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Why Higher Order ?

Locally-refined grids, mapped-multiblock grids — smooth except at
boundaries between different refinement levels / blocks. Leads to
loss of one order of accuracy at boundaries: 2M—> {st, 4th—3rd,

Over the next decade, bytes / flop expected to go down by 10x.
Similar relative increases in imbalance between communication
and computation (higher latencies, lower bandwidth). Want to do
more computation per unit of data access, use less data overall.
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Finite-Volume Methods on Structured Grids

We use the divergence theorem for computing the average of div(F)
over a control volume.
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- This is an exact relationship — the approximations are introduced by the
choice of quadrature for the face integrals.

» For smooth grids, the truncation error of the approximation to the
average of div(F) is the same as the truncation the error in the flux
(standard centered-difference error cancellation applies here as well).
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Design Issues for High-Order Finite-Volume Methods

« High-order quadratures for fluxes.

» Limiters for hyperbolic problems.

» Time-dependent problems: time discretizations, semi-implicit methods.
» Adaptive mesh refinement.

» Extension to mapped grids, multiblock grids.
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High-Order Quadratures for Fluxes

At second-order accuracy, can approximate averages by the midpoint rule. For
higher-order accuracy, must distinguish between cell averages, face averages,
and point values.
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These can be used to compute more general nonlinear functions:
(W(U)) =W(U)) + O(h?)
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“Convolution / deconvolution” Ref: Barad and Colella. 2005
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Semi-Discrete Formulation of Finite-Volume Methods for
Time-Dependent Problems

We can integrate conservation laws
oU -
Y
over rectangular control volumes
Vi =[ih,(i +u)h] , i € Z” , w=(1,1,...,1)

to obtain a system of ordinary differential equations
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We use a method of lines approach, separating spatial and temporal
discretization.
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Active Development for Applications
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Runge-Kutta Time Integration

% ——D-F;
D-F=D-F(U) = 7 S (F sy — (F);_ g
d
Then, starting with (U)© = (U)(t"), set
ki = —D - F((U)Y9)At;
OO = ) + 2 ks = —D - F((U) D) A
(Y = (U)O 4 % ks =—D - F((U)?)At;
(U)® = (U)O + ks; ky=—D - F((U)®)At.

Then to integrate one time step:

(U)(t" + At) = (U)(t") + é(kl + 2k + 2k3 + ky4) + O((AR)).

This update can be written as the difference of a sum of fluxes:

1,d — d
i+5ed z€

pH é(F(O) +2FW 4 oF®@) 4 pO),
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Extremum-Preserving Limiters

Commonly used approach: geometric limiting applied at each stage of RK.
At extrema, compare different estimates of second derivatives to
determine degree of limiting.

Issues:

» Geometric limiting at each stage -> time step limited by donor cell, scales
like 1/(Dimension).

 Centered differencing is dissipation-free, interaction with RK + stage-wise
limiters is brittle.

* Alternative approach:
- Use upstream-centered differencing for high-order method.

-Apply 1979 Zalesak extremum-preserving FCT to the sum of the
fluxes at the end of the time step; leaves us free to choose low-order
method (e.g. corner-coupled upwind methods).

— Compute bounds on extrema using local quadratic interpolation.
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FCT Limiters (Zalesak, 1979)
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FCT Limiters (Zalesak, 1979)

I

P+ = the sum of all antidiffusive fluxes /nf¢ grid point ¢

= max(0, 4;_ ) — min(0, A4, 2)
QF = (Wi — w;") Ax;

R min{l, Ot/ P;") it P~
S (¢ if Pt

Y

0
0

P;~ = the sum of all antidiffusive fluxes away from grid point i
= max(0, 4;,q/») — min(0, 4;_¢ )

Qi = wi® — w™™) dx;
R — (min(L, QP if P >0
T if P =0

min(R;:_l , Ri7) if Ajpqp) =0

C; = : . 1
+(1/2) mln(R,'Jr, Rz’+1) if Az'.;,(],/g) <0
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FCT Limiters (Zalesak, 1979)

Strategy: at smooth extrema, compute bounds on solution that cause
the limiter to switch off.

1. How does one detect a smooth extremum ?

2. How does one compute bounds at such an extremum?

Answer to (1): Look for change in sign of derivative, then measure the
relative size of the local total variation of the solution and the difference
between the two endpoints: 2

piv2 — pio| < K Z Pits — Pits—1]
s=—1
At a smooth quadratic extremum, K =2 + O(h). If the above is true for

some K ~1.25-1.5 and the sign of the first derivative changes, we assume
to be at a smooth extremum.

Answer to (2): look at the max or min of interpolated quadratics at the cell
and on the cells to the left and right, then scale the extremum defined by

them by a constant factor (we use 2). Analogous to van Leer limiting in
monotone regions.
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Upstream-Centered Differencing
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xr
Both are sixth-order accurate approximations to 2 / p(a’,t)da’
Ox (j+3)Ax
3 ' l : ' funi
fun2
A Von Neumann analysis of upstream-
centered operator.
R Red - imaginary part of the error.
A /S T Blue - real part of the error.
-3 -2 -1 : 1 2 3
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Example: Semicircle, CFL=.1
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Convergence for sin*10 Initial Data (with limiter)
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Square wave initial data
(n=128, T=10, with Limiter)
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At _ At High Order, Details Matter
extrema:

*If sign of second derivative changes, use low-order fluxes (Colella and Sekora, 2008)
« If antidiffusive fluxes not antidiffusive, set them to zero (Zalesak 1979).
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Dimensions > 1

In higher dimensions, new considerations enter.

a(z,y) = 2° — zy?
By choosing y sufficiently small, we can 1
make the relative cell-to-cell change in
D?a as large as we want, turning on the |
limiter. This ends up polluting the
solution accuracy more globally. An
additional test to detect near-cubics is . | | , | |

used to decide whether to apply a limiter.
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Conclusions and Future Work

Ongoing work:

« Extend upstream-centered method to multiple dimensions.
» Positivity preservation using redistribution.

« Ongoing applications development: incompressible Navier-Stokes, kinetic
problems in plasmas, atmospheric modeling for climate, Maxwell’s
equations.

» Use of ARK methods for semi-implicit treatment of stiff terms.
 Extension of cut-cell methods to higher order.

Final comments:

» Basic framework for designing methods for discontinuous solutions to
hyperbolic conservation laws developed in the late 1970’s - early 1980’s
remains applicable to new settings, new requirements.

« AMR with spatial and temporal accuracy independently tunable might be
much trickier, particularly for next-generation architectures.
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