

Disc Formation in Turbulent Cloud Cores

Robi Banerjee

University of Hamburg

Co-Worker: **Daniel Seifried** (Hamburg), Ralph Pudritz (McMaster), Ralf Klessen (ITA)

Proplyds (protoplanetary discs) in Orion, HST

Magnetic Fields

galactic B-fields (e.g. R.Beck 2001) large scale component: $\sim 4\mu G$ total field strength: $\sim 10\mu G$

The ISM is permeated with magnetic fields

magnetic polarization measurements in the Pipe nebula F.O.Alves, Franco, Girart 2008

Magnetic Fields

Turbulence

Larson relation: Turbulence in Molecular Clouds

 \Rightarrow supersonic high mass cores

 \Rightarrow sub-sonic low mass cores (R < 0.1 pc)

ASTRONUM 2013, Biarritz, July 3rd 2013

Initial angular momentum of cores

 observational evidence for rotating cores (R ~ 0.1 pc) e.g. Goodman et al., 1993:

$$\begin{split} \Omega &\sim 10^{-14} - 10^{-13} \text{ s}^{-1} \\ &\Rightarrow j \sim 10^{21} \text{ cm}^2 \text{ s}^{-1} \\ &\Rightarrow \beta \sim 0.03 \propto (t_{\rm ff} \Omega)^2 \end{split}$$

but: large scatter

• compare to galactic shear flow: $\Omega \sim 10^{-16} - 10^{-15} \text{ s}^{-1}$ \Rightarrow generated by turbulence (Barranco & Goodman, 1998)

Initial angular momentum of cores?

 Dib et al. 2010: synthetic observations from simulations overestimate true values by a factor of 8–10

Angular momentum

- compare to solar system:
 - $j \sim 3 \times 10^{20} \text{ cm}^2 \text{ s}^{-1}$ @ R = 50 AU
 - $j \sim 4 \times 10^{19} \text{ cm}^2 \text{ s}^{-1}$ @ R = 1 AU
 - Sun: $j \sim 10^{16} \text{ cm}^2 \text{ s}^{-1}$

Angular momentum

- compare to solar system:
 - $j \sim 3 \times 10^{20} \text{ cm}^2 \text{ s}^{-1}$ @ R = 50 AU
 - $j \sim 4 \times 10^{19} \text{ cm}^2 \text{ s}^{-1}$ @ R = 1 AU
 - Sun: $j \sim 10^{16} \text{ cm}^2 \text{ s}^{-1}$
- \Rightarrow angular momentum transport in the disc needed:

angular momentum problem I

Angular Momentum Problem I

The pure hydro cases

(e.g. Burkert & Bodenheimer 1993, Matumoto & Hanawa 2003, Krumholz et al. 2007, Stamatellos & Whitworth 2009, ...)

⇒ efficient transport of angular momentum by gravitational torques

Angular Momentum Problem I

Collapse of **magnetised**, rotating cloud cores • weak magnetic fields: $\mu > 10$

 \Rightarrow efficient transport of angular momentum mainly by gravitational torques / fragmenation \Rightarrow disc formation & high accretion rates $\sim 10^{-4}~M_{\odot}/yr$

Collapse of magnetised, rotating cloud cores
stronger magnetic fields: μ < 5 in agreement with observations

(e.g. Crutcher et al. 2010)

Hennebelle & Teyssier 2008, ...

 \Rightarrow **too** efficient magnetic braking \Rightarrow **no** disc formation

Collapse of magnetised, rotating cloud cores

• **stronger** magnetic fields: μ < 5 in agreement with observations

(e.g. Crutcher et al. 2010)

Hennebelle & Teyssier 2008, ...

 \Rightarrow **too** efficient magnetic braking \Rightarrow **no** disc formation

Angular Momentum Problem II

Solutions?

- flux loss by:
 - Ohmic resistivity (Dapp & Basu 2011,

Krasnopolsky et al. 2010)

- ambipolar Diffusion (Duffin & Pudritz 2008, Li et al. 2011)
- turbulent reconnection
 (Lazarian & Vishniac 1999, Santos-Lima et al. 2012)
- Hall effect (Krasnopolsky et al. 2011)
- Outflows from small discs

Angular Momentum Problem II

→ Non-ideal MHD and reconnection active only at small scales/high density
→ not effective enough to reduce magnetic braking

⇒ Li, Krasnopolsky & Shang 2011: "The problem of catastrophic magnetic braking that prevents disk formation in dense cores magnetized to realistic levels remains unresolved"

Parameter study of collapsing cores

Seifried, et al. 2013

Run	$m_{\rm core}$ (M _O)	r _{core} (pc)	μ	Rotation	$\Omega (10^{-13} \text{ s}^{-1})$	$eta_{ ext{turb}}$	Turbulence seed	р	M _{rms}	t _{sim} (kyr)
2.6-NoRot-M2	2.6	0.0485	2.6	No	0	0.087	А	5/3	0.74	15
2.6-Rot-M2	2.6	0.0485	2.6	Yes	2.20	0.087	Α	5/3	0.74	15
2.6-NoRot-M100	100	0.125	2.6	No	0	0.084	Α	5/3	2.5	15
2.6-Rot-M100	100	0.125	2.6	Yes	3.16	0.084	Α	5/3	2.5	15
2.6-Rot-M100-B	100	0.125	2.6	Yes	3.16	0.084	В	5/3	2.5	15
2.6-Rot-M100-C	100	0.125	2.6	Yes	3.16	0.084	С	5/3	2.5	15
2.6-Rot-M100-p2	100	0.125	2.6	Yes	3.16	0.084	Α	2	2.5	15
2.6-NoRot-M300	300	0.125	2.6	No	0	0.12	А	5/3	5.0	10
2.6-Rot-M1000	1000	0.375	2.6	Yes	1.90	0.081	Α	5/3	5.4	10

- low + high mass cores
- strong magnetic field
- with/without global rotation
- sub-/supersonic turbulence

Numerical Method: FLASH Code

*Alliance Center for Astrophysical Thermonuclear Flashes (ASC), University of Chicago

- 3D grid-based MHD integrator for parallel computing (MPI)
- Hydro solvers: PPM, Kurganov
- MHD solvers:
 - 8Wave (Roe-type)
 - Bouchut-type
 - also: unsplit scheme, staggered mesh
- Gravity:
 - multigrid
 - multipole
 - tree-based
 - periodic or isolated BCs
- Multi-physics:
 - heating/cooling
 - radiation
 - sink particles
- **AMR**: block structured (PARAMESH)
- Refinement on own choice (e.g. gradient, curvature, density, **Jeans-criterion**, etc.)

Numerical Method: FLASH Code

Jeans-criterion: **minimum** resolution to resolve the Jeans-length (*Truelove et al. 1997*):

 $N = \lambda_J / \Delta x \ge 4$

- only sufficient to prevent numerical fragmentation
- higher resolution necessary to resolve internal structures Turbulence ~ 30 grid cells (e.g. Federrath et al. 2010)

Jeans-length:
$$\lambda_{\rm J} = \sqrt{rac{\pi \, c_{
m s}^2}{G_N \,
ho}}$$

Parameter study of collapsing cores

Seifried, et al. 2013

Run	$m_{\rm core}$ (M _O)	r _{core} (pc)	μ	Rotation	$\Omega (10^{-13} \text{ s}^{-1})$	$eta_{ ext{turb}}$	Turbulence seed	р	M _{rms}	t _{sim} (kyr)
2.6-NoRot-M2	2.6	0.0485	2.6	No	0	0.087	А	5/3	0.74	15
2.6-Rot-M2	2.6	0.0485	2.6	Yes	2.20	0.087	Α	5/3	0.74	15
2.6-NoRot-M100	100	0.125	2.6	No	0	0.084	Α	5/3	2.5	15
2.6-Rot-M100	100	0.125	2.6	Yes	3.16	0.084	А	5/3	2.5	15
2.6-Rot-M100-B	100	0.125	2.6	Yes	3.16	0.084	В	5/3	2.5	15
2.6-Rot-M100-C	100	0.125	2.6	Yes	3.16	0.084	С	5/3	2.5	15
2.6-Rot-M100-p2	100	0.125	2.6	Yes	3.16	0.084	А	2	2.5	15
2.6-NoRot-M300	300	0.125	2.6	No	0	0.12	Α	5/3	5.0	10
2.6-Rot-M1000	1000	0.375	2.6	Yes	1.90	0.081	А	5/3	5.4	10

- low + high mass cores
- strong magnetic field
- with/without global rotation
- sub-/supersonic turbulence
- resolution: 1.2 AU

Seifried, RB, Pudritz, Klessen 2012

Seifried, RB, Pudritz, Klessen 2012

 \Rightarrow discs "reappear"

velocity structure

tz, July 3rd 2013

 \rightarrow only little flux loss

Magnetic field structure

rotation vs. magnetic field orientation → inclined rotation helps to form discs? (Hennbelle & Ciardi 2009, Joos et al. 2012)

ASTRONUM 2013, Biarritz, July 3rd 2013

rotation vs. magnetic field orientation ⇒ inclined rotation helps to form discs? (Hennbelle & Ciardi 2009, Joos et al. 2012)

 $\alpha / 1^{\circ}$

⇒ but no large scale magnetic field component

Summary

- It is easy to form discs
- Angular momentum is efficiently transported during disc formation by gravitational torques
- Magnetic braking catastrophe only for unrealistic ICs