CRs (1–10 MeV) are the most
numerous.
They penetrate dense clouds where there
are no UV photons.

CR rate: ζCR ≃ (0.5− 3)× 10−16 s−1 .

→ ΓCR ≃ ζCR × 10 [eV/s].
⇒ CRs are the most efficient heating source

in dense molecular clouds.

X-ray heating
Similar interaction as cosmic rays but with lower energy.
X-rays penetrate less deeply into clouds:

Near bright X-ray sources: (binary, AGNs, etc.) → only regions where it dominates.
Diffuse X-ray background: ΓXR ≃ 10−33 [W/H].

Shock Heating

Γshock ≃ 1/2mHv2
shock × RSN × fV, w/ vshock ≃ 300 km/s, RSN ≃ 1/(100 year) & fV ≃ 2× 10−7.

⇒ dominant heating process in the hot, intercloud, coronal gas.

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 7 / 46



Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

Low-energy CRs (1–10 MeV) are the most
numerous.
They penetrate dense clouds where there
are no UV photons.

CR rate: ζCR ≃ (0.5− 3)× 10−16 s−1 .

→ ΓCR ≃ ζCR × 10 [eV/s].
⇒ CRs are the most efficient heating source

in dense molecular clouds.

X-ray heating
Similar interaction as cosmic rays but with lower energy.
X-rays penetrate less deeply into clouds:
Near bright X-ray sources: (binary, AGNs, etc.) → only regions where it dominates.

Diffuse X-ray background: ΓXR ≃ 10−33 [W/H].

Shock Heating

Γshock ≃ 1/2mHv2
shock × RSN × fV, w/ vshock ≃ 300 km/s, RSN ≃ 1/(100 year) & fV ≃ 2× 10−7.

⇒ dominant heating process in the hot, intercloud, coronal gas.

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 7 / 46



Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

Low-energy CRs (1–10 MeV) are the most
numerous.
They penetrate dense clouds where there
are no UV photons.

CR rate: ζCR ≃ (0.5− 3)× 10−16 s−1 .

→ ΓCR ≃ ζCR × 10 [eV/s].
⇒ CRs are the most efficient heating source

in dense molecular clouds.

X-ray heating
Similar interaction as cosmic rays but with lower energy.
X-rays penetrate less deeply into clouds:
Near bright X-ray sources: (binary, AGNs, etc.) → only regions where it dominates.
Diffuse X-ray background: ΓXR ≃ 10−33 [W/H].

Shock Heating

Γshock ≃ 1/2mHv2
shock × RSN × fV, w/ vshock ≃ 300 km/s, RSN ≃ 1/(100 year) & fV ≃ 2× 10−7.

⇒ dominant heating process in the hot, intercloud, coronal gas.

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 7 / 46



Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

Low-energy CRs (1–10 MeV) are the most
numerous.
They penetrate dense clouds where there
are no UV photons.

CR rate: ζCR ≃ (0.5− 3)× 10−16 s−1 .

→ ΓCR ≃ ζCR × 10 [eV/s].
⇒ CRs are the most efficient heating source

in dense molecular clouds.

X-ray heating
Similar interaction as cosmic rays but with lower energy.
X-rays penetrate less deeply into clouds:
Near bright X-ray sources: (binary, AGNs, etc.) → only regions where it dominates.
Diffuse X-ray background: ΓXR ≃ 10−33 [W/H].

Shock Heating

Γshock ≃ 1/2mHv2
shock × RSN × fV, w/ vshock ≃ 300 km/s, RSN ≃ 1/(100 year) & fV ≃ 2× 10−7.

⇒ dominant heating process in the hot, intercloud, coronal gas.

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 7 / 46



Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

Low-energy CRs (1–10 MeV) are the most
numerous.
They penetrate dense clouds where there
are no UV photons.

CR rate: ζCR ≃ (0.5− 3)× 10−16 s−1 .

→ ΓCR ≃ ζCR × 10 [eV/s].
⇒ CRs are the most efficient heating source

in dense molecular clouds.

X-ray heating
Similar interaction as cosmic rays but with lower energy.
X-rays penetrate less deeply into clouds:
Near bright X-ray sources: (binary, AGNs, etc.) → only regions where it dominates.
Diffuse X-ray background: ΓXR ≃ 10−33 [W/H].

Shock Heating

Γshock ≃ 1/2mHv2
shock × RSN × fV, w/ vshock ≃ 300 km/s, RSN ≃ 1/(100 year) & fV ≃ 2× 10−7.

⇒ dominant heating process in the hot, intercloud, coronal gas.

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 7 / 46



Thermal Phases | Cosmic-Ray, X-Ray & Shock Heating

Cosmic-Ray (CR) heating

Low-energy CRs (1–10 MeV) are the most
numerous.
They penetrate dense clouds where there
are no UV photons.

CR rate: ζCR ≃ (0.5− 3)× 10−16 s−1 .

→ ΓCR ≃ ζCR × 10 [eV/s].
⇒ CRs are the most efficient heating source

in dense molecular clouds.

X-ray heating
Similar interaction as cosmic rays but with lower energy.
X-rays penetrate less deeply into clouds:
Near bright X-ray sources: (binary, AGNs, etc.) → only regions where it dominates.
Diffuse X-ray background: ΓXR ≃ 10−33 [W/H].

Shock Heating

Γshock ≃ 1/2mHv2
shock × RSN × fV, w/ vshock ≃ 300 km/s, RSN ≃ 1/(100 year) & fV ≃ 2× 10−7.

⇒ dominant heating process in the hot, intercloud, coronal gas.

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 7 / 46



Thermal Phases | Comparison of the Different Heating Processes

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 8 / 46



Thermal Phases | Comparison of the Different Heating Processes

.
 

Neutral atomic gas

 

He
at

in
g 

ra
te

, 
×

 [W
/m

]

Molecular gas

Gas density,  [cm ]
. .

 

He
at

in
g 

ra
te

, 
×

 [W
/m

]

Ionized gas

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 8 / 46



Thermal Phases | Comparison of the Different Heating Processes

.
 

Neutral atomic gas

 

He
at

in
g 

ra
te

, 
×

 [W
/m

]

Molecular gas

Gas density,  [cm ]

H + + +
photoionization

. .
 

He
at

in
g 

ra
te

, 
×

 [W
/m

]

Ionized gas

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 8 / 46



Thermal Phases | Comparison of the Different Heating Processes

.
 

Neutral atomic gas

 

He
at

in
g 

ra
te

, 
×

 [W
/m

]

Molecular gas

Gas density,  [cm ]

Shocks

H + + +
photoionization

. .
 

He
at

in
g 

ra
te

, 
×

 [W
/m

]

Ionized gas

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 8 / 46



Thermal Phases | Comparison of the Different Heating Processes

 

Molecular gas

Gas density,  [cm ]

Shocks

H + + +
photoionization

. .
 

He
at

in
g 

ra
te

, 
×

 [W
/m

]

Ionized gas

.
 

Neutral atomic gas

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 8 / 46



Thermal Phases | Comparison of the Different Heating Processes

 

Molecular gas

Gas density,  [cm ]

Shocks

H + + +
photoionization

. .
 

He
at

in
g 

ra
te

, 
×

 [W
/m

]

Ionized gas

Photoelectric
effect

.
 

Neutral atomic gas

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 8 / 46



Thermal Phases | Comparison of the Different Heating Processes

 

Molecular gas

Gas density,  [cm ]

Shocks

H + + +
photoionization

. .
 

He
at

in
g 

ra
te

, 
×

 [W
/m

]

Ionized gas

Cosmic
rays

Photoelectric
effect

.
 

Neutral atomic gas

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 8 / 46



Thermal Phases | Comparison of the Different Heating Processes

 

Molecular gas

Gas density,  [cm ]

Shocks

H + + +
photoionization

. .
 

He
at

in
g 

ra
te

, 
×

 [W
/m

]

Ionized gas

C + + +
photoionization

Cosmic
rays

Photoelectric
effect

.
 

Neutral atomic gas

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 8 / 46



Thermal Phases | Comparison of the Different Heating Processes

 

Molecular gas

Gas density,  [cm ]

Shocks

H + + +
photoionization

. .
 

He
at

in
g 

ra
te

, 
×

 [W
/m

]

Ionized gas

Turbulence

C + + +
photoionization

Cosmic
rays

Photoelectric
effect

.
 

Neutral atomic gas

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 8 / 46



Thermal Phases | Comparison of the Different Heating Processes

Gas density,  [cm ]

Shocks

H + + +
photoionization

. .
 

He
at

in
g 

ra
te

, 
×

 [W
/m

]

Ionized gas

Turbulence

C + + +
photoionization

Cosmic
rays

Photoelectric
effect

.
 

Neutral atomic gas

 

Molecular gas

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 8 / 46



Thermal Phases | Comparison of the Different Heating Processes

Gas density,  [cm ]

Shocks

H + + +
photoionization

. .
 

He
at

in
g 

ra
te

, 
×

 [W
/m

]

Ionized gas

Turbulence

C + + +
photoionization

Cosmic
rays

Photoelectric
effect

.
 

Neutral atomic gas

Cosmic
rays

 

Molecular gas

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 8 / 46



Thermal Phases | Comparison of the Different Heating Processes

Gas density,  [cm ]

Shocks

H + + +
photoionization

. .
 

He
at

in
g 

ra
te

, 
×

 [W
/m

]

Ionized gas

Turbulence

C + + +
photoionization

Cosmic
rays

Photoelectric
effect

.
 

Neutral atomic gas

Cosmic
rays

Turbulence

 

Molecular gas

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 8 / 46



Thermal Phases | Comparison of the Different Heating Processes

Gas density,  [cm ]

Shocks

H + + +
photoionization

. .
 

He
at

in
g 

ra
te

, 
×

 [W
/m

]

Ionized gas

Turbulence

C + + +
photoionization

Cosmic
rays

Photoelectric
effect

.
 

Neutral atomic gas

Cosmic
rays

Turbulence

Gravity

 

Molecular gas

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 8 / 46



Thermal Phases | Dust Cooling & Total ISM Cooling

Gas & dust are not thermalized (e.g. Tgas(WNM) ≃ 104 K vs. Tdust(WNM) ≃ 18 K).
Dust dominates the energetic balance of the ISM: Lcool

dust = Labs
dust ≃ 30 % L⋆ ⇒ Lcool

gas ≃ 1 % Lcool
dust.
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gas ≃ 1 % Lcool
dust.
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Thermal Phases | The Interstellar Cooling Function

(Dalgarno & McCray, 1972; Schure et al., 2009; Wolfire et al., 1995, 2022)
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Thermal Phases | The Two Neutral Atomic Phases of the ISM
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Thermal Phases | Observations of the Bithermal Neutral Medium

([H i]21 cm emis-
sion with CO con-
tours; Kalberla &
Kerp 2009)

⇒ [H i]21 cm
CNM absorp-
tion in front of
WNM [H i]21 cm
emission, without
systematic asso-
ciation to CO.
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Thermal Phases | The Two Ionized Phases of the ISM

Accounting for heating by shock & H0 photoionization:
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Thermal Phases | Observations of the Hot Ionized Medium (HIM)

Credit: eRosita all-sky survey (0.3–0.6 keV / 0.6–1 keV / 1–2.3 keV); J. Sanders, H. Brunner & the eSASS team (MPE);
E. Churazov, M. Gilfanov (on behalf of IKI).
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Thermal Phases | Molecular Clouds

Diffuse molecular clouds: n(H2) = 102 − 103 cm−3 & T = 40− 100 K.
Dense molecular clouds: n(H2) = 103 − 106 cm−3 & T = 20− 50 K.
Molecular cores: n(H2) = 106 − 107 cm−3 & T = 10− 20 K.

Credit: Planck image with 12CO(J=1→0)2.6mm contours from Dame et al. (2001); ESA, HFI and LFI consortia.
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Thermal Phases | Summary of the Properties of the ISM Phases

Phase Density Temperature Volume Main Main
[cm−3] [K] filling factor heating cooling

(Adapted from Tielens 2005 & Draine 2011)
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Thermal Phases | The Multiphase Interstellar Dynamical Network
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Outline of the Lecture

1 COOLING & HEATING OF THE GAS
The gas heating processes
The gas cooling function
The five thermal phases of the ISM

2 THE PRINCIPLES OF RADIATIVE TRANSFER
The radiative transfer equation
Solutions in simple cases
Dust radiative transfer with more complex geometries

3 STAR-FORMING REGIONS
The Structure of Star-Forming Regions
H II regions
PhotoDissociation Regions (PDRs)

4 CONCLUSION
Take-away points
References
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Transfer | The Specific Intensity & Its Moments (1/2)

Spherical coordinate reminder

Solid angle: dΩ = sin θdθdϕ. Polar angle: 0 ≤ θ < π. Azimuthal angle: 0 ≤ ϕ < 2π.

Specific & mean intensities

Specific intensity: Iν(ν, r⃗ , θ, ϕ) ≡
dE

dtdAdΩdν
.

Mean intensity: (0th order moment of Iν)
Jν(ν, r⃗) ≡

1
4π

x

Ω

Iν(ν, r⃗ , θ, ϕ) dΩ.

Isotropic radiation ⇒ Iν(ν, r⃗) = Jν(ν, r⃗).

The net flux

Net monochromatic flux: (1st order moment
of Iν)
Fν(ν, r⃗) ≡

x

Ω

Iν(ν, r⃗ , θ, ϕ) cos θ dΩ.

Isotropic case ⇒Fν(ν, r⃗) = 0.
Hemispherical case ⇒Fν(ν, r⃗) = πJν(ν, r⃗).
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Transfer | The Specific Intensity & Its Moments (2/2)

Radiation pressure

Momentum flux carried by a photon of fre-
quency ν: p = hν/c.

Radiation pressure: (2nd order moment of Iν)
Pν ≡

x

Ω

Iν(ν, r⃗ , θ, ϕ) cos2 θ dΩ.

Energy density

Uν(ν, r⃗ , θ, ϕ) ≡
dE

dV dΩdν
=

dE
cdtdAdΩdν

⇒Uν(ν, r⃗ , θ, ϕ) =
Iν(ν, r⃗ , θ, ϕ)

c
.

Emission & absorption coefficient

Emission coefficient:
jν(ν,−→r , θ, ϕ) ≡

dEem

dtdV dΩdν
.

Extinction coefficient:
α(⃗r , ν) = ρ(⃗r)× κ(⃗r , ν).
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Transfer | The Radiative Transfer Equation

dIν(ν,−→r , θ, ϕ)
dl

= − αabs(ν,−→r )Iν(ν,−→r , θ, ϕ)︸ ︷︷ ︸
absorption

− αsca(ν,−→r )Iν(ν,−→r , θ, ϕ)︸ ︷︷ ︸
scattering out of the sightline

+ αsca(ν,−→r )2π

∫ 1

−1
Φ(cos θ′, ν)Iν(ν,−→r , θ(θ′), ϕ(θ′)) d cos θ′︸ ︷︷ ︸

scattering in the sightline

+ j ISM
ν (ν,−→r )︸ ︷︷ ︸
ISM emission

+ j⋆
ν (ν,−→r )︸ ︷︷ ︸

stellar emission

.

Solve this ∀ θ, ∀ ϕ, ∀ r⃗ , ∀ ν ⇒ numerically intensive.

(Rybicky & Lightman, 1979; Steinacker et al., 2013)
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Transfer | The Concept of Optical Depth

The optical depth along a sightline

Along a given sightline, l :
dτ(ν, l) = α(ν, l) dl = ρ(l)︸︷︷︸

specific mass

×κ(ν, l)︸ ︷︷ ︸
opacity

dl

⇒ τ(ν, l) =
∫ l

0
ρ(l ′)× κ(ν, l ′) dl ′ .

The mean free path of a photon

lmean(ν, r⃗) =
1

α(ν, r⃗)
=

1
ρ(⃗r)κ(ν, r⃗)

τ ≪ 1 ⇒ “optically-thin”.
τ = 1 ⇒ l = lmean.
τ ≫ 1 ⇒ “optically-thick”.

The visible / near-IR mean free path for the different ISM phases

HIM WNM CNM Molecular clouds
nH = 0.003 cm−3 nH = 0.3 cm−3 nH = 30 cm−3 nH = 104 cm−3
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Transfer | Analytical Solutions: Radiative Transfer in Vacuum

Transfer equation:
dIν
dr

= 0

⇒ Iν(R⋆) = Iν(r) = Bν(T⋆) ← energy conservation.

Angular size at distance r : sin α =
R⋆

r
.

Flux at r : Fν(r) =
∫ 2π

0

∫ α

0
Iν cos θ dθ dϕ

= 2πBν(T⋆)
∫ α

0
cos θ sin θdθ = πBν(T⋆) sin2 α

⇒ Fν(r) = πBν(T⋆)
(R⋆

r

)2
.

Consistency check: Fν(R⋆) = πBν(T⋆)

(Rybicky & Lightman, 1979)
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Transfer | Analytical Solutions: Emission or Absorption

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, T = Td, with opacity κ.

Transfer equation:
dIν
dl

= ρ(l)κBν(Td).

Surface brightness: Iν(L) = κBν(Td)
∫ L

o
ρ(l) dl = ⟨ρ⟩κL× Bν(Td)

⇔ Iν(L) = τ(L)× Bν(Td) .

Absorption only

Hypothesis: dust cloud, with opacity κ, in front of a star of specific intensity I⋆
ν .

Transfer equation:
dIν
dl

= −α(l)Iν

⇒ Iν = I⋆
ν exp

[
−κ

∫ L

0
α dl

]
⇔ Iν(l) = I⋆

ν exp [−τ(L)] .

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 25 / 46



Transfer | Analytical Solutions: Emission or Absorption

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, T = Td, with opacity κ.

Transfer equation:
dIν
dl

= ρ(l)κBν(Td).

Surface brightness: Iν(L) = κBν(Td)
∫ L

o
ρ(l) dl = ⟨ρ⟩κL× Bν(Td)

⇔ Iν(L) = τ(L)× Bν(Td) .

Absorption only

Hypothesis: dust cloud, with opacity κ, in front of a star of specific intensity I⋆
ν .

Transfer equation:
dIν
dl

= −α(l)Iν

⇒ Iν = I⋆
ν exp

[
−κ

∫ L

0
α dl

]
⇔ Iν(l) = I⋆

ν exp [−τ(L)] .

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 25 / 46



Transfer | Analytical Solutions: Emission or Absorption

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, T = Td, with opacity κ.

Transfer equation:
dIν
dl

= ρ(l)κBν(Td).

Surface brightness: Iν(L) = κBν(Td)
∫ L

o
ρ(l) dl = ⟨ρ⟩κL× Bν(Td)

⇔ Iν(L) = τ(L)× Bν(Td) .

Absorption only

Hypothesis: dust cloud, with opacity κ, in front of a star of specific intensity I⋆
ν .

Transfer equation:
dIν
dl

= −α(l)Iν

⇒ Iν = I⋆
ν exp

[
−κ

∫ L

0
α dl

]
⇔ Iν(l) = I⋆

ν exp [−τ(L)] .

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 25 / 46



Transfer | Analytical Solutions: Emission or Absorption

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, T = Td, with opacity κ.

Transfer equation:
dIν
dl

= ρ(l)κBν(Td).

Surface brightness: Iν(L) = κBν(Td)
∫ L

o
ρ(l) dl = ⟨ρ⟩κL× Bν(Td)

⇔ Iν(L) = τ(L)× Bν(Td) .

Absorption only

Hypothesis: dust cloud, with opacity κ, in front of a star of specific intensity I⋆
ν .

Transfer equation:
dIν
dl

= −α(l)Iν

⇒ Iν = I⋆
ν exp

[
−κ

∫ L

0
α dl

]
⇔ Iν(l) = I⋆

ν exp [−τ(L)] .

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 25 / 46



Transfer | Analytical Solutions: Emission or Absorption

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, T = Td, with opacity κ.

Transfer equation:
dIν
dl

= ρ(l)κBν(Td).

Surface brightness: Iν(L) = κBν(Td)
∫ L

o
ρ(l) dl = ⟨ρ⟩κL× Bν(Td)

⇔ Iν(L) = τ(L)× Bν(Td) .

Absorption only

Hypothesis: dust cloud, with opacity κ, in front of a star of specific intensity I⋆
ν .

Transfer equation:
dIν
dl

= −α(l)Iν

⇒ Iν = I⋆
ν exp

[
−κ

∫ L

0
α dl

]
⇔ Iν(l) = I⋆

ν exp [−τ(L)] .

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 25 / 46



Transfer | Analytical Solutions: Emission or Absorption

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, T = Td, with opacity κ.

Transfer equation:
dIν
dl

= ρ(l)κBν(Td).

Surface brightness: Iν(L) = κBν(Td)
∫ L

o
ρ(l) dl = ⟨ρ⟩κL× Bν(Td)

⇔ Iν(L) = τ(L)× Bν(Td) .

Absorption only

Hypothesis: dust cloud, with opacity κ, in front of a star of specific intensity I⋆
ν .

Transfer equation:
dIν
dl

= −α(l)Iν

⇒ Iν = I⋆
ν exp

[
−κ

∫ L

0
α dl

]
⇔ Iν(l) = I⋆

ν exp [−τ(L)] .

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 25 / 46



Transfer | Analytical Solutions: Emission or Absorption

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, T = Td, with opacity κ.

Transfer equation:
dIν
dl

= ρ(l)κBν(Td).

Surface brightness: Iν(L) = κBν(Td)
∫ L

o
ρ(l) dl = ⟨ρ⟩κL× Bν(Td)

⇔ Iν(L) = τ(L)× Bν(Td) .

Absorption only

Hypothesis: dust cloud, with opacity κ, in front of a star of specific intensity I⋆
ν .

Transfer equation:
dIν
dl

= −α(l)Iν

⇒ Iν = I⋆
ν exp

[
−κ

∫ L

0
α dl

]
⇔ Iν(l) = I⋆

ν exp [−τ(L)] .

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 25 / 46



Transfer | Analytical Solutions: Emission or Absorption

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, T = Td, with opacity κ.

Transfer equation:
dIν
dl

= ρ(l)κBν(Td).

Surface brightness: Iν(L) = κBν(Td)
∫ L

o
ρ(l) dl = ⟨ρ⟩κL× Bν(Td) ⇔ Iν(L) = τ(L)× Bν(Td) .

Absorption only

Hypothesis: dust cloud, with opacity κ, in front of a star of specific intensity I⋆
ν .

Transfer equation:
dIν
dl

= −α(l)Iν

⇒ Iν = I⋆
ν exp

[
−κ

∫ L

0
α dl

]
⇔ Iν(l) = I⋆

ν exp [−τ(L)] .

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 25 / 46



Transfer | Analytical Solutions: Emission or Absorption

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, T = Td, with opacity κ.

Transfer equation:
dIν
dl

= ρ(l)κBν(Td).

Surface brightness: Iν(L) = κBν(Td)
∫ L

o
ρ(l) dl = ⟨ρ⟩κL× Bν(Td) ⇔ Iν(L) = τ(L)× Bν(Td) .

Absorption only

Hypothesis: dust cloud, with opacity κ, in front of a star of specific intensity I⋆
ν .

Transfer equation:
dIν
dl

= −α(l)Iν

⇒ Iν = I⋆
ν exp

[
−κ

∫ L

0
α dl

]
⇔ Iν(l) = I⋆

ν exp [−τ(L)] .

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 25 / 46



Transfer | Analytical Solutions: Emission or Absorption

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, T = Td, with opacity κ.

Transfer equation:
dIν
dl

= ρ(l)κBν(Td).

Surface brightness: Iν(L) = κBν(Td)
∫ L

o
ρ(l) dl = ⟨ρ⟩κL× Bν(Td) ⇔ Iν(L) = τ(L)× Bν(Td) .

Absorption only

Hypothesis: dust cloud, with opacity κ, in front of a star of specific intensity I⋆
ν .

Transfer equation:
dIν
dl

= −α(l)Iν

⇒ Iν = I⋆
ν exp

[
−κ

∫ L

0
α dl

]
⇔ Iν(l) = I⋆

ν exp [−τ(L)] .

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 25 / 46



Transfer | Analytical Solutions: Emission or Absorption

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, T = Td, with opacity κ.

Transfer equation:
dIν
dl

= ρ(l)κBν(Td).

Surface brightness: Iν(L) = κBν(Td)
∫ L

o
ρ(l) dl = ⟨ρ⟩κL× Bν(Td) ⇔ Iν(L) = τ(L)× Bν(Td) .

Absorption only

Hypothesis: dust cloud, with opacity κ, in front of a star of specific intensity I⋆
ν .

Transfer equation:
dIν
dl

= −α(l)Iν

⇒ Iν = I⋆
ν exp

[
−κ

∫ L

0
α dl

]
⇔ Iν(l) = I⋆

ν exp [−τ(L)] .

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 25 / 46



Transfer | Analytical Solutions: Emission or Absorption

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, T = Td, with opacity κ.

Transfer equation:
dIν
dl

= ρ(l)κBν(Td).

Surface brightness: Iν(L) = κBν(Td)
∫ L

o
ρ(l) dl = ⟨ρ⟩κL× Bν(Td) ⇔ Iν(L) = τ(L)× Bν(Td) .

Absorption only

Hypothesis: dust cloud, with opacity κ, in front of a star of specific intensity I⋆
ν .

Transfer equation:
dIν
dl

= −α(l)Iν

⇒ Iν = I⋆
ν exp

[
−κ

∫ L

0
α dl

]
⇔ Iν(l) = I⋆

ν exp [−τ(L)] .

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 25 / 46



Transfer | Analytical Solutions: Emission or Absorption

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, T = Td, with opacity κ.

Transfer equation:
dIν
dl

= ρ(l)κBν(Td).

Surface brightness: Iν(L) = κBν(Td)
∫ L

o
ρ(l) dl = ⟨ρ⟩κL× Bν(Td) ⇔ Iν(L) = τ(L)× Bν(Td) .

Absorption only

Hypothesis: dust cloud, with opacity κ, in front of a star of specific intensity I⋆
ν .

Transfer equation:
dIν
dl

= −α(l)Iν

⇒ Iν = I⋆
ν exp

[
−κ

∫ L

0
α dl

]
⇔ Iν(l) = I⋆

ν exp [−τ(L)] .

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 25 / 46



Transfer | Analytical Solutions: Emission or Absorption

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, T = Td, with opacity κ.

Transfer equation:
dIν
dl

= ρ(l)κBν(Td).

Surface brightness: Iν(L) = κBν(Td)
∫ L

o
ρ(l) dl = ⟨ρ⟩κL× Bν(Td) ⇔ Iν(L) = τ(L)× Bν(Td) .

Absorption only

Hypothesis: dust cloud, with opacity κ, in front of a star of specific intensity I⋆
ν .

Transfer equation:
dIν
dl

= −α(l)Iν ⇒ Iν = I⋆
ν exp

[
−κ

∫ L

0
α dl

]

⇔ Iν(l) = I⋆
ν exp [−τ(L)] .

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 25 / 46



Transfer | Analytical Solutions: Emission or Absorption

Emission only

Hypothesis: homogeneous dust cloud of grains at thermal equilibrium, T = Td, with opacity κ.

Transfer equation:
dIν
dl

= ρ(l)κBν(Td).

Surface brightness: Iν(L) = κBν(Td)
∫ L

o
ρ(l) dl = ⟨ρ⟩κL× Bν(Td) ⇔ Iν(L) = τ(L)× Bν(Td) .

Absorption only

Hypothesis: dust cloud, with opacity κ, in front of a star of specific intensity I⋆
ν .

Transfer equation:
dIν
dl

= −α(l)Iν ⇒ Iν = I⋆
ν exp

[
−κ

∫ L

0
α dl

]
⇔ Iν(l) = I⋆

ν exp [−τ(L)] .

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 25 / 46



Transfer | Analytical Solutions: Emission & Absorption

Transfer equation: can be simplified using τ instead of l as a parameter:
dIν
dτ

= −Iν + Sν︸︷︷︸
source function

.

Solution: Iν(τ) = I⋆
ν exp(−τ) +

∫ τ

0
exp(τ ′ − τ)× Sν(τ ′) dτ ′

⇒ Iν = I⋆
ν exp(−τ)︸ ︷︷ ︸
stellar extinction

+ Bν(Td)× [1− exp(−τ)]︸ ︷︷ ︸
cloud self-absorption

.

Optically thin: τ ≪ 1 ⇒ Icloud
ν ≃ τBν(Td) → “grey body”.

Optically thick: τ ≫ 1 ⇒ Icloud
ν ≃ Bν(Td) → “black body”.

.
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Transfer | Application to the 21 cm H I Line

Radiastronomy convention

Rayleigh-Jeans approximation: hν ≪ kT ⇒ Bν(T ) ≃
2kTν2

c2 .

Brightness temperature: Tb ≡
Iνc2

2kν2 .

Measuring H I gas temperature (“spin temperature”)

Background source through a cloud: T on
b = TQSO exp (−τ) + TH i [1− exp(−τ)].

Cloud alone: T off
b = TH i [1− exp(−τ)].

Solution: (1) τ = ln
TQSO

T on
b − T off

b

(2) TH i =
T off

b

1− exp(−τ)
.
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Transfer | Monte Carlo Radiative Transfer

Drawing random photons in an arbitrary geometry

Sources of photons can be stars at any position → large number of photons at every wavelength.
Multiple scattering are then accounted for randomly, keeping in memory the weight of the ray.
Iterative process is required to compute atomic & molecular level populations & dust heating.
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Transfer | Large-Scale Radiative Transfer of Galaxies

(De Looze et al., 2012)

Usefulness of these models:

1 Large-scale geometry: disk scale-height,
opacity, etc.

2 Contribution to dust heating of ̸= stellar
populations.

Simulations:
Monte Carlo radiative transfer models can also
be used to post-process numerical simulations
of star-forming regions or galaxies ⇒ synthetic
observables.
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Outline of the Lecture

1 COOLING & HEATING OF THE GAS
The gas heating processes
The gas cooling function
The five thermal phases of the ISM

2 THE PRINCIPLES OF RADIATIVE TRANSFER
The radiative transfer equation
Solutions in simple cases
Dust radiative transfer with more complex geometries

3 STAR-FORMING REGIONS
The Structure of Star-Forming Regions
H II regions
PhotoDissociation Regions (PDRs)

4 CONCLUSION
Take-away points
References
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SF regions | The Structure of Star Forming Regions

WIM: thermally stable phase ionized by diffuse UV photons escaping from H ii regions.
H II regions: short-lived, localized region ionized by nearby star cluster.

Credit: IC 1396 (Kallias IOANNIDIS).
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SF regions | The Orion Bar: The Best-Studied Region

(Habart et al., 2024)
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SF regions | Large Scales: The Large Magellanic Cloud

Credit: J. C. Canonne, N. Outters, P.
Bernhard, D. Chaplain, L. Bourgon.
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SF regions | Public Photoionization & Photodissociation Codes

(adapted from B. Godard)
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SF regions | Public Photoionization & Photodissociation Codes

Name Scope Reference Download link

(adapted from B. Godard)
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SF regions | Public Photoionization & Photodissociation Codes
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SF regions | Photoionization Balance – The Strömgren Sphere
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SF regions | Star Formation Rate (SFR) Estimators

Using Dust Emission

Young stars are extremelly luminous & enshrouded
with dust.

⇒ LOB ≃ LIR.
⇒ SFR [M⊙/yr] ≃ 10−10 × LIR [L⊙], with reasonable

assumptions about the Initial Mass Function (IMF),
burst age & metallicity (Kennicutt, 1998).

Accounting for escaping UV photons

Photons absorbed by the dust: traced by LIR.
Escaping photons: traced by far-UV or Hα measurements.

(Hao et al., 2011; Boquien et al., 2016)
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SF regions | The Physics of PhotoDissociation Regions (PDRs)

The relevance of PDRs

PDRs: continuation of H ii regions where all ionizing photons have been absorbed ⇒ H0.
PDR ⇔ UV-illuminated edges of molecular clouds. Broader nomenclature: most neutral &
molecular clouds bathed with UV photons are PDRs.
They harbor a rich variety of chemical reactions → H2.

(cf. Bron et al. 2014)
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SF regions | The CO-Dark Gas

Measuring molecular gas masses

H2 symmetry ⇒ no rotational lines

⇒ Rely on CO to trace molecular gas.

CO photodissociation at low Z → ≃ 70-100 % of H2 not traced by CO (Madden et al., 2020).

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 41 / 46



SF regions | The CO-Dark Gas

Measuring molecular gas masses

H2 symmetry ⇒ no rotational lines

⇒ Rely on CO to trace molecular gas.

CO photodissociation at low Z → ≃ 70-100 % of H2 not traced by CO (Madden et al., 2020).

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 41 / 46



SF regions | The CO-Dark Gas

Measuring molecular gas masses
H2 symmetry ⇒ no rotational lines

⇒ Rely on CO to trace molecular gas.
CO photodissociation at low Z → ≃ 70-100 % of H2 not traced by CO (Madden et al., 2020).

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 41 / 46



SF regions | The CO-Dark Gas

Measuring molecular gas masses
H2 symmetry ⇒ no rotational lines ⇒ Rely on CO to trace molecular gas.

CO photodissociation at low Z → ≃ 70-100 % of H2 not traced by CO (Madden et al., 2020).

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 41 / 46



SF regions | The CO-Dark Gas

Measuring molecular gas masses
H2 symmetry ⇒ no rotational lines ⇒ Rely on CO to trace molecular gas.
CO photodissociation at low Z → ≃ 70-100 % of H2 not traced by CO (Madden et al., 2020).

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 41 / 46



SF regions | The CO-Dark Gas

Measuring molecular gas masses
H2 symmetry ⇒ no rotational lines ⇒ Rely on CO to trace molecular gas.
CO photodissociation at low Z → ≃ 70-100 % of H2 not traced by CO (Madden et al., 2020).

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 41 / 46



SF regions | The CO-Dark Gas

Measuring molecular gas masses
H2 symmetry ⇒ no rotational lines ⇒ Rely on CO to trace molecular gas.
CO photodissociation at low Z → ≃ 70-100 % of H2 not traced by CO (Madden et al., 2020).

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 41 / 46



SF regions | The CO-Dark Gas

Measuring molecular gas masses
H2 symmetry ⇒ no rotational lines ⇒ Rely on CO to trace molecular gas.
CO photodissociation at low Z → ≃ 70-100 % of H2 not traced by CO (Madden et al., 2020).

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 41 / 46



Outline of the Lecture

1 COOLING & HEATING OF THE GAS
The gas heating processes
The gas cooling function
The five thermal phases of the ISM

2 THE PRINCIPLES OF RADIATIVE TRANSFER
The radiative transfer equation
Solutions in simple cases
Dust radiative transfer with more complex geometries

3 STAR-FORMING REGIONS
The Structure of Star-Forming Regions
H II regions
PhotoDissociation Regions (PDRs)

4 CONCLUSION
Take-away points
References

F. Galliano (CEA Paris-Saclay) ISM lecture 3 (ISYA 2024, Algiers) October 1st, 2024 42 / 46



Conclusion | Take-Away Points

Balance between gas heating & cooling – the phases of the ISM

The Cold Neutral Medium (CNM; n ≃ 30 cm−3; T ≃ 100 K) & the Warm Neutral Medium
(WNM; n ≃ 0.3 cm−3; T ≃ 104 K) are at pressure equilibrium→ the only 2 stable H i phases.
So are the Warm Ionized Medium (WIM; n ≃ 0.1 cm−3; T = 104 K) & the Hot Ionized
Medium (HIM; n ≃ 0.003 cm−3; T ≃ 106 K; ≃ 50 % of the volume of the Galaxy).
Molecular clouds exhibit a large range of densities (n ≃ 102 − 106 cm−3).

Radiative transfer

The radiative transfer equations solves the propagation of light in the ISM, accounting for
absorption, scattering out & in the sightline & emission by the ISM.
The optical depth, τ(λ), is related to the mean free path of photons.
The Monte Carlo method is the most flexible solution when dealing with complex geometries.

Star-forming regions

The size of H ii regions, the Strömgren radius, is determined by the photoionization equilibrium.
PhotoDissociation Regions (PDRs) harbor complex chemistry at the UV-illuminated edge of
molecular clouds.
At low metallicity, the photodissociation of CO biases molecular mass estimates.
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