Turbulence and Magnetic Field in the Large-scale Structure of the Universe

Jungyeon Cho (CNU, South Korea)

Ryu (+Cho) et al (2008; Science) Cho, Vishniac, Beresnyak, Lazarian, Ryu (2009; ApJ) Cho & Yoo (2012; ApJ) Cho (2013; PRD)

Magnetic flux tube

Origin of cosmic seed magnetic fields is uncertain.

Cosmological?

Astrophysical?

Plan

Weak seed field (B_0)

-Uniform seed field case

-Localized seed field case

A spectral code is used

Kolmogorov spectrum (for hydro turb)

exhibit a three-decade Kolmogorov $k^{-5/3}$ inertial range (from Gargett et al., 1984, courtesy J. Fluid Mech.).

Topic 1. Amplification of a uniform seed field in turbulence

- How can MHD turbulence amplify B fields?

Weak seed field (B₀)

Stretching of field lines

Fluid elements and field lines move together *Back reactions are negligible if $E_{mag} < E_{kin}$

Expectations:

Stretching on the dissipation scale will occur first because eddy turnover time is shortest there

What will happen when $E_{turb} \sim E_{mag}$ on the dissipation scale?

- → Exponential growth stage will end!
- → Stretching scale gradually moves to larger scales. (see, for example, Cho & Vishniac 2000)

Results of simulations

Ryu+2008; Cho, Vishniac, Beresnyak, Lazarian, Ryu (2009); see also Schekochihin et. al. (2006); Cho & Vishniac (2000)

* See also Schekochihin et al (2006); Cho & Vishniac (2000)

Conclusions for Topic 1

-Turbulence can amplify uniform weak seed B fields -Two stages of amplification: exp. and linear

Using the turbulence dynamo model, we can estimate strengths of cosmic B fields

Cosmological simulation (Ryu et al 2003)

Turbulence in clusters and filaments

Cf) F. Miniati's talk, yesterday

We measured strengths of turbulence using vorticity

Observed strength of B: In clusters: ~ µG In filaments: ~10 nG (?) In voids: ?

0.1nG Ryu (+Cho) et al (2008)

10µG

Topic 2: Growth of a localized seed field in turbulence

Weak localized seed field

Assumption: driving scale (L) ~ box size (L_{sys})

Time evolution of B^2 and v^2 : very similar to uniform seed field cases

Time evolution of $E_b(k)$: also very similar to uniform seed field cases

After magnetic field fills the whole system, the subsequent evolution should be very similar to uniform seed field cases

Weak B₀

 \approx

Is magnetic diffusion fast in general?

So far, we assumed $L \sim L_{svs}$:

If ICM turbulence is driven by cosmological shocks or major mergers, we expect $L\sim L_{sys}$

What if $L << L_{sys}$? If ICM turbulence is driven by galaxy motions or accretion of minor bodies, we expect $L << L_{sys}$

Simulation with L ~ $L_{sys}/20$

We compare diffusion of a passive scalar and a magnetic field

Diffusion of magnetic field is fast!

The diameter increases at a speed of $\sim v$ **> Full magnetization time-scale** $\sim L_{sys}/v \sim (L_{sys}/L)(L/v)$

Cf) **Saturation time-scale** ~ 15 (L/v)

Two timescales: $\sim (L_{sys}/L)(L/v) \& \sim 15 (L/v)$

1. If $L_{svs}/L < \sim 15$: Growth of B ends in $\sim 15(L/v)$

2. If $L_{svs}/L > \sim 15$: Growth of B ends in $\sim (L_{svs}/L)(L/v)$

Examples

 1. Cluster with small-scale driving (L_{sys}/L=20) L_{sys}~1Mpc, L~50kpc, v~100km/s
 → Growth of B ends in t~ 10¹⁰ years!

2. Filament with large-scale driving (L_{sys}/L=6) L_{sys}~3Mpc, L~500kpc, v~150km/s
→ Magnetization time-scale ~ t_{Univ}
→ B fills the whole volume in t ~ t_{Univ}
* But, B is still very weak

Conclusion for Topic 2

- If L~L_{sys}, a localized seed magnetic field fills the whole system very fast. Subsequent evolution is very similar to weak uniform seed field cases.
- In general, growth of a localized seed field ends in ~max(15, L_{sys}/L)(L/v)

Why is magnetic diffusion fast?

Conclusion

- If a seed fined is uniform, then it takes $\sim 15(L/v)$
- If a seed field is localized, then it takes $\sim max(15, L_{sys}/L)(L/v)$

St. dev. of B field distribution follows Richardson's law

The growth rate seems to be universal

Cho et al (2009)

Growth of a localized magnetic field in turbulence with a high magnetic Prandtl number (i.e. $\nu >> \eta$)

Cho & Yoo (2012)

Magnetic field fills the whole system fast

