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NEUTRINO TRANSPORT
We evolve equations of energy and momentum of the neutrinos in first order O(v/c):
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They include terms corresponding to
• radiative fluxes, involving higher moments,
• advection and compression by the flow,

• compression work / aberration,
• spectral redistribution (Doppler shift),
• interaction with matter: absorption, emission, scattering.

Flux terms We close the equations with a local
algebraic Eddington factor χij(~F/cE,E) determin-
ing the pressure tensor
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• hyperbolic system
• accurate, yet computationally less expensive

than Boltzmann solvers
• valid from diffusion to free streaming
• generically multi-dimensional

Operator splitting We treat the hyperbolic terms
of MHD and transport explicitely, and split the poten-
tially stiff interactions between neutrinos and matter
off to solve them implicitly.

Implementation in the Aenus code
• hyperbolic terms solved by high-resolution

shock-capturing methods similarly to MHD [5]
• monotonicity-preserving reconstruction of ≥

5th order accuracy
• approximate (multi-stage) Riemann solvers:

Lax-Friedrichs, HLL(D)
• Runge-Kutta time up to 4th order
• most expensive part are the reactions, particu-

larly inelastic scattering and pair processes
• parallelised with MPI and OpenMP

PAIR PROCESSES
So far, we had neglected µ/τ neutrinos created

by pair processes: electron annihilation [6] and nu-
cleonic bremsstrahlung [2]. They contribute signif-
icantly to cooling of the proto-neutron star at late
times. Thus, we recently included pair processes;
the current set of reactions is (new additions in
green):
• νe + n� e− + p
• ν̄e + p� e+ + n
• νe +A� e− +A′

• ν + n/p� ν + n/p
• ν +A� ν +A
• ν + e± � ν + e±

• e+ + e− � ν + ν̄
• N +N � N +N + ν + ν̄
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TESTS AND APPLICATIONS
• we follow the collapse of the core of a star of 15M� and compare to simulations using the Boltzmann

codes AGILE-BOLTZTRAN and VERTEX [3]
• we assume spherical symmetry and use an approximation to GR gravity
• we include neutrinos of all flavours and used the maximum-entropy Eddington factor [1]

collapse phase: mostly νe are produced, and Ye
decreases until high densities lead to ν trapping
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Left: central Ye as a function of maximum density
during collapse. Right: Ye profiles at different times.

Post-bounce dynamics: the shock wave created
at bounce stalls and retreats below 100 km; no
explosion develops
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Ye and entropy as a function of time and radius af-
ter the bounce; lines show the positions of mass el-
ements, density contours, the shock and gain radii,
and the neutrinospheres of the different flavours.

The neutrino luminosity as a function of time:
the early bounce of the electron neutrinos and
the later increase of the other flavours can be
seen clearly.
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Magnetic field and entropy contrast in a magnetised
core collapse model.
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• Our tests are in good agreement with the ref-
erence simulations in both dynamics and neu-
trino emission.

• The computational effort is considerably lower
than that of Boltzmann solvers.

(Planned) applications are in the field of supernovae
and gamma-ray bursts:
• multi-D study of magnetised collapse [4]
• accretion tori in mergers of neutron stars
• computation of Ye profiles for GR simulations

performed by others in our group


