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Why Higher Order ?!

•  Locally-refined grids, mapped-multiblock grids – smooth except at 
boundaries between different refinement levels / blocks. Leads to 
loss of one order of accuracy at boundaries: 2nd    1st, 4th    3rd.!

•  Over the next decade, bytes / flop expected to go down by 10x. 
Similar relative increases in imbalance between communication 
and computation (higher latencies, lower bandwidth). Want to do 
more computation per unit of data access, use less data overall.!



Finite-Volume Methods on Structured Grids!

 !We use the divergence theorem for computing the average of div(F) 
over a control volume.!

•  This is an exact relationship – the approximations are introduced by the 
choice of quadrature for the face integrals. !
•  For smooth grids, the truncation error of the approximation to the 
average of div(F) is the same as the truncation the error in the flux 
(standard centered-difference error cancellation applies here as well).!



Design Issues for High-Order Finite-Volume Methods!

•  High-order quadratures for fluxes.!
•  Limiters for hyperbolic problems.!
•  Time-dependent problems: time discretizations, semi-implicit methods.!
•  Adaptive mesh refinement.!
•  Extension to mapped grids, multiblock grids.!



High-Order Quadratures for Fluxes!
At second-order accuracy, can approximate averages by the midpoint rule.  For 
higher-order accuracy, must distinguish between cell averages, face averages, 
and point values.!

These can be used to compute more general nonlinear functions:!

“Convolution / deconvolution”! Ref: Barad and Colella, 2005!



Semi-Discrete Formulation of Finite-Volume Methods for 
Time-Dependent Problems!

 We can integrate conservation laws!

We use a method of lines approach, separating spatial and temporal 
discretization. !

 over rectangular control volumes!

 to obtain a system of ordinary differential equations!



Active Development for Applications!



Runge-Kutta Time Integration!

This update can be written as the difference of a sum of fluxes:!
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Extremum-Preserving  Limiters!
Commonly used approach: geometric limiting applied at each stage of RK. 
At extrema, compare different estimates of second derivatives to 
determine degree of limiting.!

Issues:!

•  Geometric limiting at each stage -> time step limited by donor cell, scales 
like 1/(Dimension).!

•  Centered differencing is dissipation-free, interaction with RK + stage-wise 
limiters is brittle. !

•  Alternative approach:!

  Use upstream-centered differencing for high-order method.!

 Apply 1979 Zalesak extremum-preserving FCT to the sum of the 
fluxes at the end of the time step; leaves us free to choose low-order 
method (e.g. corner-coupled upwind methods).!

  Compute bounds on extrema using local quadratic interpolation. !



FCT Limiters (Zalesak, 1979)!



FCT Limiters (Zalesak, 1979)!



FCT Limiters (Zalesak, 1979)!

!Strategy: at smooth extrema, compute bounds on solution that cause 
the limiter to switch off.!
1.  How does one detect a smooth extremum ?!
2.  How does one compute bounds at such an extremum?!

     Answer to (1):  Look for change in sign of derivative, then measure the 
relative size of the local total variation of the solution and the difference 
between the two endpoints: !
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At a smooth quadratic extremum, K  = 2 + O(h). If the above is true for 
some K ~1.25-1.5 and the sign of the first derivative changes, we assume 
to be at a smooth extremum.!

Answer to (2): look at the max or min of interpolated quadratics at the cell 
and on the cells to the left and right, then scale the extremum defined by 
them by a constant factor (we use 2). Analogous to van Leer limiting in 
monotone regions. !



Upstream-Centered Differencing!

Both are sixth-order accurate approximations to !

Von Neumann analysis of upstream-
centered operator. !
Red - imaginary part of the error.!
Blue - real part of the error.!

⇢j+ 1
2
=

1

60
(⇢j�2 � 8⇢j�1 + 37⇢j+37⇢j+1 � 8⇢j+2 + ⇢j+3) (Centered)

=
1

60
(�⇢j�3 + 7⇢j�2 � 23⇢j�1 + 57⇢j+22⇢j+1 � 2⇢j+2) (Upstream-Centered)

@⇢

@t

+
@⇢

@x

= 0

@

@x

xZ
⇢(x0

, t)dx0
���
(j+ 1

2 )�x



Example: Square Wave, CFL=.1!

Centered! Upstream-centered!

No limiter!
(T = 1,N=256)!

 Limiter!
(T = 10, N=128)!



Example: Semicircle, CFL=.1!
Centered! Upstream-centered!

No limiter!

 limiter!



Convergence for sin^10 Initial Data (with limiter) 

5th order in space! 7th order in space!

9th order in space!



Square wave initial data  
(n=128, T=10, with Limiter)!

6th order in space (centered)!

7th order in space! 9th order in space!

5th order in space!



At High Order, Details Matter!

no CS fix!

no Zalesak fix!

At extrema:!
• If sign of second derivative changes, use low-order fluxes (Colella and Sekora, 2008)!
•  If antidiffusive fluxes not antidiffusive, set them to zero (Zalesak 1979).!

9th order in space!

neither fix!



Dimensions > 1!
!In higher dimensions, new considerations enter.!

!By choosing y sufficiently small, we can 
make the relative cell-to-cell change in 
D2a as large as we want, turning on the 
limiter. This ends up polluting the 
solution accuracy more globally. An 
additional test to detect near-cubics is 
used to decide whether to apply a limiter.!



Conclusions and Future Work!
Ongoing work:!

•  Extend upstream-centered method to multiple dimensions.!

•  Positivity preservation using redistribution.!

•  Ongoing applications development: incompressible Navier-Stokes, kinetic 
problems in plasmas, atmospheric modeling for climate, Maxwell’s 
equations. !

•  Use of ARK methods for semi-implicit treatment of stiff terms.!

•  Extension of cut-cell methods to higher order.!

 Final comments:!

•  Basic framework for designing methods for discontinuous solutions to 
hyperbolic conservation laws developed in the late 1970’s - early 1980’s 
remains applicable to new settings, new requirements. !

•  AMR with spatial and temporal accuracy independently tunable might be 
much trickier, particularly for next-generation architectures.!


