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Representative Calculation (global GR MHD simulation of a thin disk)

The Astrophysical Journal, 769:156 (20pp), 2013 June 1 Schnittman, Krolik, & Noble

Figure 2. Fluid density profile for a slice of Harm3d data in the (r, z) plane at
simulation time t = 12,500M . Contours show surfaces of constant optical depth
with τ = 0.01, 0.1, 1.0. Fiducial values for the black hole mass M = 10 M!
and accretion rate ṁ = 0.1 were used.
(A color version of this figure is available in the online journal.)

Table 1
For a Range of Mass Accretion Rates: the Bolometric Radiative Efficiency η,
the Time-averaged Fraction of Total Luminosity in the Corona, the Radius of
the Reflection Edge Rrefl, the Disk-corona Transition Radius Rtrans, and the
Height Hphot of the Scattering Photosphere (Averaged Over r = 10–30M)

ṁ η Lcor/Ltot Rrefl/M Rtrans/M Hphot/r

0.01 0.056 0.40 6.1 8.8 0.11
0.03 0.052 0.29 4.4 7.4 0.19
0.1 0.051 0.19 2.1 6.4 0.31
0.3 0.048 0.13 2.0 5.7 0.43
1.0 0.042 0.09 2.0 5.1 0.55

Notes. The dependence of η on ṁ is in part an artifact of our model, as explained
in the text. Note also that emission outside R = 60M , ignored here, adds an
additional "0.012 to the radiative efficiency.

itself results in an independent value for the radiative efficiency,
which is listed in Table 1. As shown there, it is never far from
"0.06 when radiation from the outer disk is included.

Once the physical density is specified, the location of the
photosphere at each point in the disk at any particular time is
calculated by integrating the optical depth dτ = κ ρ(r, θ,φ)r dθ
at constant (r,φ) from the poles at θ = 0,π down toward the
disk. The photosphere is then defined as the surface where the
integrated optical depth reaches unity. For the top and bottom of
the disk, the photospheric surfaces can be written as Θtop(r,φ)
and Θbot(r,φ) as in Schnittman & Krolik (2013):

∫ θ=Θtop

θ=0
dτ =

∫ θ=π

θ=Θbot

dτ = 1 , (2)

and the height of the photosphere is then simply given by
Hphot = r| cos Θ|.

With increasing ṁ, the photosphere height increases, making
the disk more like a bowl or inverted cone (imagine rotating the
contours of Figure 2 around the z-axis). This shape increases
the probability that photons scatter off other parts of the disk
surface (the relativistic version of this effect is sometimes
called “returning radiation”; see Cunningham 1976) and may
subsequently be captured by the black hole. Thus, the radiative
efficiency decreases steadily with larger ṁ. This effect may

Figure 3. Magnetic energy density profile for a slice of Harm3d data in the (r, z)
plane corresponding to the same conditions as in Figure 2.
(A color version of this figure is available in the online journal.)

be interpreted as the beginning of “super-Eddington photon
trapping.”

Just as the gas density must be converted from code units
to physical units, so do the magnetic field and local cooling
rate. With dimensional analysis, determining these conversion
factors is trivial. In cgs units, the magnetic energy density is
given by UB = B2/(8π ), so the conversion factor is simply

B2
cgs

B2
code

= c2 ρcgs

ρcode
. (3)

The local cooling rate L has units of energy density per time, so
its conversion factor is given by

Lcgs

Lcode
= c2 ρcgs

ρcode

tcode

tcgs
= c5

GM
ρcgs

ρcode
. (4)

2.3. Disk Structure

Figure 2 shows a snapshot of the gas density in the (r, z =
r cos θ;φ = 0) plane for fiducial values of the black hole mass
M = 10 M! and accretion rate ṁ = 0.1. The solid contour
lines show surfaces of constant optical depth. Note that while
the density-weighted scale height of the disk Hdens/r is only
≈0.06, the photosphere is located at a height several times that
above the midplane, with Hphot/r ≈ 0.3 in the region of peak
emission r = 10–30M for this choice of accretion rate. This
is to be expected; in stratified shearing box simulations with
careful treatment of thermodynamics and radiation transfer, the
scattering photosphere often lies 3–4 scale heights from the
plane (Hirose et al. 2009).

For ṁ = 0.1, the total optical depth of the disk ranges from
order unity in the plunging region up to τ ≈ 100–200 in the
disk body at r > 10M . Where the total optical depth is less than
2, we say that there is no disk, only corona (i.e., no solution
exists for Equation (2)). We denote the radius of this transition
by Rrefl; in the language of Krolik & Hawley (2002), this is the
radius of the “reflection edge.”

In Figures 3 and 4 we show the magnetic energy density
and local cooling function, respectively. The Harm3d data
correspond to the same time and the same slice in the (r, z)
plane as shown in Figure 2, for M = 10 M! and ṁ = 0.1.
Comparing the gas density and magnetic pressure, we see

4

“...because an adequate description of MHD turbulence requires a wide dynamic range in
length scales (Hawley et al. 2011; Sorathia et al. 2012), the spatial resolution necessary to
simulate disks as thin as some of those likely to occur in nature remains beyond our grasp.
Thus, in some respects, our calculations represent an intermediate step toward drawing a
complete connection between fundamental physics and output spectra.”

-Schnittman et al. (2013)
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(A color version of this figure is available in the online journal.)

Table 1
For a Range of Mass Accretion Rates: the Bolometric Radiative Efficiency η,
the Time-averaged Fraction of Total Luminosity in the Corona, the Radius of
the Reflection Edge Rrefl, the Disk-corona Transition Radius Rtrans, and the
Height Hphot of the Scattering Photosphere (Averaged Over r = 10–30M)
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With increasing ṁ, the photosphere height increases, making
the disk more like a bowl or inverted cone (imagine rotating the
contours of Figure 2 around the z-axis). This shape increases
the probability that photons scatter off other parts of the disk
surface (the relativistic version of this effect is sometimes
called “returning radiation”; see Cunningham 1976) and may
subsequently be captured by the black hole. Thus, the radiative
efficiency decreases steadily with larger ṁ. This effect may
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Welcome to the JHU Turbulence Database Cluster (TDC) site

This website is a portal that enables access to multi-Terabyte turbulence databases. The
data reside on several nodes and disks on our database cluster computer and are stored
in small 3D subcubes. Positions are indexed using a Z-curve for efficient access.

Access to the data is facilitated by a Web services interface that permits numerical
experiments to be run across the Internet. We offer C, Fortran and Matlab interfaces
layered above Web services so that scientists can use familiar programming tools on their
client platforms. Calls to fetch subsets of the data can be made directly from within a
program being executed on the client's platform. Manual queries for data at individual
points and times via web-browser are also supported. Evaluation of velocity and pressure
at arbitrary points and time is supported using interpolations executed on the database
nodes. Spatial differentiation using various order approximations (up to 8th order) are also
supported (for details, see documentation page). Other functions such as spatial filtering
are being developed.

So far the database contains a 10244 space-time history of a direct numerical simulation
(DNS) of isotropic turbulent flow, in incompressible fluid in 3D, and a DNS of the
incompressible magneto-hydrodynamic (MHD) equations. The simulations were
performed using 1024 grid points in each direction using a pseudo-spectral method, and
forcing at large scales. The database allows access to 1024 time steps covering about
one integral turn-over time-scale of the turbulence. The datasets comprise 27 Terabytes 
for the isotropic turbulence data and 56 Terabytes for the MHD data. Basic characteristics
of the data sets can be found in the datasets description page. Technical details about the
database techniques used for this project are described in the publications.

The Turbulence Database Cluster project is funded by the US National Science

Foundation .

Questions and comments? turbulence@pha.jhu.edu

269903764678 points queried

Please excuse our dust as we continue to develop this site. The Turbulence Database is on-line but

may periodcally be unavailable as we continue to add functionalities.

 

Disclaimer: While many efforts have been made to ensure that these data are accurate and reliable within the limits of the current state of the art, neither JHU nor any other party involved in
creating, producing or delivering the website shall be liable for any damages arising out of users' access to, or use of, the website or web services. Users use the website and web services at their
own risk. JHU does not warrant that the functional aspects of the website will be uninterrupted or error free, and may make changes to the site without notice.

Last update: 8/18/2012 4:34:34 PM
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Figure 6. Snippet of the FORTRAN code running on local user machine. Bold font highlights the lines
invoking the Web-services method. The authkey has been intentionally marked out.

To illustrate the effects of Lagrange polynomial interpolation, another case with 512 lines and
4096 points on each line is also calculated. The lines are chosen to be the same as in the previous
case. The 4096 points are uniformly distributed on each line, and one in every four points falls
on the grids. The sixth-order Lagrange interpolation scheme is used. As is shown in Figure 9, the
range of the spectra extends beyond the maximal resolved wave number in the simulation (about
482) to a value of around 2000. The oscillating lobes observed between wave numbers 482 and
2000 are the spectral signature of the Lagrange interpolant polynomials. As a consequence of the
smoothness of the interpolants, very little energy is contained in high wave number lobes, as one
can see by comparing Figures 8 and 9.

The PDFs of the velocity gradients and the joint PDF of R and Q are calculated in a
similar way, except that the Web-services method invoked is GetVelocityGradient, instead of

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
J
H
U
 
J
o
h
n
 
H
o
p
k
i
n
s
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
2
:
3
7
 
6
 
O
c
t
o
b
e
r
 
2
0
0
8

10 Y. Li et al.

Figure 6. Snippet of the FORTRAN code running on local user machine. Bold font highlights the lines
invoking the Web-services method. The authkey has been intentionally marked out.

To illustrate the effects of Lagrange polynomial interpolation, another case with 512 lines and
4096 points on each line is also calculated. The lines are chosen to be the same as in the previous
case. The 4096 points are uniformly distributed on each line, and one in every four points falls
on the grids. The sixth-order Lagrange interpolation scheme is used. As is shown in Figure 9, the
range of the spectra extends beyond the maximal resolved wave number in the simulation (about
482) to a value of around 2000. The oscillating lobes observed between wave numbers 482 and
2000 are the spectral signature of the Lagrange interpolant polynomials. As a consequence of the
smoothness of the interpolants, very little energy is contained in high wave number lobes, as one
can see by comparing Figures 8 and 9.

The PDFs of the velocity gradients and the joint PDF of R and Q are calculated in a
similar way, except that the Web-services method invoked is GetVelocityGradient, instead of

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
J
H
U
 
J
o
h
n
 
H
o
p
k
i
n
s
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
2
:
3
7
 
6
 
O
c
t
o
b
e
r
 
2
0
0
8



Energy Spectra for JHU MHD Turbulence Database
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Figures 1, 2, and 3 below show the radial energy spectra, Elsasser spectra, and 

helicity cospectra, respectively. Figures 4, 5, and 6 show the time series of mean 

energies, dissipations, and helicities, respectively. Tables with the numerical data 

plotted in these figures is available in textfiles that can be downloaded from the 

website. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Spectra of velocity (red)          Figure 2: Spectra of Elsasser variables,  
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  Figure 3: Co-spectra of cross (red) and magnetic (blue) helicity 
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Figures 1, 2, and 3 below show the radial energy spectra, Elsasser spectra, and helicity 
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  Figure 3: Co-spectra of cross (red) and magnetic (blue) helicity 
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The spectral exponents are closer to -3/2 than to -5/3, as usual for MHD simulations at
these Reynolds numbers (Re ≈ 1170). This fact motivated the Boldyrev theory with α = 1,
which gives δu(r⊥) ∼ r1/4

⊥ and −3/2 spectrum.
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The spectral exponents are closer to -3/2 than to -5/3, as usual for MHD simulations at
these Reynolds numbers (Re ≈ 1170). This fact motivated the Boldyrev theory with α = 1,
which gives δu(r⊥) ∼ r1/4

⊥ and −3/2 spectrum.

However, see A. Beresnyak, PRL 106 075001 (2011)! The spectral scaling of MHD turbu-
lence at astrophysically relevant Reynolds numbers is still being debated....



Magnetic Flux-Freezing

“In view of the infinite conductivity, every motion (perpendicular to the field)
of the liquid in relation to the lines of force is forbidden because it would give
infinite eddy currents. Thus the matter of the liquid is ‘fastened’ to the lines
of force.” (H. Alfvén, 1942)

Field-lines do not really move! It is permissible to ascribe a velocity u to the
lines of force of magnetic field B if and only if E + 1

c
u×B = −∇Φ, or

∂tB =∇×(u×B). (∗)

(W. A. Newcomb, 1958). A flux-preserving velocity u is not usually unique,
cf. Newcomb (1958), Vasyliunas (1972), Alfvén (1976).
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infinite eddy currents. Thus the matter of the liquid is ‘fastened’ to the lines
of force.” (H. Alfvén, 1942)

Field-lines do not really move! It is permissible to ascribe a velocity u to the
lines of force of magnetic field B if and only if E + 1

c
u×B = −∇Φ, or

∂tB =∇×(u×B). (∗)

(W. A. Newcomb, 1958). A flux-preserving velocity u is not usually unique,
cf. Newcomb (1958), Vasyliunas (1972), Alfvén (1976).

In fact, even if (*) holds to an extremely good approximation, standard flux-
freezing is generally false, under realistic astrophysical conditions!

In turbulent plasmas with power-law spectra of velocity and magnetic fields,

flux-freezing does not hold in the standard sense but neither is it completely

broken. Instead, flux-freezing becomes intrinsically stochastic.



Stochastic Flux-Freezing for Resistive MHD

The exact solution of the resistive induction equation

∂tB =∇×(u×B) + λ4B

is given by a stochastic Lundquist formula (Eyink 2009, 2011)

B(x, t) =

〈
B0(a)·∇ax̃t,t0(a)

det(∇ax̃t,t0(a))

∣∣∣∣
x̃t,t0(a)=x

〉
.

Here the average 〈·〉 is over an ensemble of stochastic flows generated by

dtx̃t,t0(a) = u(x̃t,t0(a), t)dt+
√

2λ dW̃(t), x̃t0,t0(a) = a,

where W̃(t) is a random Brownian motion.

This is equivalent to a path-integral formula or “sum-over-histories”,

B(x, t) =

∫

a(t)=x

Da B0(a(t0))·J(a, t, t0) exp

(
− 1

4λ

∫ t

t0

dτ |ȧ(τ)− uν(a(τ), τ)|2
)

where the matrix J satisfies the ODE along the stochastic trajectory a(τ)

d

dτ
J(a, τ, t0) = J(a, τ, t0)∇xu(a(τ), τ)− J(a, τ, t0)(∇x·u)(a(τ), τ), , J(a, t0, t0) = I.
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J(a, τ, t0) = J(a, τ, t0)∇xu(a(τ), τ)− J(a, τ, t0)(∇x·u)(a(τ), τ), , J(a, t0, t0) = I.

We shall see that magnetic field evolution in the presence of fluid turbulence becomes as

indeterministic as quantum mechanics and requires similar methods for its description!
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The Standard View of Flux-Freezing at High Conductivity

It is not hard to show for a smooth velocity field u satisfying

|u(x, t)− u(x′, t)| ≤ K|x− x′|
that

〈
|x̃t,t0(a)− xt,t0(a)|2

〉
≤ 3λ

e2Kt − 1

K

.
= 6λt for Kt� 1.

Here xt,t0(a) is the deterministic flow that solves

d

dt
xt,t0(a) = u(xt,t0(a), t), xt0,t0(a) = a.

Cf. Freidlin & Wentzell (1984), Chapter 2. In particular, limλ→0 x̃t,t0(a) = xt,t0(a).

“Flux freezing is a very strong constraint on the behavior of magnetic fields in astrophysics.
As we show in chapter 3, this implies that lines do not break and their topology is preserved.
The condition for flux freezing can be formulated as follows: In a time t, a line of force can
slip through the plasma a distance

` =

√
ηc2t

4π
(1)

If this distance ` is small compared to δ, the scale of interest, then flux freezing holds to a
good degree of approximation.”—R. M. Kulsrud (2005), Ch.13, Magnetic Reconnection



Richardson Two-Particle Dispersion

Volcanic ash plume over K̄ılauea volcano

Meteorologist, physicist and applied mathe-
matician Lewis Fry Richardson proposed in
1926 that particle-pairs advected by turbu-
lence (e.g. a pair of soot particles in a volcanic
plume) would have mean-square separation in-
creasing with time as the cube power

〈|x1(t)− x2(t)|2〉 ∼ t3.

This is Richardson’s t3-law.
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Richardson’s table of raw data

Richardson’s approach was semi-empirical. By
estimating “effective diffusivity” K = 〈|∆x|2〉/t
as a function of ` =

√
〈|∆x|2〉, he found from

data that

K(`) ∼ K0`
4/3.

He proposed that the probability density func-
tion of the separation vector ` = x1−x2 would
satisfy a diffusion equation

∂tP (`, t) =
∂

∂`i

(
K(`)

∂P

∂`i
(`, t)

)

with scale-dependent 2-particle eddy-diffusivity.
This equation predicts at long times that

〈|x1(t)− x2(t)|2〉 ∼ t3,

averaging over velocity realizations.



Similarity Solution

Richardson (1926) observed that there is an exact similarity so-

lution of his equation, given by the stretched-exponential PDF

P∗(`, t) =
A

(K0t)9/2
exp

(
−9`2/3

4K0t

)

in three space dimensions. All solutions approach this self-similar

form asymptotically at long times.

Averaging `2 with respect to this density yields

〈`2(t)〉 = γ0t
3

with γ0 = 1144K3
0/81.



Kolmogorov Cascade Picture

A cartoon of the Kolmogorov cascade

In the Kolmogorov (1941) picture, velocity
differences across eddies of size ` have mag-
nitude

δu(`) ∼ (ε`)1/3.

This increases with `, so that larger turbulent
eddies have larger velocities.

A pair of particles as they separate thus expe-
rience greater relative velocities as they move
further apart. The outcome is an explosive
separation

〈`2(t)〉 ∼ g0εt
3,

even much faster than ballistic (∝ t2).

The (presumed universal) constant g0 is now
usually called “Richardson’s constant”.



Advection by Kolmogorov Velocity

A toy calculation: Assume that `(t) satisfies

d

dt
`(t) = δu(`) =

3

2
(g0ε`)

1/3.

Separation of variables gives the exact solution

`(t) =
[
`

2/3
0 + (g0ε)

1/3(t− t0)
]3/2

.

For t− t0 � `
2/3
0 /(g0ε)1/3 ≡ T0

`2(t) ∼ g0εt
3.

The condition for this behavior, δu(`) ∝ `1/3, is equivalent to the Kolmogorov
energy spectrum

E(k) ∝ k−5/3

which is very common in astrophysical plasmas.
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1/3.

Separation of variables gives the exact solution

`(t) =
[
`

2/3
0 + (g0ε)

1/3(t− t0)
]3/2

. ⇐= This is odd!!

For t− t0 � `
2/3
0 /(g0ε)1/3 ≡ T0

`2(t) ∼ g0εt
3.

The condition for this behavior, δu(`) ∝ `1/3, is equivalent to the Kolmogorov
energy spectrum

E(k) ∝ k−5/3

which is very common in astrophysical plasmas.



Fate of Particles Initially at the Same Point?

The odd feature of the previous result is that, if `0 = 0, then

`2(t) = g0ε(t− t0)3 > 0.

Two particles started at the same point at time t0 separate to a

finite distance at any time t > t0!

The same oddity may be seen in Richardson’s similarity solution,

which satisfies at initial time t0 = 0

P∗(`,0) = δ3(`).

All particles start with separation `(0) = 0. However, P∗(`, t) is a

smooth density for t > 0, so that `(t) > 0 with probability one.



Breakdown of Laplacian Determinism

According to Richardson’s results, Lagrangian fluid particles that
are advected by the fluid velocity u(x, t) starting at x0

d

dt
x(t) = u(x(t), t), x(t0) = x0

have the property that there is more than one solution. Doesn’t
this violate the theorem on uniqueness of solutions of initial-value
problems for ODE’s? No!

Loophole: The theorem requires that u(x, t) be x−differentiable.
A turbulent velocity field in a Kolmogorov inertial range is only
Hölder continuous

|u(x1, t)− u(x2, t)| ≤ C|x1 − x2|h

with exponent h
.

= 1/3.



Spontaneous Stochasticity
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Consider

dx̃ = uν(x̃, t)dt+
√

2λdW̃(t), x̃(t0) = x0

where ν is a viscosity which smooths the ve-
locity. What happens as λ → 0 with Prandtl
number Pr = ν/λ fixed?

At least in the Kazantsev-Kraichnan kinematic
dynamo model there is a nontrivial limiting
distribution Pu(x, t|x0, t0) over an infinite fam-
ily of solutions to the (deterministic) initial-
value problem ẋ = u(x, t), x(t0) = x0.

There is an obvious analogy with spontaneous
symmetry-breaking, e.g. a non-vanishing mean-
magnetization in a ferromagnet even in the
limit of zero external magnetic field.

See Falkovich et al. Rev. Mod. Phys. (2001),
Section II.C
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Consider

dx̃ = uν(x̃, t)dt+
√

2λdW̃(t), x̃(t0) = x0

where ν is a viscosity which smooths the ve-
locity. What happens as λ → 0 with Prandtl
number Pr = ν/λ fixed?

The distribution does not collapse!

At least in the Kazantsev-Kraichnan kinematic
dynamo model there is a nontrivial limiting
distribution Pu(x, t|x0, t0) over an infinite fam-
ily of solutions to the (deterministic) initial-
value problem ẋ = u(x, t), x(t0) = x0.

There is an obvious analogy with spontaneous
symmetry-breaking, e.g. a non-vanishing mean-
magnetization in a ferromagnet even in the
limit of zero external magnetic field.

See Falkovich et al. Rev. Mod. Phys. (2001),
Section II.C



Stochastic Flux-Freezing in MHD Turbulence
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The stochastic flux-freezing theorem is well-satisfied in the MHD database. Despite the fact

that the conductivity (or magnetic Reynolds number) is high, standard flux-freezing is not

even approximately valid. (G. E. et al., Nature, 2013)
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Does Richardson Dispersion Exist in Homogeneous MHD Turbulence?

Unlike in hydrodynamic turbulence, there are expected to be a significant effects of the
Lorentz force in nonlinear MHD turbulence. Particle separations will be different parallel and
perpendicular to the magnetic field. The laws of 2-particle dispersion will depend upon the
theory of MHD turbulence. Assuming the generalized Boldyrev (2005) scaling

δu(r⊥) ∼ vAM
2(2+α)

3+α

A

(
r⊥
Lf

) 1
3+α

,

with MA = brms/B̄, one obtains from dr⊥/dt ∼ δu(r⊥) the Richardson-type law

〈r2
⊥(t)〉 ∼ L2

fM
4
A

(
vAt

Lf

)2(3+α)
2+α

,

for the transverse slippage of magnetic field lines in MHD turbulence.

Richardson dispersion has not yet been observed in MHD simulations, despite prior attempts:

A. Busse et al., “Statistics of passive tracers in three-dimensional magnetohydrodynamic
turbulence,” Phys. Plasmas 14 122303 (2007)

A. Busse and W.-C. Müller, “Diffusion and dispersion in magnetohydrodynamic turbulence:
The influence of mean magnetic fields,” Astron. Nachr. 329 714 (2008)



Richardson Dispersion of Field-Lines

Field-lines disperse through the plasma faster
along the direction of the local mean magnetic
field than they disperse perpendicular to the
field, but the growth is the same power

〈r2
i (t)〉 ∼ L2

fM
4
A

(
vAt

Lf

)8
3

,

in both directions, i = ‖,⊥ .This growth-law
is consistent with the −3/2 energy spectra of
the database flow, or h = 1/4 scaling expo-
nent of velocity and magnetic fields.

The standard diffusive estimate ∼ 4λt, pro-
portional to microscopic plasma resistivity, is
valid for only about one resistive time!
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Richardson Dispersion of Field-Lines

Field-lines disperse through the plasma faster
along the direction of the local mean magnetic
field than they disperse perpendicular to the
field, but the growth is the same power
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4
A

(
vAt

Lf
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3

,

in both directions, i = ‖,⊥ . This growth-law
is consistent with the −3/2 energy spectra of
the database flow, or h = 1/4 scaling expo-
nent of velocity and magnetic fields.

The standard diffusive estimate ∼ 4λt, pro-
portional to microscopic plasma resistivity, is
valid for only about one resistive time!

What you learned in the textbooks about
magnetic flux-freezing for high-conductivity
MHD plasmas is wrong.
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Further Evidence of Richardson Dispersion

Shown are PDFs of separation distances of field-lines, r‖ parallel and r⊥ perpendicular to the

local mean magnetic field. As expected from Richardson’s theory, the PDF’s are self-similar

in time and have stretched-exponential form, roughly P (r) ∝ exp(−Cr3/4) for h = 1/4.



Turbulent Magnetic Reconnection

Assume that the reconnection occurs in a background MHD plasma turbulence with rms
velocity uL < vA and integral length or injection scale Lf > L.

Richardson diffusion of field-lines instead gives

∆ !
√

εt3A ! L(L/Lf)
1/2M2

A

using ε =
u4

L

vALf
(Kraichnan, 1965) and MA ≡ uL

vA
.

With v0 ! vA, mass conservation v0∆ = vRL
implies that

vR = vA(L/Lf)
1/2M2

A.

Now Lazarian-Vishniac (1999) theory is ob-

tained, for the case L < Lf. The reconnection

rate is independent of resistivity!

Richardson diffusion of field-lines gives

∆ !
√
〈r2
⊥(tA)〉 ∼ LfM2

A

(
vAtA

Lf

)3+α
2+α

,

with tA = L/vA the Alfvén crossing time and
MA = brms/B̄. Mass conservation vRL = vA∆
with v0 ! vA yields

vR = vAM2
A(L/Lf)

1
2+α

Now Lazarian-Vishniac (1999) theory is ob-

tained, for the case α = 0. The reconnection

rate is independent of resistivity!

Estimating for solar flares that Lf ' L and MA ' 0.1 (Bemporad, 2008) one obtains a release
time of about one hour.

For more details, see Eyink, Lazarian & Vishniac, ApJ. 743 1-28 (2011)
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