SYSTEMS FOR JAZZ GUITAR


1. PRELIMINARY REMINDERS

1.1. Time and Key Signatures

1.1.1. Keys

elements_keys1.png
elements_keys2.png
elements_keys3.png
elements_keys4.png

1.1.2. Tempo ranges

Jazz tempo Classical tempo BPM
Very fast > 290
Up tempo, fast 230 - 290
Medium-up tempo, medium fast prestissimo 180 - 230
Medium tempo, moderate allegro 120 - 180
Walking tempo moderato 100 - 120
Slow swing andante 80 - 100
Medium ballad adagio 60 - 80
Slow ballad largo 40 - 60

1.2. Interval Cycles

cycles1.png cycles2.png


2. UNIQUE MELODIC ELEMENTS

2.1. Triads

The four triads formed by combining major and minor thirds are the following. The most useful way to play them are:

  • in the five CAGED positions;
  • in the six two-and-one-notes-per-string positions.
elements_triads1.png

The two most useful harmonizations, easy to play on the guitar, are the following. The compact forms can be played on adjacent string groups. The drop-2 forms have one or two string skips, depending on the inversion and on the quality of the chord.

elements_triads2.png

2.2. Sevenths Chords

There are seven four-note arpeggios obtained by combining major and minor thirds, the eighth one being only the augmented triad with the root repeated one octave higher. The most useful way to play them are:

  • in the five CAGED positions;
  • in the four two-notes-per-string positions (go well with slurring);
  • in the eight three-and-one-notes-per-string positions (go well with economy picking).
elements_sevenths1.png
elements_sevenths2.png
elements_sevenths3.png
elements_sevenths4.png

These arpeggios can be arranged in different chord forms.

  • The compact form can be played on the guitar mostly in its fundamental inversion. The other inversions are playable only in the higher register, using open strings, or with a non-standard tuning such as Frank GAMBALE's.
  • Drop-2 forms can be played on adjacent string groups (there are thus three unisons of each chord on the guitar neck).
  • Drop-3 forms can be played with a detached bass (thus two unisons per chord).
  • Drop-2,3 forms can be played with a string skip in the middle (thus two unisons per chord).
  • Drop-2,4 forms can be played with a detached high note (thus two unisons per chord).
  • Drop-2,3,4 forms can be played with the bass on the low E string and the three other notes on the three high strings (thus only one unison per chord).
elements_sevenths5.png
elements_sevenths6.png
elements_sevenths7.png

In addition, two categories of incomplete chords can be very practical.

  1. Shell voicings, are efficient for staccato punctuation or quarter note comping. They sound a bit lacking when held for a long time.
  2. Octave chords have a repeated note:
    • Regular octave chords can be played on the same string groups as Drop-2;
    • Double octave chords can be played on the low E, D, G and high E strings.
elements_sevenths8.png
elements_sevenths9.png

2.3. Pentatonic Scales

The most common pentatonic scales for improvising are the following. We also give the name of the relative minor for the first three.

  • The most useful positions are two notes per string.
  • They can also be played in the fifteen positions with three and two notes per strings.
elements_penta1.png
elements_penta2.png
elements_penta3.png
elements_penta4.png
elements_penta5.png
elements_penta6.png

2.4. Blues Scales

The blues scales can be played as a pentatonic plus the blue note. It can also be played three notes per strings (good for economy picking).

elements_blues.png

2.5. Heptatonic Scales

There are seven positions to play these scales, three notes per strings. They are the most useful both for economy picking and slurring.

elements_hepta1.png
elements_hepta2.png
elements_hepta3.png
elements_hepta4.png
elements_hepta5.png

2.6. Symmetric Scales

elements_sym1.png
elements_sym2.png
elements_sym3.png

3. GENERALIZATION OF THE CONCEPT OF MODE

Here, we go through all the combinations of a unique melodic element played against an arbitrary bass note. Not all are interesting, but we still list them for completeness.

3.1. Triads

3.1.1. Major

Substitution                         Play over
C\(/\mathrm{C}\) 1       3     5         C\(^\Delta\), C\(^7\)
B\(/\mathrm{C}\)       3m/\(\sharp9\)     \(\flat5/\sharp11\)         7
B\(\flat/\mathrm{C}\)     9     4/11         \(\flat7\)   Cm\(^7\), C\(^{7sus}\)
A\(/\mathrm{C}\)   \(\flat9\)     3         13     C\(^{7alt}\)
A\(\flat/\mathrm{C}\) 1     3m/\(\sharp9\)         \(\sharp5/\flat13\)       C\(^{7alt}\)
G\(/\mathrm{C}\)     9         5       7 C\(^\Delta\), Cm\(^{\Delta}\)
F\(\sharp/\mathrm{C}\)   \(\flat9\)         \(\flat5/\sharp11\)       \(\flat7\)   C\(^{7alt}\)
F\(/\mathrm{C}\) 1         4/11       13     C\(^{sus}\), Cm\(^{\Delta}\), Cm\(^7\)
E\(/\mathrm{C}\)         3       \(\sharp5/\flat13\)     7 C\(^{\Delta\sharp5}\)
E\(\flat/\mathrm{C}\)       3m/\(\sharp9\)       5     \(\flat7\)   Cm7, C\(^{7alt}\)
D\(/\mathrm{C}\)     9       \(\flat5/\sharp11\)     13     C\(^\Delta\), C\(^7\)
C\(\sharp/\mathrm{C}\)   \(\flat9\)       4/11     \(\sharp5/\flat13\)      

3.1.2. Minor

Substitution                         Play over
Cm\(/\mathrm{C}\) 1     3m/\(\sharp9\)       5         Cm\(^\Delta\), Cm\(^7\)
Bm\(/\mathrm{C}\)     9       \(\flat5/\sharp11\)         7 C\(^\Delta\)
B\(\flat\mathrm{m}/\mathrm{C}\)   \(\flat9\)       4/11         \(\flat7\)   C\(^{7\flat9sus}\)
Am\(/\mathrm{C}\) 1       3         13     C\(^\Delta\), C\(^{7}\)
A\(\flat\mathrm{m}/\mathrm{C}\)       3m/\(\sharp9\)         \(\sharp5/\flat13\)     7
Gm\(/\mathrm{C}\)     9         5     \(\flat7\)   C\(^\Delta\), Cm\(^{\Delta}\), C\(^7\)
F\(\sharp\mathrm{m}/\mathrm{C}\)   \(\flat9\)         \(\flat5/\sharp11\)     13     C\(^{7alt}\)
Fm\(/\mathrm{C}\) 1         4/11     \(\sharp5/\flat13\)      
Em\(/\mathrm{C}\)         3     5       7 C\(^{\Delta}\)
E\(\flat\mathrm{m}/\mathrm{C}\)       3m/\(\sharp9\)     \(\flat5/\sharp11\)       \(\flat7\)   C\(^\varnothing\), C\(^{7alt}\)
Dm\(/\mathrm{C}\)     9     4/11       13     C\(^{7sus}\), Cm\(^7\)
C\(\sharp\mathrm{m}/\mathrm{C}\)   \(\flat9\)     3       \(\sharp5/\flat13\)       C\(^{7alt}\)

3.1.3. Diminished

Substitution                         Play over
C\(^{\circ}/\mathrm{C}\) 1     3m/\(\sharp9\)     \(\flat5/\sharp11\)           C\(^{\circ7}\), C\(^\varnothing\), C\(^{7alt}\)
B\(^\circ/\mathrm{C}\)     9     4/11           7
B\(\flat^\circ/\mathrm{C}\)   \(\flat9\)     3           \(\flat7\)   C\(^{7alt}\)
A\(^\circ/\mathrm{C}\) 1     3m/\(\sharp9\)           13     Cm\(^\Delta\), Cm\(^{7}\)
A\(\flat^\circ/\mathrm{C}\)     9           \(\sharp5/\flat13\)     7 C\(^{\Delta\sharp5}\)
G\(^\circ/\mathrm{C}\)   \(\flat9\)           5     \(\flat7\)   C\(^{7alt}\)
F\(\sharp^\circ/\mathrm{C}\) 1           \(\flat5/\sharp11\)     13     C\(^\Delta\), C\(^{7}\), C\(^\varnothing\)
F\(^\circ/\mathrm{C}\)           4/11     \(\sharp5/\flat13\)     7  
E\(^\circ/\mathrm{C}\)         3     5     \(\flat7\)   C\(^7\)
E\(\flat^\circ/\mathrm{C}\)       3m/\(\sharp9\)     \(\flat5/\sharp11\)     13     C\(^\varnothing\), C\(^{7alt}\)
D\(^\circ/\mathrm{C}\)     9     4/11     \(\sharp5/\flat13\)      
C\(\sharp^\circ/\mathrm{C}\)   \(\flat9\)     3     5         C\(^{7alt}\)

3.1.4. Augmented

Substitution                         Play over
C\(+/\mathrm{C}\), E\(+/\mathrm{C}\), A\(\flat+/\mathrm{C}\) 1       3       \(\sharp5/\flat13\)       C\(^{\Delta\sharp5}\), C\(^{7alt}\)
B\(+/\mathrm{C}\), E\(\flat+/\mathrm{C}\), G\(+/\mathrm{C}\)       3m/\(\sharp9\)       5       7 Cm\(^\Delta\)
B\(\flat+/\mathrm{C}\), D\(+/\mathrm{C}\), F\(\sharp+/\mathrm{C}\)     9       \(\flat5/\sharp11\)       \(\flat7\)   C\(^{7}\)
A\(+/\mathrm{C}\), C\(\sharp+/\mathrm{C}\), F\(+/\mathrm{C}\)   \(\flat9\)       4/11       13    

3.2. Seventh Arpeggios

3.2.1. Major seventh

Substitution                         Play over
C\(^\Delta/\mathrm{C}\) 1       3     5       7 C\(^\Delta\)
B\(^\Delta/\mathrm{C}\)       3m/\(\sharp9\)     \(\flat5/\sharp11\)       \(\flat7\) 7
B\(\flat^{\Delta}/\mathrm{C}\)     9     4/11       13 \(\flat7\)   Cm\(^7\), C\(^{7sus}\)
A\(^\Delta/\mathrm{C}\)   \(\flat9\)     3       \(\sharp5/\flat13\) 13     C\(^{7alt}\)
A\(\flat^{\Delta}/\mathrm{C}\) 1     3m/\(\sharp9\)       5 \(\sharp5/\flat13\)       C\(^{7alt}\)
G\(^\Delta/\mathrm{C}\)     9       \(\flat5/\sharp11\) 5       7 C\(^\Delta\), Cm\(^{\Delta}\)
F\(\sharp^{\Delta}/\mathrm{C}\)   \(\flat9\)       4/11 \(\flat5/\sharp11\)       \(\flat7\)   C\(^\varnothing\)
F\(^\Delta/\mathrm{C}\) 1       3 4/11       13     C\(^{sus}\)
E\(^\Delta/\mathrm{C}\)       3m/\(\sharp9\) 3       \(\sharp5/\flat13\)     7 C\(^{\Delta\sharp5}\)
E\(\flat^\Delta/\mathrm{C}\)     9 3m/\(\sharp9\)       5     \(\flat7\)   Cm7
D\(^\Delta/\mathrm{C}\)   \(\flat9\) 9       \(\flat5/\sharp11\)     13    
C\(\sharp^\Delta/\mathrm{C}\) 1 \(\flat9\)       4/11     \(\sharp5/\flat13\)      

3.2.2. Minor major seventh

Substitution                         Play over
Cm\(^\Delta/\mathrm{C}\) 1     3m/\(\sharp9\)       5       7 Cm\(^\Delta\)
Bm\(^\Delta/\mathrm{C}\)     9       \(\flat5/\sharp11\)       \(\flat7\) 7
B\(\flat\textrm{m}^{\Delta}/\mathrm{C}\)   \(\flat9\)       4/11       13 \(\flat7\)   C\(^{7\flat9sus}\)
Am\(^\Delta/\mathrm{C}\) 1       3       \(\sharp5/\flat13\) 13     C\(^{\Delta\sharp5}\)
A\(\flat\textrm{m}^{\Delta}/\mathrm{C}\)       3m/\(\sharp9\)       5 \(\sharp5/\flat13\)     7
Gm\(^\Delta/\mathrm{C}\)     9       \(\flat5/\sharp11\) 5     \(\flat7\)   C\(^7\)
F\(\sharp\textrm{m}^{\Delta}/\mathrm{C}\)   \(\flat9\)       4/11 \(\flat5/\sharp11\)     13     C\(^{\circ7}\)
Fm\(^\Delta/\mathrm{C}\) 1       3 4/11     \(\sharp5/\flat13\)      
Em\(^\Delta/\mathrm{C}\)       3m/\(\sharp9\) 3     5       7 C\(^{\Delta}\)
E\(\flat\textrm{m}^\Delta/\mathrm{C}\)     9 3m/\(\sharp9\)     \(\flat5/\sharp11\)       \(\flat7\)   C\(^{\varnothing}\)
Dm\(^\Delta/\mathrm{C}\)   \(\flat9\) 9     4/11       13    
C\(\sharp\textrm{m}^\Delta/\mathrm{C}\) 1 \(\flat9\)     3       \(\sharp5/\flat13\)       C\(^{7alt}\)

3.2.3. Dominant seventh

Substitution                         Play over
C\(^7/\mathrm{C}\) 1       3     5     \(\flat7\)   C\(^7\)
B\(^7/\mathrm{C}\)       3m/\(\sharp9\)     \(\flat5/\sharp11\)     13   7
B\(\flat^{7}/\mathrm{C}\)     9     4/11     \(\sharp5/\flat13\)   \(\flat7\)  
A\(^7/\mathrm{C}\)   \(\flat9\)     3     5   13     C\(^{7alt}\)
A\(\flat^{7}/\mathrm{C}\) 1     3m/\(\sharp9\)     \(\flat5/\sharp11\)   \(\sharp5/\flat13\)       C\(^{7alt}\)
G\(^7/\mathrm{C}\)     9     4/11   5       7
F\(\sharp^{7}/\mathrm{C}\)   \(\flat9\)     3   \(\flat5/\sharp11\)       \(\flat7\)   C\(^{7alt}\)
F\(^7/\mathrm{C}\) 1     3m/\(\sharp9\)   4/11       13     Cm\(^{7}\), Cm\(^\Delta\)
E\(^7/\mathrm{C}\)     9   3       \(\sharp5/\flat13\)     7 C\(^{\Delta\sharp5}\)
E\(\flat^7/\mathrm{C}\)   \(\flat9\)   3m/\(\sharp9\)       5     \(\flat7\)   C\(^{7alt}\)
D\(^7/\mathrm{C}\) 1   9       \(\flat5/\sharp11\)     13     C\(^\Delta\), C\(^7\)
C\(\sharp^7/\mathrm{C}\)   \(\flat9\)       4/11     \(\sharp5/\flat13\)     7

3.2.4. Minor seventh

Substitution                         Play over
Cm\(^7/\mathrm{C}\) 1     3m/\(\sharp9\)       5     \(\flat7\)   Cm\(^7\)
Bm\(^7/\mathrm{C}\)     9       \(\flat5/\sharp11\)     13   7 C\(^\Delta\)
B\(\flat\mathrm{m}^{7}/\mathrm{C}\)   \(\flat9\)       4/11     \(\sharp5/\flat13\)   \(\flat7\)  
Am\(^7/\mathrm{C}\) 1       3     5   13     C\(^\Delta\), C\(^{7}\)
A\(\flat\mathrm{m}^{7}/\mathrm{C}\)       3m/\(\sharp9\)     \(\flat5/\sharp11\)   \(\sharp5/\flat13\)     7
Gm\(^7/\mathrm{C}\)     9     4/11   5     \(\flat7\)   Cm\(^7\)
F\(\sharp\mathrm{m}^{7}/\mathrm{C}\)   \(\flat9\)     3   \(\flat5/\sharp11\)     13     C\(^{7alt}\)
Fm\(^7/\mathrm{C}\) 1     3m/\(\sharp9\)   4/11     \(\sharp5/\flat13\)      
Em\(^7/\mathrm{C}\)     9   3     5       7 C\(^{\Delta}\)
E\(\flat\mathrm{m}^7/\mathrm{C}\)   \(\flat9\)   3m/\(\sharp9\)     \(\flat5/\sharp11\)       \(\flat7\)   C\(^{7alt}\)
Dm\(^7/\mathrm{C}\) 1   9     4/11       13     C\(^{7sus}\), Cm\(^7\)
C\(\sharp\mathrm{m}^7/\mathrm{C}\)   \(\flat9\)     3       \(\sharp5/\flat13\)     7

3.2.5. Half-diminished

Substitution                         Play over
C\(^\varnothing/\mathrm{C}\) 1     3m/\(\sharp9\)     \(\flat5/\sharp11\)       \(\flat7\)   C\(^\varnothing\)
B\(^\varnothing/\mathrm{C}\)     9     4/11       13   7
B\(\flat^{\varnothing}\mathrm{C}\)   \(\flat9\)     3       \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)
A\(^\varnothing/\mathrm{C}\) 1     3m/\(\sharp9\)       5   13     Cm\(^\Delta\), Cm\(^{7}\)
A\(\flat^{\varnothing}/\mathrm{C}\)     9       \(\flat5/\sharp11\)   \(\sharp5/\flat13\)     7 C\(^{\Delta\sharp5}\)
G\(^\varnothing/\mathrm{C}\)   \(\flat9\)       4/11   5     \(\flat7\)   C\(^{7\flat9sus}\)
F\(\sharp^{\varnothing}/\mathrm{C}\) 1       3   \(\flat5/\sharp11\)     13     C\(^\Delta\), C\(^7\)
F\(^\varnothing/\mathrm{C}\)       3m/\(\sharp9\)   4/11     \(\sharp5/\flat13\)     7
E\(^\varnothing/\mathrm{C}\)     9   3     5     \(\flat7\)   C\(^7\)
E\(\flat^\varnothing/\mathrm{C}\)   \(\flat9\)   3m/\(\sharp9\)     \(\flat5/\sharp11\)     13     C\(^{7alt}\)
D\(^\varnothing/\mathrm{C}\) 1   9     4/11     \(\sharp5/\flat13\)      
C\(\sharp^\varnothing/\mathrm{C}\)   \(\flat9\)     3     5       7

3.2.6. Diminished

Substitution                         Play over
C\(^{\circ7}/\mathrm{C}\), A\(^{\circ7}/\textrm{C}\), F\(\sharp^{\circ7}/\textrm{C}\), E\(\flat^{\circ7}/\textrm{C}\) 1     3m/\(\sharp9\)     \(\flat5/\sharp11\)     13     C\(^{\circ7}\)
B\(^{\circ7}/\mathrm{C}\), A\(\flat^{\circ7}/\textrm{C}\), F\(^{\circ7}/\textrm{C}\), D\(^{\circ7}/\textrm{C}\)     9     4/11     \(\sharp5/\flat13\)     7
B\(\flat^{\circ7}/\mathrm{C}\), G\(^{\circ7}/\textrm{C}\), E\(^{\circ7}/\textrm{C}\), C\(\sharp^{\circ7}/\textrm{C}\)   \(\flat9\)     3     5     \(\flat7\)   C\(^{7alt}\)

3.2.7. Major seventh augmented

Substitution                         Play over
C\(^{\Delta\sharp5}/\mathrm{C}\) 1       3       \(\sharp5/\flat13\)     7 C\(^{\Delta\sharp5}\)
B\(^{\Delta\sharp5}/\mathrm{C}\)       3m/\(\sharp9\)       5     \(\flat7\) 7
B\(\flat^{\Delta\sharp5}/\mathrm{C}\)     9       \(\flat5/\sharp11\)     13 \(\flat7\)   C\(^7\)
A\(^{\Delta\sharp5}/\mathrm{C}\)   \(\flat9\)       4/11     \(\sharp5/\flat13\) 13    
A\(\flat^{\Delta\sharp5}/\mathrm{C}\) 1       3     5 \(\sharp5/\flat13\)       C\(^{7alt}\)
G\(^{\Delta\sharp5}/\mathrm{C}\)       3m/\(\sharp9\)     \(\flat5/\sharp11\) 5       7
F\(\sharp^{\Delta\sharp5}/\mathrm{C}\)     9     4/11 \(\flat5/\sharp11\)       \(\flat7\)   C\(^\varnothing\)
F\(^{\Delta\sharp5}/\mathrm{C}\)   \(\flat9\)     3 4/11       13    
E\(^{\Delta\sharp5}/\mathrm{C}\) 1     3m/\(\sharp9\) 3       \(\sharp5/\flat13\)       C\(^{7alt}\)
E\(\flat^{\Delta\sharp5}/\mathrm{C}\)     9 3m/\(\sharp9\)       5       7 Cm\(^\Delta\)
D\(^{\Delta\sharp5}/\mathrm{C}\)   \(\flat9\) 9       \(\flat5/\sharp11\)       \(\flat7\)  
C\(\sharp^{\Delta\sharp5}/\mathrm{C}\) 1 \(\flat9\)       4/11       13     C\(^{7\flat9sus}\)

3.3. Pentatonics (⬟)

3.3.1. Major ⬟

Mode                         Play over a.k.a.
C ⬟/C 1   9   3     5   13     C\(^{\Delta}\), C\(^7\) Natural ⬟
B ⬟/C   \(\flat9\)   3m/\(\sharp9\)     \(\flat5/\sharp11\)   \(\sharp5/\flat13\)     7
B\(\flat\) ⬟/C 1   9     4/11   5     \(\flat7\)   Cm\(^7\), C\(^{7sus}\) Egyptian ⬟
A ⬟/C   \(\flat9\)     3   \(\flat5/\sharp11\)     13   7
A\(\flat\) ⬟/C 1     3m/\(\sharp9\)   4/11     \(\sharp5/\flat13\)   \(\flat7\)  
G ⬟/C     9   3     5   13   7 C\(^\Delta\)
F\(\sharp\) ⬟/C   \(\flat9\)   3m/\(\sharp9\)     \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)
F ⬟/C 1   9     4/11   5   13     Cm, C\(^{7sus}\)
E ⬟/C   \(\flat9\)     3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\)     7
E\(\flat\) ⬟/C 1     3m/\(\sharp9\)   4/11   5     \(\flat7\)   Cm\(^7\) Minor ⬟
D ⬟/C     9   3   \(\flat5/\sharp11\)     13   7 C\(^\Delta\)
C\(\sharp\) ⬟/C   \(\flat9\)   3m/\(\sharp9\)   4/11     \(\sharp5/\flat13\)   \(\flat7\)  

3.3.2. Kumoi ⬟

Mode                         Play over a.k.a.
C ⬟/C 1   9 3m/\(\sharp9\)       5   13     C, Cm B.B. King ⬟
B ⬟/C   \(\flat9\) 9       \(\flat5/\sharp11\)   \(\sharp5/\flat13\)     7
B\(\flat\) ⬟/C 1 \(\flat9\)       4/11   5     \(\flat7\)   C\(^{7\flat9sus}\) Kokin joshi ⬟
A ⬟/C 1       3   \(\flat5/\sharp11\)     13   7 C\(^\Delta\) Nippon ⬟
A\(\flat\) ⬟/C       3m/\(\sharp9\)   4/11     \(\sharp5/\flat13\)   \(\flat7\) 7
G ⬟/C     9   3     5   13 \(\flat7\)   C\(^7\)
F\(\sharp\) ⬟/C   \(\flat9\)   3m/\(\sharp9\)     \(\flat5/\sharp11\)   \(\sharp5/\flat13\) 13    
F ⬟/C 1   9     4/11   5 \(\sharp5/\flat13\)       Cm\(^7\) Asian ⬟
E ⬟/C   \(\flat9\)     3   \(\flat5/\sharp11\) 5       7
E\(\flat\) ⬟/C 1     3m/\(\sharp9\)   4/11 \(\flat5/\sharp11\)       \(\flat7\)   C\(^\varnothing\), C\(^{7alt}\) Locrian ⬟
D ⬟/C     9   3 4/11       13   7 C\(^\Delta\)
C\(\sharp\) ⬟/C   \(\flat9\)   3m/\(\sharp9\) 3       \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)

3.3.3. Dominant ⬟

Mode                         Play over a.k.a.
C ⬟/C 1   9   3     5     \(\flat7\)   C\(^7\)
B ⬟/C   \(\flat9\)   3m/\(\sharp9\)     \(\flat5/\sharp11\)     13   7
B\(\flat\) ⬟/C 1   9     4/11     \(\sharp5/\flat13\)   \(\flat7\)  
A ⬟/C   \(\flat9\)     3     5   13   7
A\(\flat\) ⬟/C 1     3m/\(\sharp9\)     \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\)   C\(^\varnothing\), C7alt$
G ⬟/C     9     4/11   5   13   7
F\(\sharp\) ⬟/C   \(\flat9\)     3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)
F ⬟/C 1     3m/\(\sharp9\)   4/11   5   13     Cm\(^7\), Cm\(^\Delta\) Dorian ⬟
E ⬟/C     9   3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\)     7 C\(^{\Delta\sharp5}\)
E\(\flat\) ⬟/C   \(\flat9\)   3m/\(\sharp9\)   4/11   5     \(\flat7\)  
D ⬟/C 1   9   3   \(\flat5/\sharp11\)     13     C\(^\Delta\), C\(^7\)
C\(\sharp\) ⬟/C   \(\flat9\)   3m/\(\sharp9\)   4/11     \(\sharp5/\flat13\)     7

3.3.4. Harmonic major ⬟

Mode                         Play over a.k.a.
C ⬟/C 1   9   3     5 \(\sharp5/\flat13\)       C\(^{\Delta}\), C\(^{7alt}\)
B ⬟/C   \(\flat9\)   3m/\(\sharp9\)     \(\flat5/\sharp11\) 5       7
B\(\flat\) ⬟/C 1   9     4/11 \(\flat5/\sharp11\)       \(\flat7\)   C\(^\varnothing\)
A ⬟/C   \(\flat9\)     3 4/11       13   7
A\(\flat\) ⬟/C 1     3m/\(\sharp9\) 3       \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)
G ⬟/C     9 3m/\(\sharp9\)       5   13   7 Cm\(^\Delta\)
F\(\sharp\) ⬟/C   \(\flat9\) 9       \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)
F ⬟/C 1 \(\flat9\)       4/11   5   13     C\(^{7\flat9sus}\)
E ⬟/C 1       3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\)     7 C\(^{\Delta\sharp5}\)
E\(\flat\) ⬟/C       3m/\(\sharp9\)   4/11   5     \(\flat7\) 7
D ⬟/C     9   3   \(\flat5/\sharp11\)     13 \(\flat7\)   C\(^{7}\)
C\(\sharp\) ⬟/C   \(\flat9\)   3m/\(\sharp9\)   4/11     \(\sharp5/\flat13\) 13    

3.3.5. Unitonic ⬟

Mode                         Play over a.k.a.
C ⬟/C 1   9   3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\)       C\(^{7alt}\), C\(^{\Delta\sharp5}\)
B ⬟/C   \(\flat9\)   3m/\(\sharp9\)   4/11   5       7
B\(\flat\) ⬟/C 1   9   3   \(\flat5/\sharp11\)       \(\flat7\)   C\(^7\)
A ⬟/C   \(\flat9\)   3m/\(\sharp9\)   4/11       13   7
A\(\flat\) ⬟/C 1   9   3       \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)
G ⬟/C   \(\flat9\)   3m/\(\sharp9\)       5   13   7
F\(\sharp\) ⬟/C 1   9       \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)
F ⬟/C   \(\flat9\)       4/11   5   13   7
E ⬟/C 1       3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)
E\(\flat\) ⬟/C       3m/\(\sharp9\)   4/11   5   13   7
D ⬟/C     9   3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)
C\(\sharp\) ⬟/C   \(\flat9\)   3m/\(\sharp9\)   4/11   5   13    

3.3.6. Javanese ⬟

Mode                         Play over a.k.a.
C ⬟/C 1 \(\flat9\)   3m/\(\sharp9\)       5   13     C\(^{7alt}\), Cm
B ⬟/C 1   9       \(\flat5/\sharp11\)   \(\sharp5/\flat13\)     7 C\(^{\Delta\sharp5}\)
B\(\flat\) ⬟/C   \(\flat9\)       4/11   5     \(\flat7\) 7
A ⬟/C 1       3   \(\flat5/\sharp11\)     13 \(\flat7\)   C\(^7\)
A\(\flat\) ⬟/C       3m/\(\sharp9\)   4/11     \(\sharp5/\flat13\) 13   7
G ⬟/C     9   3     5 \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)
F\(\sharp\) ⬟/C   \(\flat9\)   3m/\(\sharp9\)     \(\flat5/\sharp11\) 5   13     C\(^{7alt}\)
F ⬟/C 1   9     4/11 \(\flat5/\sharp11\)   \(\sharp5/\flat13\)       C\(^\varnothing\)
E ⬟/C   \(\flat9\)     3 4/11   5       7
E\(\flat\) ⬟/C 1     3m/\(\sharp9\) 3   \(\flat5/\sharp11\)       \(\flat7\)   C\(^7\), C\(^{7alt}\)
D ⬟/C     9 3m/\(\sharp9\)   4/11       13   7 Cm\(^\Delta\)
C\(\sharp\) ⬟/C   \(\flat9\) 9   3       \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)

3.3.7. Diminished ⬟

Mode                         Play over a.k.a.
C ⬟/C 1   9 3m/\(\sharp9\)     \(\flat5/\sharp11\)     13     C\(^{\circ7}\), C\(^\varnothing\)
B ⬟/C   \(\flat9\) 9     4/11     \(\sharp5/\flat13\)     7
B\(\flat\) ⬟/C 1 \(\flat9\)     3     5     \(\flat7\)   C\(^{7alt}\)
A ⬟/C 1     3m\(\sharp9\)     \(\flat5/\sharp11\)     13   7 C\(^{\circ7}\)
A\(\flat\) ⬟/C     9     4/11     \(\sharp5/\flat13\)   \(\flat7\) 7
G ⬟/C   \(\flat9\)     3     5   13 \(\flat7\)   C\(^{7alt}\)
F\(\sharp\) ⬟/C 1     3m/\(\sharp9\)     \(\flat5/\sharp11\)   \(\sharp5/\flat13\) 13     C\(^{\circ7}\)
F ⬟/C     9     4/11   5 \(\sharp5/\flat13\)     7
E ⬟/C   \(\flat9\)     3   \(\flat5/\sharp11\) 5     \(\flat7\)   C\(^{7alt}\)
E\(\flat\) ⬟/C 1     3m/\(\sharp9\)   4/11 \(\flat5/\sharp11\)     13     C\(^{\circ7}\), C\(^\varnothing\)  
D ⬟/C     9   3 4/11     \(\sharp5/\flat13\)     7
C\(\sharp\) ⬟/C   \(\flat9\)   3m/\(\sharp9\) 3     5     \(\flat7\)   C\(^{7alt}\)

3.3.8. 7#9 ⬟

Mode                         Play over a.k.a.
C ⬟/C 1     3m/\(\sharp9\) 3     5     \(\flat7\)   C\(^7\)
B ⬟/C     9 3m/\(\sharp9\)     \(\flat5/\sharp11\)     13   7 C\(^\varnothing\)
B\(\flat\) ⬟/C   \(\flat9\) 9     4/11     \(\sharp5/\flat13\)   \(\flat7\)  
A ⬟/C 1 \(\flat9\)     3     5   13     C\(^{7alt}\)
A\(\flat\) ⬟/C 1     3m/\(\sharp9\)     \(\flat5/\sharp11\)   \(\sharp5/\flat13\)     7
G ⬟/C     9     4/11   5     \(\flat7\) 7
F\(\sharp\) ⬟/C   \(\flat9\)     3   \(\flat5/\sharp11\)     13 \(\flat7\)   C\(^{7alt}\)
F ⬟/C 1     3m/\(\sharp9\)   4/11     \(\sharp5/\flat13\) 13    
E ⬟/C     9   3     5 \(\sharp5/\flat13\)     7 C\(^\Delta\)
E\(\flat\) ⬟/C   \(\flat9\)   3m/\(\sharp9\)     \(\flat5/\sharp11\) 5     \(\flat7\)   C\(^{7alt}\)
D ⬟/C 1   9     4/11 \(\flat5/\sharp11\)     13     C\(^\varnothing\)
C$\sharp ⬟/C   \(\flat9\)     3 4/11     \(\sharp5/\flat13\)     7

3.3.9. Indian ⬟

Mode                         Play over a.k.a.
C ⬟/C 1       3 4/11   5     \(\flat7\)   C\(^7\), C\(^{7sus}\)
B ⬟/C       3m/\(\sharp9\) 3   \(\flat5/\sharp11\)     13   7
B\(\flat\) ⬟/C     9 3m/\(\sharp9\)   4/11     \(\sharp5/\flat13\)   \(\flat7\)   C\(^\varnothing\)
A ⬟/C   \(\flat9\) 9   3     5   13    
A\(\flat\) ⬟/C 1 \(\flat9\)   3m/\(\sharp9\)     \(\flat5/\sharp11\)   \(\sharp5/\flat13\)       C\(^{7alt}\)
G ⬟/C 1   9     4/11   5       7 Cm\(^\Delta\)
F\(\sharp\) ⬟/C   \(\flat9\)     3   \(\flat5/\sharp13\)       \(\flat7\) 7
F ⬟/C 1     3m/\(\sharp9\)   4/11       13 \(\flat7\)   Cm\(^7\)`
E ⬟/C     9   3       \(\sharp5/\flat13\) 13   7 C\(^{\Delta\sharp5}\)
E\(\flat\) ⬟/C   \(\flat9\)   3m/\(\sharp9\)       5 \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)
D ⬟/C 1   9       \(\flat5/\sharp11\) 5   13     C\(^\Delta\), C\(^7\)
C\(\sharp\) ⬟/C   \(\flat9\)       4/11 \(\flat5/\sharp11\)   \(\sharp5/\flat13\)     7

3.3.10. Chinese ⬟

Mode                         Play over a.k.a.
C ⬟/C 1       3   \(\flat5/\sharp11\) 5       7 C\(^\Delta\)
B ⬟/C       3m/\(\sharp9\)   4/11 \(\flat5/\sharp11\)       \(\flat7\) 7
B\(\flat\) ⬟/C     9   3 4/11       13 \(\flat7\)   C\(^{7sus}\)
A ⬟/C   \(\flat9\)   3m/\(\sharp9\) 3       \(\sharp5/\flat13\) 13     C\(^{7alt}\)
A\(\flat\) ⬟/C 1   9 3m/\(\sharp9\)       5 \(\sharp5/\flat13\)       Cm Hirajoshi ⬟
G ⬟/C   \(\flat9\) 9       \(\flat5/\sharp11\) 5       7
F\(\sharp\) ⬟/C 1 \(\flat9\)       4/11 \(\flat5/\sharp11\)       \(\flat7\)   C\(^\varnothing\) Iwato ⬟
F ⬟/C 1       3 4/11       13   7 C\(^\Delta\) Japo ⬟
E ⬟/C       3m/\(\sharp9\) 3       \(\sharp5/\flat13\)   \(\flat7\) 7
E\(\flat\) ⬟/C     9 3m/\(\sharp9\)       5   13 \(\flat7\)   Cm\(^7\)
D ⬟/C   \(\flat9\) 9       \(\flat5/\sharp11\)   \(\sharp5/\flat13\) 13    
C\(\sharp\) ⬟/C 1 \(\flat9\)       4/11   5 \(\sharp5/\flat13\)      

3.3.11. Vietnamese ⬟

Mode                         Play over a.k.a.
C ⬟/C 1       3 4/11   5 \(\sharp5/\flat13\)       C\(^\Delta\)
B ⬟/C       3m/\(\sharp9\) 3   \(\flat5/\sharp11\) 5       7 C\(^\Delta\)
B\(\flat\) ⬟/C     9 3m/\(\sharp9\)   4/11 \(\flat5/\sharp11\)       \(\flat7\)   C\(^\varnothing\)
A ⬟/C   \(\flat9\) 9   3 4/11       13    
A\(\flat\) ⬟/C 1 \(\flat9\)   3m/\(\sharp9\) 3       \(\sharp5/\flat13\)       C\(^{7alt}\)
G ⬟/C 1   9 3m/\(\sharp9\)       5       7 Cm\(^\Delta\)
F\(\sharp\) ⬟/C   \(\flat9\) 9       \(\flat5/\sharp11\)       \(\flat7\) 7
F ⬟/C 1 \(\flat9\)       4/11       13 \(\flat7\)   C\(^{7\flat9sus}\)
E ⬟/C 1       3       \(\sharp5/\flat13\) 13   7 C\(^{\Delta\sharp5}\)
E\(\flat\) ⬟/C       3m/\(\sharp9\)       5 \(\sharp5/\flat13\)   \(\flat7\) 7
D ⬟/C     9       \(\flat5/\sharp11\) 5   13 \(\flat7\)   C\(^7\)
C\(\sharp\) ⬟/C   \(\flat9\)       4/11 \(\flat5/\sharp11\)   \(\sharp5/\flat13\) 13    

3.3.12. Balinese ⬟

Mode                         Play over a.k.a.
C ⬟/C 1 \(\flat9\)   3m/\(\sharp9\)       5 \(\sharp5/\flat13\)       C\(^{7alt}\) Pelog ⬟
B ⬟/C 1   9       \(\flat5/\sharp11\) 5       7 C\(^\Delta\)
B\(\flat\) ⬟/C   \(\flat9\)       4/11 \(\flat5/\sharp11\)       \(\flat7\) 7
A ⬟/C 1       3 4/11       13 \(\flat7\)   C\(^7\), C\(^{7sus}\)
A\(\flat\) ⬟/C       3m/\(\sharp9\) 3       \(\sharp5/\flat13\) 13   7
G ⬟/C     9 3m/\(\sharp9\)       5 \(\sharp5/\flat13\)   \(\flat7\)   Cm\(^7\)
F\(\sharp\) ⬟/C   \(\flat9\) 9       \(\flat5/\sharp11\) 5   13    
F ⬟/C 1 \(\flat9\)       4/11 \(\flat5/\sharp11\)   \(\sharp5/\flat13\)      
E ⬟/C 1       3 4/11   5       7 C\(^\Delta\) Mauritanian ⬟
E\(\flat\) ⬟/C       3m/\(\sharp9\) 3   \(\flat5/\sharp11\)       \(\flat7\) 7
D ⬟/C     9 3m/\(\sharp9\)   4/11       13 \(\flat7\)   Cm\(^7\)
C\(\sharp\) ⬟/C   \(\flat9\) 9   3       \(\sharp5/\flat13\) 13    

3.4. Blues Scales

Mode                         Play over a.k.a.
C blues/C 1   9 3m/\(\sharp9\) 3     5   13     C\(^{\Delta}\), C\(^7\) Major blues
B blues/C   \(\flat9\) 9 3m/\(\sharp9\)     \(\flat5/\sharp11\)   \(\sharp5/\flat13\)     7
B\(\flat\) blues/C 1 \(\flat9\) 9     4/11   5     \(\flat7\)  
A blues/C 1 \(\flat9\)     3   \(\flat5/\sharp11\)     13   7
A\(\flat\) blues/C 1     3m/\(\sharp9\)   4/11     \(\sharp5/\flat13\)   \(\flat7\) 7
G blues/C     9   3     5   13 \(\flat\) 7 C\(^7\)
F\(\sharp\) blues/C   \(\flat9\)   3m/\(\sharp9\)     \(\flat5/\sharp11\)   \(\sharp5/\flat13\) 13 \(\flat7\)   C\(^{7alt}\)
F blues/C 1   9     4/11   5 \(\sharp5/\flat13\) 13 \(\flat7\)   C\(^{7sus}\)
E blues/C   \(\flat9\)     3   \(\flat5/\sharp11\) 5 \(\sharp5/\flat13\)     7
E\(\flat\) blues/C 1     3m/\(\sharp9\)   4/11 \(\flat5/\sharp11\) 5     \(\flat7\)   C\(^7\), Cm\(^7\) Minor blues
D blues/C     9   3 4/11 \(\flat5/\sharp11\)     13   7 C\(^\Delta\)
C\(\sharp\) blues/C   \(\flat9\)   3m/\(\sharp9\) 3 4/11     \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)

3.5. Heptatonics

3.5.1. Diatonic scale

Mode                         Play over a.k.a.
C diat./C 1   9   3 4/11   5   13   7 C\(^{\Delta}\) Ionian
B diat./C   \(\flat9\)   3m/\(\sharp9\) 3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\) 7
B\(\flat\) diat./C 1   9 3m/\(\sharp9\)   4/11   5   13 \(\flat7\)   Cm\(^7\) Dorian
A diat./C   \(\flat9\) 9   3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\) 13   7
A\(\flat\) diat./C 1 \(\flat9\)   3m/\(\sharp9\)   4/11   5 \(\sharp5/\flat13\)   \(\flat7\)   Cm\(^7\) Phrygian
G diat./C 1   9   3   \(\flat5/\sharp11\) 5   13   7 C\(^\Delta\) Lydian
F\(\sharp\) diat./C   \(\flat9\)   3m/\(\sharp9\)   4/11 \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\) 7
F diat./C 1   9   3 4/11   5   13 \(\flat7\)   C\(^7\) Mixolydian
E diat./C   \(\flat9\)   3m/\(\sharp9\) 3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\) 13   7
E\(\flat\) diat./C 1   9 3m/\(\sharp9\)   4/11   5 \(\sharp5/\flat13\)   \(\flat7\)   Cm\(^7\) Aeolian
D diat./C   \(\flat9\) 9   3   \(\flat5/\sharp11\) 5   13   7
C\(\sharp\) diat./C 1 \(\flat9\)   3m/\(\sharp9\)   4/11 \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\)   C\(^\varnothing\) Locrian

3.5.2. Minor melodic scale (mm)

Mode                         Play over a.k.a.
C mm/C 1   9 3m/\(\sharp9\)   4/11   5   13   7 Cm\(^{\Delta}\) Minor melodic
B mm/C   \(\flat9\) 9   3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\) 7
B\(\flat\) mm/C 1 \(\flat9\)   3m/\(\sharp9\)   4/11   5   13 \(\flat7\)   C\(^{7\flat9sus}\) Javanese
A mm/C 1   9   3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\) 13   7 C\(^{\Delta\sharp5}\) Lydian augmented
A\(\flat\) mm/C   \(\flat9\)   3m/\(\sharp9\)   4/11   5 \(\sharp5/\flat13\)   \(\flat7\) 7
G mm/C 1   9   3   \(\flat5/\sharp11\) 5   13 \(\flat7\)   C\(^7\) Lydian dominant
F\(\sharp\) mm/C   \(\flat9\)   3m/\(\sharp9\)   4/11 \(\flat5/\sharp11\)   \(\sharp5/\flat13\) 13   7
F mm/C 1   9   3 4/11   5 \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\) Aeolian dominant
E mm/C   \(\flat9\)   3m/\(\sharp9\) 3   \(\flat5/\sharp11\) 5   13   7
E\(\flat\) mm/C 1   9 3m/\(\sharp9\)   4/11 \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\)   C\(^\varnothing\) Locrian melodic
D mm/C   \(\flat9\) 9   3 4/11   5   13   7
C\(\sharp\) mm/C 1 \(\flat9\)   3m/\(\sharp9\) 3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\) Superlocrian

3.5.3. Harmonic minor scale (hm)

Mode                         Play over a.k.a.
C hm/C 1   9 3m/\(\sharp9\)   4/11   5 \(\sharp5/\flat13\)     7 Cm\(^{\Delta}\) Harmonic minor
B hm/C   \(\flat9\) 9   3   \(\flat5/\sharp11\) 5     \(\flat7\) 7
B\(\flat\) hm/C 1 \(\flat9\)   3m/\(\sharp9\)   4/11 \(\flat5/\sharp11\)     13 \(\flat7\)   C\(^\varnothing\) Locrian harmonic
A hm/C 1   9   3 4/11     \(\sharp5/\flat13\) 13   7 C\(^{\Delta\sharp5}\) Ionian augmented
A\(\flat\) hm/C   \(\flat9\)   3m/\(\sharp9\) 3     5 \(\sharp5/\flat13\)   \(\flat7\) 7
G hm/C 1   9 3m/\(\sharp9\)     \(\flat5/\sharp11\) 5   13 \(\flat7\)   Cm\(^7\) Romanian
F\(\sharp\) hm/C   \(\flat9\) 9     4/11 \(\flat5/\sharp11\)   \(\sharp5/\flat13\) 13   7
F hm/C 1 \(\flat9\)     3 4/11   5 \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\) Phrygian dominant
E hm/C 1     3m/\(\sharp9\) 3   \(\flat5/\sharp11\) 5   13   7 C\(^\Delta\) Lydian harmonic
E\(\flat\) hm/C     9 3m/\(\sharp9\)   4/11 \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\) 7
D hm/C   \(\flat9\) 9   3 4/11   5   13 \(\flat7\)  
C\(\sharp\) hm/C 1 \(\flat9\)   3m/\(\sharp9\) 3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\) 13     C\(^{7alt}\) Harmonic altered

3.5.4. Harmonic major scale (hM)

Mode                         Play over a.k.a.
C hM/C 1   9   3 4/11   5 \(\sharp5/\flat13\)     7 C\(^{\Delta}\)
B hM/C   \(\flat9\)   3m/\(\sharp9\) 3   \(\flat5/\sharp11\) 5     \(\flat7\) 7
B\(\flat\) hM/C 1   9 3m/\(\sharp9\)   4/11 \(\flat5/\sharp11\)     13 \(\flat7\)   C\(^\varnothing\)
A hM/C   \(\flat9\) 9   3 4/11     \(\sharp5/\flat13\) 13   7
A\(\flat\) hM/C 1 \(\flat9\)   3m/\(\sharp9\) 3     5 \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\) Superphrygian
G hM/C 1   9 3m/\(\sharp9\)     \(\flat5/\sharp11\) 5   13   7 Cm\(^\Delta\) Lydian minor
F hM/C   \(\flat9\) 9     4/11 \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\) 7
F\(\sharp\) hM/C 1 \(\flat9\)     3 4/11   5   13 \(\flat7\)   C\(^{7alt}\)
E hM/C 1     3m/\(\sharp9\) 3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\) 13   7 C\(^{\Delta\sharp5}\)
E\(\flat\) hM/C     9 3m/\(\sharp9\)   4/11   5 \(\sharp5/\flat13\)   \(\flat7\) 7
D hM/C   \(\flat9\) 9   3   \(\flat5/\sharp11\) 5   13 \(\flat7\)  
C\(\sharp\) hM/C 1 \(\flat9\)   3m/\(\sharp9\)   4/11 \(\flat5/\sharp11\)   \(\sharp5/\flat13\) 13     C\(^{\circ7}\)

3.5.5. Hungarian dominant scale (Hd)

Mode                         Play over a.k.a.
C Hd/C 1     3m/\(\sharp9\) 3   \(\flat5/\sharp11\) 5   13 \(\flat7\)   C\(^7\)
B Hd/C     9 3m/\(\sharp9\)   4/11 \(\flat5/\sharp11\)   \(\sharp5/\flat13\) 13   7
B\(\flat\) Hd/C   \(\flat9\) 9   3 4/11   5 \(\sharp5/\flat13\)   \(\flat7\)  
A Hd/C 1 \(\flat9\)   3m/\(\sharp9\) 3   \(\flat5/\sharp11\) 5   13     C\(^{7alt}\)
A\(\flat\) Hd/C 1   9 3m/\(\sharp9\)   4/11 \(\flat5/\sharp11\)   \(\sharp5/\flat13\)     7 Cm\(^\Delta\)
G Hd/C   \(\flat9\) 9   3 4/11   5     \(\flat7\) 7
F\(\sharp\) Hd/C 1 \(\flat9\)   3m/\(\sharp9\) 3   \(\flat5/\sharp11\)     13 \(\flat7\)   C\(^{7alt}\)
F Hd/C 1   9 3m/\(\sharp9\)   4/11     \(\sharp5/\flat13\) 13   7 Cm\(^\Delta\)
E Hd/C   \(\flat9\) 9   3     5 \(\sharp5/\flat13\)   \(\flat7\) 7
E\(\flat\) Hd/C 1 \(\flat9\)   3m/\(\sharp9\)     \(\flat5/\sharp11\) 5   13 \(\flat7\)   C\(^{7alt}\)
D Hd/C 1   9     4/11 \(\flat5/\sharp11\)   \(\sharp5/\flat13\) 13   7 C\(^{\circ7}\)
C\(\sharp\) Hd/C   \flat9$     3 4/11   5 \(\sharp5/\flat13\)   \(\flat7\)  

3.5.6. Hungarian minor scale (Hm)

Mode                         Play over a.k.a.
C Hm/C 1   9 3m/\(\sharp9\)     \(\flat5/\sharp11\) 5 \(\sharp5/\flat13\)     7 Cm\(^\Delta\) Gypsy
B Hm/C   \(\flat9\) 9     4/11 \(\flat5/\sharp11\) 5     \(\flat7\) 7
B\(\flat\) Hm/C 1 \(\flat9\)     3 4/11 \(\flat5/\sharp11\)     13 \(\flat7\)   C\(^{7alt}\) Eastern
A Hm/C 1     3m/\(\sharp9\) 3 4/11     \(\sharp5/\flat13\) 13   7
A\(\flat\) Hm/C     9 3m/\(\sharp9\) 3     5 \(\sharp5/\flat13\)   \(\flat7\) 7
G Hm/C   \(\flat9\) 9 3m/\(\sharp9\)     \(\flat5/\sharp11\) 5   13 \(\flat7\)  
F\(\sharp\) Hm/C 1 \(\flat9\) 9     4/11 \(\flat5/\sharp11\)   \(\sharp5/\flat13\) 13    
F Hm/C 1 \(\flat9\)     3 4/11   5 \(\sharp5/\flat13\)     7 C\(^\Delta\) Byzantine
E Hm/C 1     3m/\(\sharp9\) 3   \(\flat5/\sharp11\) 5     \(\flat7\) 7 C\(^{7alt}\) Sebastian
E\(\flat\) Hm/C     9 3m/\(\sharp9\)   4/11 \(\flat5/\sharp11\)     13 \(\flat7\) 7
D Hm/C   \(\flat9\) 9   3 4/11     \(\sharp5/\flat13\) 13 \(\flat7\)  
C\(\sharp\) Hm/C 1 \(\flat9\)   3m/\(\sharp9\) 3     5 \(\sharp5/\flat13\) 13     C\(^{7alt}\)

3.5.7. Neapolitan scale (n)

Mode                         Play over a.k.a.
C n/C 1 \(\flat9\)   3m/\(\sharp9\)   4/11   5   13   7 Cm\(^\Delta\)
B n/C 1   9   3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\) 7
B\(\flat\) n/C   \(\flat9\)   3m/\(\sharp9\)   4/11   5   13 \(\flat7\) 7
A n/C 1   9   3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\) 13 \(\flat7\)   C\(^{7alt}\)
A\(\flat\) n/C   \(\flat9\)   3m/\(\sharp9\)   4/11   5 \(\sharp5/\flat13\) 13   7
G n/C 1   9   3   \(\flat5/\sharp11\) 5 \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\) Arabic
F\(\sharp\) n/C   \(\flat9\)   3m/\(\sharp9\)   4/11 \(\flat5/\sharp11\) 5   13   7
F n/C 1   9   3 4/11 \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)
E n/C   \(\flat9\)   3m/\(\sharp9\) 3 4/11   5   13   7
E\(\flat\) n/C 1   9 3m/\(\sharp9\) 3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)
D n/C   \(\flat9\) 9 3m/\(\sharp9\)   4/11   5   13   7
C\(\sharp\) n/C 1 \(\flat9\) 9   3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)

3.5.8. Harmonic neapolitan scale (hn)

Mode                         Play over a.k.a.
C hn/C 1 \(\flat9\)   3m/\(\sharp9\)   4/11   5 \(\sharp5/\flat13\)     7 Cm\(^\Delta\)
B hn/C 1   9   3   \(\flat5/\sharp11\) 5     \(\flat7\) 7
B\(\flat\) hn/C   \(\flat9\)   3m/\(\sharp9\)   4/11 \(\flat5/\sharp11\)     13 \(\flat7\) 7
A hn/C 1   9   3 4/11     \(\sharp5/\flat13\) 13 \(\flat7\)   C\(^{7alt}\)
A\(\flat\) hn/C   \(\flat9\)   3m/\(\sharp9\) 3     5 \(\sharp5/\flat13\) 13   7
G hn/C 1   9 3m/\(\sharp9\)     \(\flat5/\sharp11\) 5 \(\sharp5/\flat13\)   \(\flat7\)   Cm\(^7\)
F\(\sharp\) hn/C   \(\flat9\) 9     4/11 \(\flat5/\sharp11\) 5   13   7
F hn/C 1 \(\flat9\)     3 4/11 \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)
E hn/C 1     3m/\(\sharp9\) 3 4/11   5   13   7 C\(^\Delta\)
E\(\flat\) hn/C     9 3m/\(\sharp9\) 3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\) 7
D hn/C   \(\flat9\) 9 3m/\(\sharp9\)   4/11   5   13 \(\flat7\)  
C\(\sharp\) hn/C 1 \(\flat9\) 9   3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\) 13    

3.5.9. Enigmatic scale (e)

Mode                         Play over a.k.a.
C e/C 1 \(\flat9\)     3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\) 7 C\(^{7alt}\)
B e/C 1     3m/\(\sharp9\)   4/11   5   13 \(\flat7\) 7 Cm\(^7\)
B\(\flat\) e/C     9   3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\) 13 \(\flat7\) 7
A e/C   \(\flat9\)   3m/\(\sharp9\)   4/11   5 \(\sharp5/\flat13\) 13 \(\flat7\)  
A\(\flat\) e/C 1   9   3   \(\flat5/\sharp11\) 5 \(\sharp5/\flat13\) 13     C\(^\Delta\), C\(^7\)
G e/C   \(\flat9\)   3m/\(\sharp9\)   4/11 \(\flat5/\sharp11\) 5 \(\sharp5/\flat13\)     7
F\(\sharp\) e/C 1   9   3 4/11 \(\flat5/\sharp11\) 5     \(\flat7\)   C\(^7\) Hybrid blues
F e/C   \(\flat9\)   3m/\(\sharp9\) 3 4/11 \(\flat5/\sharp11\)     13   7
E e/C 1   9 3m/\(\sharp9\) 3 4/11     \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)
E\(\flat\) e/C   \(\flat9\) 9 3m/\(\sharp9\) 3     5   13   7
D e/C 1 \(\flat9\) 9 3m/\(\sharp9\)     \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)
C\(\sharp\) e/C 1 \(\flat9\) 9     4/11   5   13   7

3.6. Symmetric Scales

3.6.1. Unitonic scale (u)

Mode                         Play over
C, D, E, F\(\sharp\), A\(\flat\), B\(\flat\) u/C 1   9   3   \(\flat5/\sharp11\)   \(\sharp5/\flat13\)   \(\flat7\)   C\(^{7alt}\)
B, C\(\sharp\), E\(\flat\), F, G, A u/C   \(\flat9\)   3m/\(\sharp9\)   4/11   5   13   7

3.6.2. Augmented scale (a)

Mode                         Play over
C, A\(\flat\), E a/C 1     3m/\(\sharp9\) 3     5 \(\sharp5/\flat13\)     7 C\(^\Delta\)
B, G, E\(\flat\) a/C     9 3m/\(\sharp9\)     \(\flat5/\sharp11\) 5     \(\flat7\) 7 Cm
B\(\flat\), F\(\sharp\), D a/C   \(\flat9\) 9     4/11 \(\flat5/\sharp11\)     13 \(\flat7\)  
A, F, C\(\sharp\) a/C 1 \(\flat9\)     3 4/11     \(\sharp5/\flat13\) 13    

3.6.3. Diminished scale (d)

Mode                         Play over
C d/C 1   9 3m/\(\sharp9\)   4/11 \(\flat5/\sharp11\)   \(\sharp5/\flat13\) 13   7 C\(^{\circ7}\)
B d/C   \(\flat9\) 9   3 4/11   5 \(\sharp5/\flat13\)   \(\flat7\) 7
B\(\flat\) d/C 1 \(\flat9\)   3m/\(\sharp9\) 3   \(\flat5/\sharp11\) 5   13 \(\flat7\)   C\(^7\), C\(^{7alt}\)

4. DECLINING MELODIC ELEMENTS - DEVELOPING VERSATILITY

4.1. Using the Metronome

Practicing scales and tunes, the metronome does not have to be on each beat. Sylvain LUC showed us how it could be used to develop a good time feel. Here are a few ways to use it.

metronome1.png
metronome2.png
metronome3.png
metronome4.png

4.2. Tremolo

The following patterns can be applied to any melodic element, but they sound particularly good with arpeggios.

4.2.1. By Two

declining_tremolo1.png

4.2.2. By Three

declining_tremolo2.png
declining_tremolo3.png

4.2.3. By four

declining_tremolo4.png
declining_tremolo5.png
declining_tremolo6.png

4.3. Melodic Patterns

The following patterns should be practiced on all melodic elements, ascending and descending. Those highlighted in grey either contain repetitions or are equivalent to intervallic patterns. They are not necessarily bad, but they sound different.

4.3.1. Groups of three

declining_groups1.png
declining_groups2.png
declining_groups3.png

4.3.2. Groups of four

declining_groups4.png
declining_groups5.png
declining_groups6.png
declining_groups7.png
declining_groups8.png
declining_groups9.png
declining_groups10.png
declining_groups11.png
declining_groups12.png
declining_groups13.png

4.4. Intervallic Patterns

The following patterns should be practiced on all melodic elements, ascending and descending. When applied to arpeggios or pentatonic scales, the interval jumps are larger than what is indicated for heptatonic scales, but the principle remains the same.

4.4.1. In thirds

declining_intervals1.png
declining_intervals2.png

4.4.2. In fourths

declining_intervals3.png
declining_intervals4.png

4.4.3. In fifths

declining_intervals5.png
declining_intervals6.png

4.4.4. In sixths

declining_intervals7.png
declining_intervals8.png

4.4.5. In sevenths

declining_intervals9.png
declining_intervals10.png

4.4.6. In octaves

declining_intervals11.png
declining_intervals12.png

4.5. Harmonizing Scales

Intervallic patterns can be generalized to breaking down scales into triads and seventh arpeggios. Pentatonic scales can be harmonized in quartal chords, too.

4.5.1. Triads built in thirds

declining_harmo1.png
declining_harmo2.png

4.5.2. Triads built in fourths

declining_harmo3.png
declining_harmo4.png

4.5.3. Triads built in fifths

declining_harmo5.png
declining_harmo6.png

4.5.4. Seventh arpeggios

declining_harmo7.png
declining_harmo8.png

4.5.5. Arpeggios and their upper structure

declining_harmo9.png

4.5.6. Pedals

Pedals are another way to play several sounds at the same time. The pedal note is usually a rather neutral tone (root or fifth). Fingerings and picking can be tricky on the guitar.

declining_pedal1.png
declining_pedal2.png

4.6. Chord Scales

Chord scales can be played using any inversion of any chord form (Drop 2, etc.) on all possible string groups.

4.6.1. Chord scales for the main modes

Scale or Mode                        
Ionian I\(^\Delta\)   IIm\(^7\)   IIIm\(^7\) IV\(^\Delta\)   V\(^7\)   VIm\(^7\)   VII\(^\varnothing\)
Dorian Im\(^7\)   IIm\(^7\) \(\flat\mathrm{III}^\Delta\)   IV\(^7\)   Vm\(^7\)   VI\(^\varnothing\) \(\flat\mathrm{VII}^\Delta\)  
Phrygian Im\(^7\) \(\flat\mathrm{II}^\Delta\)   \(\flat\mathrm{III}^7\)   IVm\(^7\)   V\(^\varnothing\) \(\flat\mathrm{VI}^\Delta\)   \(\flat\mathrm{VIIm}^7\)  
Lydian I\(^\Delta\)   II\(^7\)   IIIm\(^7\)   \(\sharp\mathrm{IV}^\varnothing\) V\(^\Delta\)   VIm\(^7\)   VIIm\(^7\)
Mixolydian I\(^7\)   IIm\(^7\)   III\(^\varnothing\) IV\(^\Delta\)   Vm\(^7\)   VIm\(^7\) \(\flat\mathrm{VII}^\Delta\)  
Aeolian Im\(^7\)   II\(^\varnothing\) \(\flat\mathrm{III}^\Delta\)   IVm\(^7\)   Vm\(^7\) \(\flat\mathrm{VI}^\Delta\)   \(\flat\mathrm{VII}^7\)  
Locrian I\(^\varnothing\) \(\flat\mathrm{II}^\Delta\)   \(\flat\mathrm{IIIm}^7\)   IVm\(^7\) \(\flat\mathrm{V}^\Delta\)   \(\flat\mathrm{VI}^7\)   \(\flat\mathrm{VIIm}^7\)  
Minor melodic Im\(^\Delta\)   IIm\(^7\) \(\flat\mathrm{III}^{\Delta\sharp5}\)   IV\(^7\)   V\(^7\)   VI\(^\varnothing\)   VII\(^\varnothing\)
Javanese Im\(^7\) \(\flat\mathrm{II}^{\Delta\sharp5}\)   \(\flat\mathrm{III}^7\)   IV\(^7\)   V\(^\varnothing\)   VI\(^\varnothing\) \(\flat\mathrm{VIIm}^\Delta\)  
Lydian augmented I\(^{\Delta\sharp5}\)   II\(^7\)   III\(^7\)   \(\sharp\mathrm{IV}^\varnothing\)   \(\sharp\mathrm{V}^\varnothing\) VIm\(^\Delta\)   VIIm\(^7\)
Lydian dominant I\(^7\)   II\(^7\)   III\(^\varnothing\)   \(\sharp\mathrm{IV}^\varnothing\) Vm\(^\Delta\)   VIm\(^7\) \(\flat\mathrm{VII}^{\Delta\sharp5}\)  
Aeolian dominant I\(^7\)   II\(^\varnothing\)   III\(^\varnothing\) IVm\(^\Delta\)   Vm\(^7\) \(\flat\mathrm{VI}^{\Delta\sharp5}\)   \(\flat\mathrm{VIIm}^7\)  
Locrian melodic I\(^\varnothing\)   II\(^\varnothing\) \(\flat\mathrm{IIIm}^\Delta\)   IVm\(^7\) \(\flat\mathrm{V}^{\Delta\sharp5}\)   \(\flat\mathrm{VI}^7\)   \(\flat\mathrm{VII}^7\)  
Superlocrian I\(^\varnothing\) \(\flat\mathrm{IIm}^\Delta\)   \(\flat\mathrm{IIIm}^7\) \(\flat\mathrm{IV}^{\Delta\sharp5}\)   \(\flat\mathrm{V}^7\)   \(\flat\mathrm{VI}^7\)   \(\flat\mathrm{VII}^\varnothing\)  
Harm. minor Im\(^\Delta\)   II\(^\varnothing\) \(\flat\mathrm{III}^{\Delta\sharp5}\)   IVm\(^7\)   V\(^7\) \(\flat\mathrm{VI}^\Delta\)     VII\(^{\circ7}\)
Locrian harmonic I\(^\varnothing\) \(\flat\mathrm{II}^{\Delta\sharp5}\)   \(\flat\mathrm{IIIm}^7\)   IV\(^7\) \(\flat\mathrm{V}^\Delta\)     VI\(^{\circ7}\) \(\flat\mathrm{VIIm}^\Delta\)  
Ionian augmented I\(^{\Delta\sharp5}\)   IIm\(^7\)   III\(^7\) IV\(^\Delta\)     \(\sharp\mathrm{V}^{\circ7}\) VIm\(^{\Delta}\)   VII\(^\varnothing\)
Romanian Im\(^7\)   II\(^7\) \(\flat\mathrm{III}^\Delta\)     \(\sharp\mathrm{IV}^{\circ7}\) Vm\(^\Delta\)   VI\(^\varnothing\) \(\flat\mathrm{VII}^{\Delta\sharp5}\)  
Phrygian dominant V\(^7\) \(\flat\mathrm{II}^\Delta\)     III\(^{\circ7}\) IVm\(^\Delta\)   V\(^\varnothing\) \(\flat\mathrm{VI}^{\Delta\sharp5}\)   \(\flat\mathrm{VIIm}^7\)  
Lydian harmonic I\(^\Delta\)     \(\sharp\mathrm{II}^{\circ7}\) IIIm\(^\Delta\)   \(\sharp\mathrm{IV}^\varnothing\) V\(^{\Delta\sharp5}\)   VIm\(^7\)   VII\(^7\)
Harmonic altered I\(^{\circ7}\) \(\flat\mathrm{IIm}^\Delta\)   \(\flat\mathrm{III}^\varnothing\) \(\flat\mathrm{IV}^{\Delta\sharp5}\)   \(\flat\mathrm{Vm}^7\)   \(\flat\mathrm{VI}^7\) \(\flat\flat\mathrm{VII}^\Delta\)    
Harmonic major I\(^\Delta\)   II\(^\varnothing\)   IIIm\(^7\) IVm\(^\Delta\)   V\(^7\) \(\flat\mathrm{VI}^{\Delta\sharp5}\)     VII\(^{\circ7}\)
Superphrygian Im\(^7\) \(\flat\mathrm{IIm}^\Delta\)   \(\flat\mathrm{III}^7\) \(\flat\mathrm{IV}^{\Delta\sharp5}\)     V\(^{\circ7}\) \(\flat\mathrm{VI}^\Delta\)   \(\flat\mathrm{VII}^\varnothing\)  
Lydian minor Im\(^\Delta\)   II\(^7\) \(\flat\mathrm{III}^{\Delta\sharp5}\)     \(\sharp\mathrm{IV}^{\circ7}\) V\(^\Delta\)   VI\(^\varnothing\)   VIIm\(^7\)
Unitonic I\(+\)   II\(+\)   III\(+\)   \(\flat\mathrm{V}+\)   \(\flat\mathrm{VI}+\)   \(\flat\mathrm{VII}+\)  
Augmented I\(+\)     \(\flat\mathrm{III}+\) \(\flat\mathrm{VI}+\)     V\(+\) \(\flat\mathrm{VI}+\)     VII\(+\)
Diminished I\(^{\circ7}\)   II\(^{\circ7}\) \(\flat\mathrm{III}^{\circ7}\)   IV\(^{\circ7}\) \(\flat\mathrm{V}^{\circ7}\)   VI\(^{\circ7}\) \(\flat\flat\mathrm{VII}^{\circ7}\)   VII\(^{\circ7}\)

4.6.2. The Barry HARRIS Approach (Parallel Motion)

Besides regular chord scales, it is possible to link the successive inversions of a chord with diminished passing chords. It is a particular application of harmonized bebop scales. This trick can be applied to any heptatonic scale with either a major sixth or a minor seventh. The diminished passing chord corresponds to the major seventh (chord tone or passing tone), ninth, eleventh and minor sixths (passing tone) or \(\flat13\). Here are examples in Drop 2, for the most common chords.

declining_harris1.png
declining_harris2.png
declining_harris3.png
declining_harris4.png
declining_harris5.png
declining_harris6.png
declining_harris7.png

In practice, the system taught by Barry HARRIS focuses on four of these scales:

  1. Major diminished (ionian be-bop);
  2. Minor diminished (minor melodic be-bop;
  3. Dominant diminished (aeolian be-bop);
  4. Dominant \(\flat5\) diminished.

Barry Harris's system makes parallel (see above), oblique and contrary motions much easier.

4.6.3. Oblique Motion (Barry HARRIS)

To go through the different chord tones, keeping the bass constant, we just need to cycle through the different chord voicings (octave chord, Drop 2, Drop 3, Drop 2,4, double octave chord, and back), for all chord qualities. In C6:

declining_harris_constant_bass1.png

It also works for all other inversions. In C6/E:

declining_harris_constant_bass2.png

In C6/G:

declining_harris_constant_bass3.png

In C6/A:

declining_harris_constant_bass4.png

Inversely, we can cycle through the same chord voicing sequence if one wants to keep the soprano voice constant and vary the bass note. In C6:

declining_harris_constant_soprano1.png

and so on for all the other inversions.

4.6.4. Contrary Motion (Barry HARRIS)

It is possible to have the bass and soprano voices to move contrarily along the scales. Thomas ECHOLS calls that the "elevator". In C\(^6\), it gives:

declining_harris_elevator1.png

4.6.5. Quartal harmony

Scales can also be harmonized in quartal triads and sevenths chords. My personal taste however makes me lean more toward the harmonization of "no-avoid-note scales", in a more modal context.

declining_quartal1.png
declining_quartal2.png

Quartal chords can also be inverted the same way as regular chords.

declining_quartal3.png

Quartal harmony works particularly well with pentatonic scales.

declining_quartal4.png

4.7. Rhythmic Patterns

The following rhythmic patterns can be applied either to ternary or binary beats provided that the total number of counts is conserved. For instance, the four-on-six patterns can be played these two different ways:

declining_rhythm0.png

There are many more patterns, but four notes is a good base, as it is the way we conceive improvisation in Jazz (four notes of a seventh arpeggio, four-note scale fragment, Coltrane patterns on Giant Steps, etc.).

4.7.1. Four on six patterns

declining_rhythm1.png
declining_rhythm2.png
declining_rhythm3.png
declining_rhythm4.png
declining_rhythm5.png

4.7.2. Four on eight patterns

declining_rhythm6.png
declining_rhythm7.png
declining_rhythm8.png
declining_rhythm9.png
declining_rhythm10.png
declining_rhythm11.png
declining_rhythm12.png
declining_rhythm13.png
declining_rhythm14.png
declining_rhythm15.png
declining_rhythm16.png
declining_rhythm17.png
declining_rhythm18.png
declining_rhythm19.png
declining_rhythm20.png
declining_rhythm21.png
declining_rhythm22.png
declining_rhythm23.png
declining_rhythm24.png
declining_rhythm25.png
declining_rhythm26.png
declining_rhythm27.png
declining_rhythm28.png
declining_rhythm29.png

5. IMPROVISING THROUGH CHORD CHANGES

5.1. Chord/Scale Relation

We list the most obvious melodic elements to play on different types of chords. More combinations are possible, but these are a good start. The substituted arpeggios can be incorporated into solo lines or as block chords.

5.1.1. Most common chords

Table 1: Major seventh chord (C\(^\Delta\))
Melodic element              
C lydian mode 1 3 5 7 9 \(\sharp11\) 13
C major pentatonic 1 3 5   9   13
G major pentatonic   3 5 7 9   13
D major pentatonic   3   7 9 \(\sharp11\) 13
Am\(^7\) arpeggio 1 3 5       13
C\(^\Delta\) arpeggio 1 3 5 7      
Em\(^7\) arpeggio   3 5 7 9    
G\(^\Delta\) arpeggio     5 7 9 \(\sharp11\)  
Bm\(^7\) arpeggio       7 9 \(\sharp11\) 13
D\(^7\) arpeggio 1       9 \(\sharp11\) 13
F\(\sharp^\varnothing\) 1 3       \(\sharp11\) 13
Table 2: Minor seventh chord (Cm\(^\Delta\))
Melodic element              
C minor melodic 1 3m 5 7 9 11 13
F dominant pentatonic 1 3m 5     11 13
E\(\flat\) unitonic pentatonic   3m 5 7   11 13
G dominant pentatonic       7 9 11 13
A\(^\varnothing\) arpeggio 1 3m 5       13
Cm\(^\Delta\) arpeggio 1 3m 5 7      
E\(\flat^{\Delta\sharp5}\) arpeggio   3m 5 7 9    
G\(^7\) arpeggio     5 7 9 11  
B\(^\varnothing\) arpeggio       7 9 11 13
Dm\(^7\) arpeggio 1       9 11 13
F\(^7\) 1 3m       11 13
Table 3: Dominant seventh chord (G\(^7\))
Melodic element              
G lydian dominant mode 1 3 5 \(\flat7\) 9 \(\sharp11\) 13
G dominant pentatonic 1 3 5 \(\flat7\) 9    
D kumoi pentatonic   3 5 \(\flat7\) 9   13
A harmonic major pentatonic   3   \(\flat7\) 9 \(\sharp11\) 13
G\(^7\) arpeggio 1 3 5 \(\flat7\)      
B\(^\varnothing\) arpeggio   3 5 \(\flat7\) 9    
Dm\(^\Delta\) arpeggio     5 \(\flat7\) 9 \(\sharp11\)  
F\(^{\Delta\sharp5}\) arpeggio       \(\flat7\) 9 \(\sharp11\) 13
A\(^7\) arpeggio 1       9 \(\sharp11\) 13
C\(\sharp^\varnothing\) arpeggio 1 3       \(\sharp11\) 13
E\(^7\) 1 3 5       13
Table 4: Minor seventh chord (Dm\(^7\))
Melodic element              
D dorian mode 1 3m 5 \(\flat7\) 9 11 13
F major pentatonic 1 3m 5 \(\flat7\) 9    
C major pentatonic   3m 5 \(\flat7\) 9   13
G major pentatonic   3m   \(\flat7\) 9 11 13
Dm\(^7\) arpeggio 1 3m 5 \(\flat7\)      
F\(^\Delta\) arpeggio   3m 5 \(\flat7\) 9    
Am\(^7\) arpeggio     5 \(\flat7\) 9 11  
C\(^{\Delta}\) arpeggio       \(\flat7\) 9 11 13
Em\(^7\) arpeggio 1       9 11 13
G\(^7\) arpeggio 1 3m       11 13
B\(^\varnothing\) 1 3m 5       13
Table 5: Half-diminished seventh chord (D\(^\varnothing\))
Melodic element              
D locrian melodic mode 1 3m \(\flat5\) \(\flat7\) 9 11 \(\flat13\)
F kumoi pentatonic 1 3m \(\flat5\) \(\flat7\)   11  
C harmonic major pentatonic 1   \(\flat5\) \(\flat7\) 9 11  
G javanese pentatonic 1   \(\flat5\)   9 11 \(\flat13\)
D\(^\varnothing\) arpeggio 1 3m \(\flat5\) \(\flat7\)      
Fm\(^\Delta\) arpeggio   3m \(\flat5\) \(\flat7\) 9    
A\(\flat^{\Delta\sharp5}\) arpeggio     \(\flat5\) \(\flat7\) 9 11  
C\(7^{}\) arpeggio       \(\flat7\) 9 11 \(\flat13\)
E\(^\varnothing\) arpeggio 1       9 11 \(\flat13\)
Gm\(^7\) arpeggio 1 3m       11 \(\flat13\)
B\(\flat^7\) 1 3m 5       \(\flat13\)
Table 6: Diminished seventh chord (B\(^{\circ7}\))
Melodic element                
G diminished mode 1 3m \(\flat5\) \(\flat\flat7\) 9 11 \(\flat13\) 7
B diminished pentatonic 1 3m \(\flat5\) \(\flat\flat7\) 9      
B\(^{\circ7}\) arpeggio 1 3m \(\flat5\) \(\flat\flat7\)        
C\(^{\circ7}\) arpeggio         9 11 \(\flat13\) 7

5.1.2. Altered dominant chords

Table 7: Superlocrian seventh chord (G\(^{7alt}\) ⇔ D\(\flat^7\) lydian dominant)
Melodic element              
G superlocrian mode \(\flat5\) \(\flat7\) \(\flat9\) 3 \(\flat13\) 1 \(\sharp9\)
D\(\flat\) dominant pentatonic \(\flat5\) \(\flat7\) \(\flat9\) 3 \(\flat13\)    
A\(\flat\) kumoi pentatonic   \(\flat7\) \(\flat9\) 3 \(\flat13\)   \(\sharp9\)
E\(\flat\) harmonic major pentatonic   \(\flat7\)   3 \(\flat13\) 1 \(\sharp9\)
D\(\flat^7\) arpeggio \(\flat5\) \(\flat7\) \(\flat9\) 3      
F\(^\varnothing\) arpeggio   \(\flat7\) \(\flat9\) 3 \(\flat13\)    
A\(\flat\mathrm{m}^\Delta\) arpeggio     \(\flat9\) 3 \(\flat13\) 1  
B\(^{\Delta\sharp5}\) arpeggio       3 \(\flat13\) 1 \(\sharp9\)
E\(\flat^7\) arpeggio \(\flat5\)       \(\flat13\) 1 \(\sharp9\)
G\(^\varnothing\) arpeggio \(\flat5\) \(\flat7\)       1 \(\sharp9\)
B\(\flat^7\) \(\flat5\) \(\flat7\) \(\flat9\)       \(\sharp9\)
Table 8: Unitonic altered seventh chord (G\(^{7alt}\))
Melodic element            
G unitonic mode 1 3 \(\sharp5\) \(\flat7\) 9 \(\sharp11\)
G unitonic pentatonic 1 3 \(\sharp5\) \(\flat7\) 9  
G+ arpeggio 1 3 \(\sharp5\)      
A+ arpeggio       \(\flat7\) 9 \(\sharp11\)
Table 9: Diminished dominant seventh chord (G\(^{7alt}\))
Melodic element                
A\(\flat\) diminished mode 1 3 \(\flat5\) \(\flat7\) \(\flat9\) \(\sharp11\) 13 \(\sharp9\)
F diminished pentatonic 1 3 \(\flat5\) \(\flat7\) \(\flat9\)      
A\(\flat\) diminished arpeggio   3 \(\flat5\) \(\flat7\) \(\flat9\)      
G diminished arpeggio 1         \(\sharp11\) 13 \(\sharp9\)

5.1.3. Derived chords

Several commonly used chords are the inversion of other ones.

Major tonality chord   Chord equivalent   Minor tonality chord   Chord equivalent
C\(^6\) Am\(^7/\mathrm{C}\)   Cm\(^6\) A\(^\varnothing/\mathrm{C}\)
(C lydian)   (A dorian)   (C minor melodic)   (A locrian melodic)
G\(^{9sus}\) Dm\(^7/\mathrm{G}\)   G\(^{7\flat9sus}\) D\(^\varnothing/\mathrm{G}\)
(G mixolydian)   (D dorian)   (G javanese)   (D locrian melodic)
G\(^{7\flat9}\) D\(^{\circ7}/\mathrm{G}\)   G\(^{7\flat9\flat5}\) D\(\flat^{7}/\mathrm{G}\)
(G diminished dominant)   (D diminished dominant)   (G superlocrian)   (D\(\flat\) lydian dominant)

5.2. Forward Motion

5.2.1. Resolution

To make good sounding phrases, it is important to resolve chord tones on the strong beats. This resolution is heard better if it is:

  • down from a scale tone;
  • up from a chromatic tone;
  • down a fifth;
  • up a fourth.

For instance, resolving A\(^{7alt}\) to Dm\(^6\) can look like that:

chord_forward1.png
chord_forward2.png

The way to implement these resolutions using arpeggios, scales and their respective patterns, with octave displacement are virtually infinite. For instance:

chord_forward3.png

5.2.2. Bebop scales

Bebop scales are an easy way to make sure that, when played ascending or descending, we have a chord tone on each strong beat. For heptatonic scales, bebop scales are built by adding a chromatic passing tone:

  • On the minor sixth, for major and minor sixth cords;
  • On the major seventh, for chords having a minor sevenths.

We note that we can not build a scale for chords with a major sevenths, as there is not room between this tone and the root. We also note that the diminished scale is already synchronized. Played in eight notes, we have the following bebop scales, among many others.

chord_forward4.png
chord_forward5.png

Bebop scales can also be played in triplet. On the guitar, they sound good played three notes per string, with the middle note (the second on each string) on the beat. This way, it gives a natural accent on the up beat, and can accommodate slurring as well as economy picking.

chord_forward6.png

That way, we still get a chord tone on beats one and three.

5.2.3. The most useful Jazz trick

From a practical point of view, it is not always easy to improvise nice phrases across chord changes, as we have to visualize/hear two different chords at once, and target different chord tones. A highly effective shortcut to that problem consists in learning what are the tones of the next chord in the reference frame of the current chord. It gets even simpler if we also realize that the majority of chord changes in Jazz standards are going to a chord a fourth higher (or a fifth lower), such as in a VI II V I IV changes:

Current chord   Next chord
VI\(^{7alt}\) IIm\(^7\)
IIm\(^7\) V\(^7\)
V\(^7\) I\(^\Delta\)
I\(^\Delta\) IV\(^\Delta\)
II\(^\varnothing\) V\(^{7alt}\)
V\(^{7alt}\) Im\(^6\)
4 1
6m 3m
6 3
7 \(\flat5\)
1 5
2m \(\sharp5\)
2 6
3m \(\flat7\)
3 7
\(\flat5\) \(\flat9\)
5 9

In other words, when playing across a IIm\(^7\) V\(^7\) change, thinking about resolving the IIm7 on its sixth can lead to smoother phrases than thinking about the third of the V\(^7\), although both are the same note (B in C major).

Tritone substitutions are also useful to know:

Current chord   Next chord
\(\flat\mathrm{II}^{7}\) I\(^\Delta\)
\(\flat\mathrm{II}^{7}\) Im\(^6\)
\(\flat\mathrm{II}^{7}\) I\(^7\)
7 1
2 3m
3m 3
\(\flat5\) 5
6m 6
6 \(\flat7\)
\(\flat7\) 7
2m 9

Backdoor resolution:

Current chord   Next chord
\(\flat\mathrm{VII}^{7}\) I\(^\Delta\)
\(\flat\mathrm{VII}^{7}\) Im\(^6\)
\(\flat\mathrm{VII}^{7}\) I\(^7\)
2 1
4 3m
\(\flat5\) 3
6 5
7 6
1 \(\flat7\)
2m 7
3 9

The difficult transition in Coltrane changes (Countdown, Giant Steps):

Current chord   Next chord
I\(^\Delta\) III\(^7\)
3m 1
5 3
\(\flat7\) 5
2m \(\flat7\)
4 9

5.2.4. II V I with pentatonics

Dm\(^7\) G\(^{7alt}\) C\(^\Delta\)
D minor pentatonic E\(\flat\) minor pentatonic E minor pentatonic
A minor pentatonic B\(\flat\) minor pentatonic B minor pentatonic

5.3. Common Chord Changes

Comping and improvising through chord changes can be greatly simplified if we work out specific chord patterns that are all over the place in standards. These changes can be practiced in all keys, all tempos and all chord durations (2/4, 3/4, 4/4, etc.).

5.3.1. Two-chord changes

Once we can improvise on one chord, the next step before going to a full 32-bar standard is to develop a vocabulary over two-chord changes. The most useful ones are the following.

Name First chord Second chord
Major perfect cadence V\(^{7}\) I\(^\Delta\)
Minor perfect cadence V\(^{7}\) I\(^6\)
Dominant perfect cadence V\(^7\) I\(^7\)
Major plagal cadence I\(^\Delta\) IV\(^\Delta\)
Minor plagal cadence I\(^6\) IV\(^6\)
Dominant plagal cadence I\(^7\) IV\(^7\)
Major II V IIm\(^7\) V\(^7\)
Minor II V II\(^\varnothing\) V\(^7\)

5.3.2. II V Is

II V I are the building blocks of Jazz standards. There are a few common substitutions (in the key of C):

Name II V I
Major Dm\(^7\) G\(^7\) C\(^\Delta\)
Tritone sub. A\(\flat\mathrm{m}^7\) D\(\flat^7\) C\(^\Delta\)
Backdoor Fm\(^7\) B\(\flat^7\) C\(^\Delta\)
Minor D\(^\varnothing\) G\(^7\) C\(^6\)
Minor w/ tritone sub. D\(^\varnothing\) D\(\flat^7\) C\(^6\)

5.3.3. Major and minor tonal cycles

The following are found in many A A B A standards.

chord_change1.png

5.3.4. Major blues

chord_change2.png
chord_change3.png

5.3.5. Minor blues

chord_change4.png

5.3.6. Swedish blues

A good II V workout:

chord_change5.png

5.3.7. Rhythm changes

The structure of rhythm changes is A A B A. Here are a few common variations on the A.

chord_change6.png
chord_change7.png
chord_change8.png
chord_change9.png

5.3.8. Coltrane changes

This is the A of Countdown.

chord_change10.png

5.4. Reharmonization Techniques

Reharmonization is a big deal in Jazz. The following possibilities can be applied to comping and soloing. Some are very smooth sounding, some can be spicy.

5.4.1. Dominant chords

chord_reharm1.png
chord_reharm2.png
chord_reharm3.png

Diminished dominant substitution:

chord_reharm4.png

Superlocrian dominant substitution:

chord_reharm5.png

Tritone substitutions:

chord_reharm6.png
chord_reharm7.png
chord_reharm8.png

Lydian dominant substitution:

chord_reharm9.png

Unitonic dominant substitution:

chord_reharm10.png

Bluesy static dominant chord:

chord_reharm11.png

5.4.2. Minor chords

chord_reharm12.png
chord_reharm13.png

Chromatic Elaboration of Static Harmony (CESH) or line-cliché:

chord_reharm14.png
chord_reharm15.png

Deceptive cadence:

chord_reharm16.png

Tonic minor resolution:

chord_reharm17.png

Secondary dominant substitution:

chord_reharm18.png
chord_reharm19.png

5.4.3. Major chords

chord_reharm20.png
chord_reharm21.png
chord_reharm22.png
chord_reharm23.png
chord_reharm24.png
chord_reharm25.png
chord_reharm26.png
chord_reharm27.png

5.5. Practicing Standards

Here is a non-exhaustive list of some things to practice when working on a tune. Not all are possible. We can not practice the same way a ballad and an up-tempo bebop tune, but all these ideas are worth considering.

5.5.1. Listening

  1. Listen to different versions of the tune. Check the differences in tonality, phrasing, harmony, etc.
  2. Come up with a preferred version (write it up). If this tune will be mainly played in a band, it can be reharmonized and modified. Otherwise, if it is a standard to be played with random people, it should not be far from the Real Book version.
  3. Listen to the contrast in dynamics and texture between the theme and the solos, and between the A and the B, and try to reproduce it in the following.
  4. Prepare a backing track. Try also to play with the record.

5.5.2. Exposing the melody

Single notes.
Practice the melody in different areas of the neck and different registers.
  1. Adapt the fingering to optimize the phrasing (slurs, slides, etc.).
  2. Try adding embellishments to the harmony:
    • Appoggiatura and other effects;
    • Tags and pick-ups;
    • Rhythmic variations.
  3. If the melody has some space, try out questions and answers:
    • Answer the melody with other melodic phrases;
    • Answer it with chord voicings.
Harmonized melody.
It is not always possible to systematically achieve these over the whole tune. However, it might be possible on some particular fragments.
  1. Try all possible dyad harmonization:
    • Octave;
    • Thirds;
    • Tenths;
    • Sixths;
    • Fourths;
    • Fifths;
    • Sevenths;
    • Seconds.
  2. Also try harmonizing the melody with non-constant intervals:
    • Contrary motions;
    • Pedals.
  3. Harmonize the melody in chords without a bass (arbitrary inversions). This harmonized melody is meant to be played with a bass player.
    • In triads (including quartal triads) to highlight the upper structure of the chord.
    • In seventh chords.
Solo chord melody.
The following are meant to be played without accompaniment, either as a standalone version of the tune, or as an intro to a band version.
  1. Work out a melody with chords and their bass. It does not have to be dense and can be played rubato, with embellishments between chords.
  2. Work out a melody with a bass line. If possible the bass line can be a walking bass.
  3. Work out a full chord melody, like a composed classical piece.

5.5.3. Comping

  1. Look for rhythmic patterns matching the vibe of the tune. In doubt, try all possible combinations.
  2. Practice all chord forms and inversions on the tune.
  3. Explore the sound of different enrichments (9, 11, 13).
  4. Try out different reharmonizations.
  5. Practice approaching the next chords with:
    • Chromatic movements;
    • Diatonic/diminished movements;
    • Same but with a special treatment for the higher voice (constant or contrary motion; examples in Pierre CULLAZ's book).
  6. Play the tune with shell chords, in quarter notes. On fast tempos, change chords every bar. On slower tempos, try moving the chords smoothly to the next. Use diatonic or diminished passing chords.
  7. Practice improvising walking bass lines.
  8. Practice improvising walking bass lines with chord fragments (Tuck ANDRESS's way).
  9. Look for original approaches:
    • Slaps;
    • Pick vs fingerstyle;
    • Compose riffs and find chord licks;
    • Use open strings;
    • Try out different sounds (equalization, combination of pick-ups, pedals, etc.).

5.5.4. Soloing

  1. Listen to other people's solos. Transcribe them if they are particularly great.
  2. If the tune is particularly hard, compose a few solos to break it.
  3. Practice forward motion with scales, arpeggios and pentatonics. Exhaust all the possible resolutions from one chord to another. Also find out the common chord tones. This is where most of the work is…
  4. Look for original approaches:
    • Open strings;
    • Pinched harmonics;
    • Use of effect pedals;
    • Exotic scales.

Author: F. Galliano
Last update: 28 juil. 2024