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Representative Calculation (global GR MHD simulation of a thin disk)
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Figure 2. Fluid density profile for a slice of Harm3d data in the (r, z) plane at Figure 3. Magnetic energy density profile for a slice of Harm3d data in the (r, z)
simulation time t = 12,500M . Contours show surfaces of constant optical depth plane corresponding to the same conditions as in Figure 2.
with 7 = 0.01, 0.1, 1.0. Fiducial values for the black hole mass M = 10 My (A color version of this figure is available in the online journal.)

and accretion rate m1 = 0.1 were used.

“...because an adequate description of MHD turbulence requires a wide dynamic range in
length scales (Hawley et al. 2011; Sorathia et al. 2012), the spatial resolution necessary to
simulate disks as thin as some of those likely to occur in nature remains beyond our grasp.
Thus, in some respects, our calculations represent an intermediate step toward drawing a
complete connection between fundamental physics and output spectra.”

-Schnittman et al. (2013)
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turbulence.pha.jhu.edu

Welcome to the JHU Turbulence Database Cluster (TDC) site

This website is a portal that enables access to multi-Terabyte turbulence databases. The
data reside on several nodes and disks on our database cluster computer and are stored
in small 3D subcubes. Positions are indexed using a Z-curve for efficient access.

Access to the data is facilitated by a Web services interface that permits numerical
experiments to be run across the Internet. We offer C, Fortran and Matlab interfaces
layered above Web services so that scientists can use familiar programming tools on their
client platforms. Calls to fetch subsets of the data can be made directly from within a
program being executed on the client's platform. Manual queries for data at individual
points and times via web-browser are also supported. Evaluation of velocity and pressure
at arbitrary points and time is supported using interpolations executed on the database
nodes. Spatial differentiation using various order approximations (up to 8th order) are also
supported (for details, see documentation page). Other functions such as spatial filtering
are being developed.

So far the database contains a 10244 space-time history of a direct numerical simulation
(DNS) of isotropic turbulent flow, in incompressible fluid in 3D, and a DNS of the
incompressible magneto-hydrodynamic (MHD) equations. The simulations were
performed using 1024 grid points in each direction using a pseudo-spectral method, and
forcing at large scales. The database allows access to 1024 time steps covering about
one integral turn-over time-scale of the turbulence. The datasets comprise 27 Terabytes
for the isotropic turbulence data and 56 Terabytes for the MHD data. Basic characteristics
of the data sets can be found in the datasets description page. Technical details about the
database techniques used for this project are described in the publications.

The Turbulence Database Cluster project is funded by the US National Science

Foundation
Questions and comments? turbulence @pha.jhu.edu

269903764678 points queried

Please excuse our dust as we continue to develop this site. The Turbulence Database is on-line but
may periodcally be unavailable as we continue to add functionalities.

SQL DB Server 1

SQL DB Server 2

SQL DB Server n

JHU Turbulence Database Cluster Architecture




! Intialize the gSOAP runtime.
CALL soapinit()

points(1l,:)=(/(2.*PI/npnt*ii, ii=0,npnt-1)/)

time=0.

do ii=0,nline-1
points(2,:)=(1024/nliney)*modulo(ii,nliney)*dx
points(3,:)=(1024/nlinez)*int(ii/nliney)*dx

! database query to find the velocities on the points
rc=getvelocity(authkey, dataset, time, NoSInt, &
NoTInt, npnt, points, velocity)

! FFT of ux and calculate the longitudinal energy spectrum
call rfftw £77 one(R2Cld, velocity(l,:), uxo)
uxo=uxo/npnt
E11k1(1)=El1lkl(1l)+uxo(l)*uxo(1l)
do jj=2,npnt/2
E11k1(jj)=E1l1lk1l(jj) + uxo(jj)*uxo(jj) + uxo(npnt+2-jj)*uxo(npnt+2-jj)
end do
Ellkl(nl)=Ellkl(nl)+uxo(nl)*uxo(nl)

! FFT of uy and uz and transverse energy spectra

Figure 6. Snippet of the FORTRAN code running on local user machine. Bold font highlights the lines
invoking the Web-services method. The authkey has been intentionally marked out.



Energy Spectra for JHU MHD Turbulence Database
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Figure 1: Spectra of velocity (red) Figure 2: Spectra of Elsasser variables,
and magnetic (blue) fields z'=u+b (red) and z=u-b (blue)

The spectral exponents are closer to -3/2 than to -5/3, as usual for MHD simulations at

these Reynolds numbers (Re ~ 1170). This fact motivated the Boldyrev theory with a = 1,
: . 1/4

which gives du(ry) ~r/" and —3/2 spectrum.
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Figure 1: Spectra of velocity (red) Figure 2: Spectra of Elsasser variables,
and magnetic (blue) fields z =u+b (red) and z=u-b (blue)

The spectral exponents are closer to -3/2 than to -5/3, as usual for MHD simulations at

these Reynolds numbers (Re ~ 1170). This fact motivated the Boldyrev theory with a = 1,
: . 1/4

which gives du(ry ) ~ 7" and —3/2 spectrum.

However, see A. Beresnyak, PRL 106 075001 (2011)! The spectral scaling of MHD turbu-

lence at astrophysically relevant Reynolds numbers is still being debated....



Magnetic Flux-Freezing

“In view of the infinite conductivity, every motion (perpendicular to the field)
of the liquid in relation to the lines of force is forbidden because it would give
infinite eddy currents. Thus the matter of the liquid is ‘fastened’ to the lines
of force.” (H. Alfvén, 1942)

Field-lines do not really move! It is permissible to ascribe a velocity u to the
lines of force of magnetic field B if and only if E+ fuxB = —Vo, or

C

0B =V x(uxB). (%)

(W. A. Newcomb, 1958). A flux-preserving velocity u is not usually unique,
cf. Newcomb (1958), Vasyliunas (1972), Alfvén (1976).



Magnetic Flux-Freezing

“In view of the infinite conductivity, every motion (perpendicular to the field)
of the liquid in relation to the lines of force is forbidden because it would give
infinite eddy currents. Thus the matter of the liquid is ‘fastened’ to the lines
of force.” (H. Alfvén, 1942)

Field-lines do not really move! It is permissible to ascribe a velocity u to the
lines of force of magnetic field B if and only if E4+ fuxB = —V®, or

C

0B = V x (uxB). (*)
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In fact, even if (*) holds to an extremely good approximation, standard flux-
freezing is generally false, under realistic astrophysical conditions!
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“In view of the infinite conductivity, every motion (perpendicular to the field)
of the liquid in relation to the lines of force is forbidden because it would give
infinite eddy currents. Thus the matter of the liquid is ‘fastened’ to the lines
of force.” (H. Alfvén, 1942)

Field-lines do not really move! It is permissible to ascribe a velocity u to the
lines of force of magnetic field B if and only if E4+ ftuxB = —V®, or

C

9B = Vx(uxB). (*)

(W. A. Newcomb, 1958). A flux-preserving velocity u is not usually unique,
cf. Newcomb (1958), Vasyliunas (1972), Alfvén (1976).

In fact, even if (*) holds to an extremely good approximation, standard flux-
freezing is generally false, under realistic astrophysical conditions!

In turbulent plasmas with power-law spectra of velocity and magnetic fields,
flux-freezing does not hold in the standard sense but neither is it completely
broken. Instead, flux-freezing becomes intrinsically stochastic.



Stochastic Flux-Freezing for Resistive MHD
The exact solution of the resistive induction equation
OB =V x(uxB) + \AB
is given by a stochastic Lundquist formula (Eyink 2009, 2011)

Bo (a) . V(Lit,to (a)

B(X7 t) — det(Vait,to (a))

Xt (@)=x

Here the average () is over an ensemble of stochastic flows generated by

diZto(a) = u(Xeto(a), t)dt + V2XdW (1), Kio40(a) = a,
where W(t) is a random Brownian motion.

This is equivalent to a path-integral formula or “sum-over-histories’,

B(x,t) = / Da Bo(a(tp))-J(a,t, tg) exp (4—1>\/ drla(r) — u”(a(7),7)|2)
a(t)=x to

where the matrix J satisfies the ODE along the stochastic trajectory a(r)

%J(a, T,to) = J(a, 7, to) Vyu(a(r),7) — J(a, 7, to) (Vz-u)(a(r), 7),, J(a,to,to) =1L
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The exact solution of the resistive induction equation
OB = Vx(uxB) + A\AB
is given by a stochastic Lundquist formula (Eyink 2009, 2011)

Bo (a) . Va)’v(t,to (a)

B(x,t) = det(V, %11 (a))

)2//,/,0 (a):x

Here the average (-) is over an ensemble of stochastic flows generated by

di%i1,(a) = u(Reg(a),t)dt + V2AXAW (L), Rypi(a) = a,
where W(t) is a random Brownian motion.

This is equivalent to a path-integral formula or “sum-over-histories’,

B(x,t) = / Da Bo(a(tg))-J(a,t,to) exp (—4—1\/ dr|a(r) — u”(a(T),T)|2>
a(t)=x

to

where the matrix J satisfies the ODE along the stochastic trajectory a(r)

%J(a, T,t0) = J(a,7,to)V.u(al(r),r) — J(a, r,to)(Veu)(al(r),7),, J(a,tg,to) =1

We shall see that magnetic field evolution in the presence of fluid turbulence becomes as

indeterministic as quantum mechanics and requires similar methods for its description!



Stochastic Lundquist Formula

B (a, to) ‘Vait,to (a)

B(x,t) = det(VaX,(a))

it,to (a):x

transport

(d/dm)B = B-Vu - (V-u)B

dx(7) = u(X, 7)dr + V22 dW(7)

average

B(x,t) = (B(x,t))



The Standard View of Flux-Freezing at High Conductivity

It is not hard to show for a smooth velocity field u satisfying
u(x, t) — u(x',t)| < Klx — x|

that
2Kt

1 .
<\it,to(a) - Xt,to(a)|2> < 3>\6T = 06Xt for Kt 1.

Here x;4,(a) is the deterministic flow that solves

d
axt,to (a) - U—(Xt,to (a)a t)a Xto,to (a) = a.

Cf. Freidlin & Wentzell (1984), Chapter 2. In particular, limy_oX:(a) = x¢4,(a).

“Flux freezing is a very strong constraint on the behavior of magnetic fields in astrophysics.
As we show in chapter 3, this implies that lines do not break and their topology is preserved.
The condition for flux freezing can be formulated as follows: In a time ¢, a line of force can

slip through the plasma a distance
2
nct
L=/ 1
41 (1)

If this distance ¢ is small compared to §, the scale of interest, then flux freezing holds to a
good degree of approximation.”—R. M. Kulsrud (2005), Ch.13, Magnetic Reconnection




Richardson Two-Particle Dispersion

Volcanic ash plume over Kilauea volcano

Meteorologist, physicist and applied mathe-
matician Lewis Fry Richardson proposed in
1926 that particle-pairs advected by turbu-
lence (e.g. a pair of soot particles in a volcanic
plume) would have mean-square separation in-
creasing with time as the cube power

(Jx1(t) — x2(t)|?) ~ .

This is Richardson’s t3-law.



Scale-Dependent Eddy-Diffusivity

Reference.

K
em.? sect

K from molecular diffusion of oxygen into nitrogen (Kaye
and Laby’s ‘Physical and Chemical Constants’).
For 1 see preceding discussion.

] i
PLT7 % 107t
J

K atb 9 metres above ground from anemometers at heights
of 2, 16 and 32 metres (W. Schmidt, ¢ Wien. Akad.
Sitzb.,” Ila, vol. 126, p. 773 (1917)).

1 32 x 10
J

1-5 x 10%

K from anemometers at heights of 21 to 305 metres
(Akerblom, F., ‘Nova Acta Reg. Soc. Upsaliensis’
(1908)).

b 1-2 % 109

14 x 10t

K from pilot balloons at heights between 100 and 800
metres (Taylor, ¢ Phil, Trans.,” A, vol. 215, p. 21 (1914),
also Hesselberg and Sverdrup, ‘ Leipzig Geophys. Inst.,’
Ser. 2, Heft 10 (1915)).

6 x 10*

5 x 10t

K {rom tracks of balloons either manned (L. F. Richard-
son, ¢ Weather Prediction by Numerical Process,” p. 221)
or not manned (Richardson & Proctor, ‘Royal
Meteorological Society Memoirs,” No. 1).

108

| S —— | SRE— — —

2 % 108

Volcano ash, same reference as last ......ooo..ccooovveveriveenn,

5 x 108

5 x 10

Diffusion due to cyclones regarded as deviations from
the mean circulation of the latitude (Defant, ¢ Geog.
Ann.,” H. 3, also (1921), ¢ Wien, Akad, Wiss. Sitzb.,’
Ia, vol. 130, p. 401 (1921)).

1
; 101
J

108

Richardson’s table of raw data

Richardson’s approach was semi-empirical. By
estimating “effective diffusivity” K = (|Ax|?)/t

as a function of £ = \/{(]Ax]|?), he found from
data that

K(0) ~ Kot*/3.
He proposed that the probability density func-
tion of the separation vector £ = x; — x> would
satisfy a diffusion equation

QP (L. t) = % (K(E)%(E,t))

with scale-dependent 2-particle eddy-diffusivity.
This equation predicts at long times that

(Ix1(t) — x2(t)[?) ~ 3,

averaging over velocity realizations.



Similarity Solution

Richardson (1926) observed that there is an exact similarity so-
lution of his equation, given by the stretched-exponential PDF

952/3
(Kot)%2 " (‘ 4Kot>
in three space dimensions. All solutions approach this self-similar
form asymptotically at long times.

P*(E,t) —

Averaging ¢2 with respect to this density vyields

(£2(1)) = yot>

with 49 = 1144K3/81.



Kolmogorov Cascade Picture
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A cartoon of the Kolmogorov cascade

In the Kolmogorov (1941) picture, velocity
differences across eddies of size ¢ have mag-
nitude

Su(l) ~ (e0)/3.

This increases with ¢, so that larger turbulent
eddies have larger velocities.

A pair of particles as they separate thus expe-
rience greater relative velocities as they move
further apart. The outcome is an explosive
separation

(2(t)) ~ goet®,
even much faster than ballistic (o t2).

The (presumed universal) constant go is now
usually called “Richardson’s constant’.



Advection by Kolmogorov Velocity

A toy calculation: Assume that £4(t) satisfies

(1) = 5u(0) = > (g0

Separation of variables gives the exact solution

() = [P+ (go) 2t — 1)

For ¢ — to > €2/ /(goe)/3 = Ty

0%(t) ~ goet>.

The condition for this behavior, du(f) x ¢1/3, is equivalent to the Kolmogorov
energy spectrum

E(k) oc k573

which is very common in astrophysical plasmas.
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A toy calculation: Assume that £4(t) satisfies

(1) = 5u(0) = > (g0

Separation of variables gives the exact solution

3/2
0(t) = [627° + (goe)3(t — to)| . <= This is odd!!

For ¢ — to > €22 /(goe) /3 = Ty
0%(t) ~ goet>.

The condition for this behavior, du(f) x ¢1/3, is equivalent to the Kolmogorov
energy spectrum

E(k) oc k573

which is very common in astrophysical plasmas.



Fate of Particles Initially at the Same Point?

The odd feature of the previous result is that, if {g = 0, then

02(t) = goe(t — tg)3 > 0.

Two particles started at the same point at time ¢y separate to a
finite distance at any time t > tg!

The same oddity may be seen in Richardson’s similarity solution,
which satisfies at initial time tg =0

Pi(£,0) = §3(¢).

All particles start with separation £(0) = 0. However, Pi(£,t) is a
smooth density for ¢ > 0, so that 4(t) > O with probability one.



Breakdown of Laplacian Determinism

According to Richardson’s results, Lagrangian fluid particles that
are advected by the fluid velocity u(x,t) starting at xg

%X(t) = u(x(t),1), x(to) = xg

have the property that there is more than one solution. Doesn’t
this violate the theorem on unigqueness of solutions of initial-value
problems for ODE's? No!

[.oophole: The theorem requires that u(x,t) be x—differentiable.
A turbulent velocity field in a Kolmogorov inertial range is only
Holder continuous

u(xq,t) — u(xo,t)| < Clxg — xo|"

with exponent h = 1/3.



Spontaneous Stochasticity

S

Consider
dx = u’(X, t)dt + V2XdW (1), %(to) = xo

where v is a viscosity which smooths the ve-
locity. What happens as A — 0 with Prandtl
number Pr = v/X fixed?

At least in the Kazantsev-Kraichnan kinematic
dynamo model there is a nontrivial limiting
distribution Py(x, t|xo,to) over an infinite fam-
ily of solutions to the (deterministic) initial-
value problem x = u(x,t), x(t9) = Xo.

There is an obvious analogy with spontaneous
symmetry-breaking, €.9g. a non-vanishing mean-
magnetization in a ferromagnet even in the
limit of zero external magnetic field.

See Falkovich et al. Rev. Mod. Phys. (2001),
Section II.C



Spontaneous Stochasticity
Consider

dx = u’(X, t)dt + V2AdW(t), X(to) = xo

M’; where v is a viscosity which smooths the ve-
. locity. What happens as A — 0 with Prandtl
number Pr = v/X fixed?

The distribution does not collapse!

At least in the Kazantsev-Kraichnan kinematic
dynamo model there is a nontrivial limiting
distribution Py(x, t|xo,to) over an infinite fam-
ily of solutions to the (deterministic) initial-

fanled )
o value problem x = u(x,t), x(t9) = Xo.
There is an obvious analogy with spontaneous
symmetry-breaking, €.9g. a non-vanishing mean-
magnetization in a ferromagnet even in the
XO limit of zero external magnetic field.

See Falkovich et al. Rev. Mod. Phys. (2001),
Section II.C



Stochastic Flux-Freezing in MHD Turbulence

FError for a representative point

standarél

The stochastic flux-freezing theorem is well-satisfied in the MHD database. Despite the fact
that the conductivity (or magnetic Reynolds number) is high, standard flux-freezing is not

even approximately valid. (G. E. et al., Nature, 2013)



START
Shown is the point x; = (1.09, 2.42,5.03) in the archived MHD flow at time ¢; = 2.56. To calculate
the magnetic field B(xy,t,), we generate the stochastic trajectories that arrive at x; at time ¢, by
integrating dx = u(x,t)dt + VAW () from x; at time t; back to time ¢y. The particles change
color from blue, to green, to red as they go from time ¢; to time ¢;. The magnetic field vectors
at time ty are then sampled from the database at the random ensemble of points X(tp).
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Does Richardson Dispersion Exist in Homogeneous MHD Turbulence?

Unlike in hydrodynamic turbulence, there are expected to be a significant effects of the
Lorentz force in nonlinear MHD turbulence. Particle separations will be different parallel and
perpendicular to the magnetic field. The laws of 2-particle dispersion will depend upon the
theory of MHD turbulence. Assuming the generalized Boldyrev (2005) scaling

1

2(24a) r 3Fa
du(r,) ~ ’UAMA3+0‘ (f) y
f

with M4 = b.ms/B, one obtains from dr, /dt ~ du(r,) the Richardson-type law

2(34a)
'UAt 24«
(r3(t)) ~ LM} (L_f :

for the transverse slippage of magnetic field lines in MHD turbulence.
Richardson dispersion has not yet been observed in MHD simulations, despite prior attempts:

A. Busse et al., “Statistics of passive tracers in three-dimensional magnetohydrodynamic
turbulence,” Phys. Plasmas 14 122303 (2007)

A. Busse and W.-C. Miller, “Diffusion and dispersion in magnetohydrodynamic turbulence:
The influence of mean magnetic fields,” Astron. Nachr. 329 714 (2008)



Richardson Dispersion of Field-Lines

Field-lines disperse through the plasma faster
along the direction of the local mean magnetic
field than they disperse perpendicular to the
field, but the growth is the same power

8

2 2,4 [ VALY

2(4)y ~ L2M4 [ YAT)
(ri (1)) ¥ A(Lf)

in both directions, ¢ = ||, L . This growth-law
is consistent with the —3/2 energy spectra of
the database flow, or h = 1/4 scaling expo-
nent of velocity and magnetic fields.

The standard diffusive estimate ~ 4M\t, pro-
portional to microscopic plasma resistivity, is
valid for only about one resistive timel
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Richardson Dispersion of Field-Lines

Field-lines disperse through the plasma faster
along the direction of the local mean magnetic
field than they disperse perpendicular to the
field, but the growth is the same power

8

2 2,4 [ vat)’

“(t)) ~ LMy | — |
12 (D) ~ L3 A<Lf)

in both directions, i = ||, L . This growth-law
is consistent with the —3/2 energy spectra of
the database flow, or h = 1/4 scaling expo-
nent of velocity and magnetic fields.

The standard diffusive estimate ~ 4M\t, pro-
portional to microscopic plasma resistivity, is
valid for only about one resistive timel

What you learned in the textbooks about

magnetic flux-freezing for high-conductivity

MHD plasmas is wrong.
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Further Evidence of Richardson Dispersion

Shown are PDFs of separation distances of field-lines, 7| parallel and r| perpendicular to the

local mean magnetic field. As expected from Richardson’'s theory, the PDF's are self-similar

in time and have stretched-exponential form, roughly P(r) « exp(—Cr3/%) for h = 1/4.
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Turbulent Magnetic Reconnection

Assume that the reconnection occurs in a background MHD plasma turbulence with rms
velocity u;, < vgq and integral length or injection scale Ly > L.

Richardson diffusion of field-lines gives

3+a
24«

A~/ (r2(ta)) ~ Ly M3 (”AtA) :

Ly

with t4 = L_/vA the Alfvén crossing time and
My = brms/B. Mass conservation vgL = va A
with vg ~ v4 vields

VR = UAMﬁ(L/Lf)HLa

Now Lazarian-Vishniac (1999) theory is ob-

tained, for the case o« = 0. The reconnection

L | rate is independent of resistivity!

Estimating for solar flares that Ly ~ L and M4 ~ 0.1 (Bemporad, 2008) one obtains a release
time of about one hour.

For more details, see Eyink, Lazarian & Vishniac, ApJ. 743 1-28 (2011)
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