Multi-GPU Hall MHD

Chris Bard University of Wisconsin-Madison ASTRONUM 2013

Collaborators: J. Dorelli (NASA-GSFC), H. Karimabadi (UCSD/SciberQuest) R. Townsend (UW-Madison)

Why Hall MHD?

- Ideal MHD breaks down at small length scales (e.g. reconnection)
- Want to preserve simplicity of fluid approach
 Kinetic codes very computationally intensive

Motivation:

- Investigate Hall MHD vs. Kinetic simulations
- Apply to magnetospheres (planetary and massive star)

Hall MHD algorithm

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0\\ \frac{\partial}{\partial t} (\rho \mathbf{v}) + \nabla \cdot \left[\rho \mathbf{v} \mathbf{v} + (p + \frac{\mathbf{B}^2}{2}) \mathbf{I} - \mathbf{B} \mathbf{B} \right] &= 0 \qquad \mathbf{v}_H = -\delta_i \frac{\mathbf{J}}{\rho} \qquad \mathbf{J} = \nabla \times \mathbf{B}\\ \frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot \left[(\mathbf{v} + \mathbf{v}_H) \mathbf{B} - \mathbf{B} (\mathbf{v} + \mathbf{v}_H) \right] &= 0\\ \frac{\partial}{\partial t} \left(\frac{\rho v^2}{2} + \rho e + \frac{B^2}{2} \right) + \nabla \cdot \left[(\frac{\rho v^2}{2} + \rho e + p) \mathbf{v} + B^2 (\mathbf{v} + \mathbf{v}_H) - \left[(\mathbf{v} + \mathbf{v}_H) \cdot \mathbf{B} \right] \mathbf{B} \right] = 0 \end{aligned}$$

- 2nd order MUSCL-Hanock scheme (van Leer 1985)
- HLL approximate Riemann solver (Harten+ 1983, Toro 1999)
- Hyperbolic divergence cleaning (Dedner 2002)
- Second order differencing of current density + MC slope limiter (Toth+ 2008)

Hall MHD algorithm

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0\\ \frac{\partial}{\partial t} (\rho \mathbf{v}) + \nabla \cdot \left[\rho \mathbf{v} \mathbf{v} + (p + \frac{\mathbf{B}^2}{2}) \mathbf{I} - \mathbf{B} \mathbf{B} \right] &= 0 \qquad \mathbf{v}_H = -\delta_i \frac{\mathbf{J}}{\rho} \qquad \mathbf{J} = \nabla \times \mathbf{B}\\ \frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot \left[(\mathbf{v} + \mathbf{v}_H) \mathbf{B} - \mathbf{B} (\mathbf{v} + \mathbf{v}_H) \right] &= 0\\ \frac{\partial}{\partial t} \left(\frac{\rho v^2}{2} + \rho e + \frac{B^2}{2} \right) + \nabla \cdot \left[(\frac{\rho v^2}{2} + \rho e + p) \mathbf{v} + B^2 (\mathbf{v} + \mathbf{v}_H) - \left[(\mathbf{v} + \mathbf{v}_H) \cdot \mathbf{B} \right] \mathbf{B} \right] = 0 \end{aligned}$$

This scheme robustly captures MHD discontinuities --The addition of the Hall effect tends to smear these out due to the physical dispersion induced by whistler waves

GPUs with CUDA

- Heterogeneous programming model
- High degree of parallelism

 Thousands of threads
 executing concurrently
- Latency/Throughput tradeoff

MHD on GPUs

Thread	Thread	Thread	Thread
Thread	Thread	Thread	Thread

For the MHD algorithm, the calculations for each grid cell are independent --> Can be easily parallelized!

GPUs with CUDA

• Types of Memory

- Global
- Shared
- Register

 We utilize a register-heavy approach

 Tradeoff: Memory footprint vs. Speed

Precursor: Single GPU speedups

Proof of viability: Compare timing results for an ideal GPU MHD code vs. a CPU code

CPU: one core of a Intel Nehalem (2.8 GHz) GPU: NVIDIA GTX480 (Fermi architecture)

Precursor: Single GPU Speedups

Problem Size	Unoptimized C	Optimized C	CUDA
64 ²	13.37 s	6.45 s	0.57 s
128 ²	73.39	41.80	1.81
256^{2}	484.33	277.73	5.24
512 ²	2366.45	1476.98	18.27
1024^2	11488.6	8029.35	63.84

Numbers in () are speedups compared to Optimized C timings

Problem Size	Register 16	Register 8	Register 4	Register 2
64 ²	0.8 s (8.1)	0.57 s (11)	0.67 s (9.7)	1.2 s (5.4)
128 ²	2.25 (19)	1.81 (23)	2.04 (21)	4.34 (9.6)
256^{2}	6.52 (43)	5.24 (53)	6.71 (41)	16.13 (17)
512 ²	22.58 (65)	18.27 (81)	25.19 (59)	68.12 (22)
1024^2	84.62 (95)	63.84 (126)	90.61 (89)	253.88 (32)

Bard+Dorelli 2013, JCP, submitted

Precursor: Single GPU Speedups

Problem Size	Unoptimized C	Optimized C	CUDA
64 ²	13.37 s	6.45 s	0.57 s
128 ²	73.39	41.80	1.81
256 ²	484.33	277.73	5.24
512 ²	2366.45	1476.98	18.27
1024^2	11488.6	8029.35	63.84

Maximum speedup: 126x

Problem Size	Register 16	Register 8	Register 4	Register 2
64 ²	0.8 s (8.1)	0.57 s (11)	0.67 s (9.7)	1.2 s (5.4)
128 ²	2.25 (19)	1.81 (23)	2.04 (21)	4.34 (9.6)
256 ²	6.52 (43)	5.24 (53)	6.71 (41)	16.13 (17)
512 ²	22.58 (65)	18.27 (81)	25.19 (59)	68.12 (22)
1024^2	84.62 (95)	63.84 (126)	90.61 (89)	253.88 (32)

Bard+Dorelli 2013, JCP, submitted

Benchmark: Orszag-Tang Vortex

Ideal

2048x2048, 64 GPUs

Benchmark: Magnetized Blast Wave

Contours: Density

Color: Pressure

Benchmark: Whistler Wave

Following Toth+ (2008)

 $\rho = 1$ p = 1 $B_x = 100$ $\lambda = 200$ $v_y = -\delta_v \cos(kx)$ $v_z = \delta_v \sin(kx)$ $B_y = \delta_B \cos(kx)$ $B_z = -\delta_B \sin(kx)$

$$\frac{\delta_v}{\delta_B} = \frac{|B_x|}{v_{ph}\rho} \\ v_{ph} = \frac{v_w}{2} + \sqrt{v_A^2 + v_w^2/4} = 169.345 \\ \text{Period} = \lambda/v_{ph} = 1.181022$$

Benchmark: Whistler Wave Followed procedure of Toth+ (2008)

Relative errors after one period:

$$E_n = \frac{\sum_{i=1}^n |v_{z,i}(t_{\max}) - v_{z,i}(0)|}{\sum_{i=1}^n |v_{z,i}(0)|}$$

N	1D	1D Ratio	2D	2D Ratio
16	0.26732	_	0.244582	_
32	0.06657	4.01	0.06156	3.97
64	0.01556	4.2	0.01442	4.27
128	0.00372	4.2	0.003449	4.2
256	0.00091	4.1	0.00084	4.1

Benchmark: GEM

Based on Birn+ (2001)
$$Lx = 25.6 d_i$$

 $Lz = 12.8 d_i$
Density

120 100 80 60 40 20 0 50 100 150 200 250

Out of plane B

Large GEM Movie

Lx = 204.8 d_i Lz = 102.4 d_i

All other parameters same as Birn+ (2001)

Timing Results - 2D

Weak Scaling - 2D

Future Work

• Continue scaling tests

- Currently running on up to 128 GPUs (512^3 grid)
- Distant Future goal: 2048^3

• Timing results

Compare to multi-CPU + MPI versions

Investigate phenomena

- Compare Hall MHD with kinetic PIC
- Magnetospheres (Planetary/Massive Star)