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Motivation I

The problem of time step restrictions
– given a physical system and a set of dynamical equations dy(t)/dt = f(y(t))

describing its evolution in time
– compute approximate solution as a function of time: Yn = Yn(t) = Y(tn) ~ y(tn) 
– between tn and tn+1 such that the solution Y(t) changes only by a few percent:

       |Yn+1 - Yn| < C |Yn| with C ~ 0.05 ... 0.1 ➔	 	 sufficiently accurate advancing
– explicit integration methods require to resolve the time dependence of all the 

processes described by the equations (independent of their amplitude, etc.):
              |Yn+1 - Yn| < D |Yn| with D ≪ C

– implicit methods can be less restrictive and ideally reach D ~ C with D ≤ C
– but additional properties are often required for acceptable approximations
– fully implicit methods are expensive... so, how to get around this ?
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Motivation II
Motivation for methods discussed below 
– for a two-species flow as in the problem of double-diffusive convection the 

Navier-Stokes equation can be recast as

– perhaps split off pressure terms (➔	 Kwatra's method, see below) & viscosity, too
– solve this system numerically as follows:

• Method of lines (MOL): spatial derivatives discretized by, e.g., a finite 
difference or finite volume approach such as the weighted essentially 
non-oscillatory (WENO) method. Similar for boundary conditions.

• Result: a set of non-linear, coupled ordinary differential equations (ODEs).
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Motivation III
Astrophysical convection simulations
– typical simulations of M dwarf, idealised semiconvection with Pr=0.1, Cepheid

– M dwarf: time step limited by sound waves: low Mach number flow

– Semiconvection: low Mach number flow, limited by heat diffusion until the
layer becomes convective (transition diffusive ➔ advective during simulation)

– Cepheid: limited by radiative diffusion in layers near / at the surface
(also in A-type stars, red giants, AGB stars, ...)

The ANTARES Code

Semi-implicit Time Integration Methods

Realistic Microphysics

Timestep Restrictions in Astrophysical Simulations

cad = cdiff = 0.2 ∆tad ∆tsnd ∆tdiff
Convection (M-Star) 7 s 0.52 s 383 s

Semiconvection 19.47 s 2.45 s 3.72 s
Cepheid 2.31 s 1.73 s 0.057 s

Processes operating fast may do so formally, but possibly without
contributing significantly to the solution
� different stiffness properties of the terms of NSE

Explicit Time Integration methods are NOT suited for the
integration of a such a system!

� integrate stiff terms implicitly

Natalie Happenhofer Efficient Time Integration



Improved Time IntegrationASTRONUM 2013, Biarritz, 4 July 2013
6

Motivation IV
Why splitting instead of fully implicit ? 
– in hydrodynamics: little gain from implicitly integrating the advection operator

• if it is limiting Δ t ➔ solution usually changes on Δ t

• for order in time p > 1: strong stability (SSP) property is lost, if Δ t > 4 Δ tadv 

➔ Kraaijevanger: BIT 31, 482 (1991); Ferracina & Spijker: Math. Comp. 74, 201 
(2004), Appl. Num. Math. 58, 1675 (2008); Ketcheson et al.: Appl. Num. Math. 59, 373 
(2008), J. Sci. Comp. 38, 251 (2009)

– if the NSE are integrated in time with IMEX RK-methods, generalized (linear or 
quasilinear) Helmholtz equations are obtained (scalar, computationally cheaper) 

– the same holds for the method of Kwatra et al. (2009), JCP 228, 4146 used for
semi-implicit integration of terms containing ∇p

– these are (quasilinear) elliptic equations (even V-coercive and V-elliptic)
– fast, well-converging methods available: CG-type, multigrid methods
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Kwatra's method I
Summary
– following Kwatra et al. (2009), JCP 228, 4146 use Dp/Dt, equation of state, and 

conservation laws to derive a dynamical equation for ∂p/∂t. Then
• discretize "diffusion-like" terms at tn+1, evaluate other terms at tn
• construct (discretized) equation for pn+1

• additive pressure-term splitting as in incompressible methods ➔ (un+1)*
• compressibility ➔ use discretized equation for pn+1 to predict (pn+1)*
• use (pn+1)* to complete time step ➔ un+1, evaluate final pn+1 form EOS
• in RK methods repeat at each stage, in IMEX RK assign pn+1 to "explicit part"

– also with buoyancy source term (➔ explicit, e.g.) & diffusion terms (➔ right-hand 
side of generalized Helmholtz equations) (Happenhofer et al. 2013, JCP 236, 96) 

– can be used in low and high Mach number regime
– time step limit from advection and steep pressure gradients, not sound waves (!)
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Kwatra's method II

1D Sod shocktube test with 405 grid points taken from Happenhofer et al. (2013), 
JCP 236, 96 confirming Kwatra et al. (2009), JCP 228, 4146

Author's personal copy

We also rerun the two-dimensional circular shock test proposed by Kwatra et al. [19]. The initial condition for this test is
given by

ðq;u;v ; PÞ ¼
ð1;0;0;1Þ if r 6 40 cm
ð0:125; 0;0;0:1Þ if r P 40 cm

!
ð50Þ

We use a domain of 200 cm $ 200 cm and discretize it with 95 $ 95 grid points. Again, the results depicted in Fig. 9 indicate
well resolved shocks.

5.5. Validation in the low Mach number regime

5.5.1. Smooth flow test
In [19], Kwatra et al. report to have achieved a CFL number of 300 in a smooth flow test with initial conditions

Table 5
Fractional step method scaling test (1600 $ 1600 grid points), calculated at the Vienna
Scientific Cluster 2 (VSC2).

# Cores Time in s

1 Estimate: 7.3 days
16 23:52:50
64 05:53:13
256 01:20:02
1024 00:26:32

Table 6
Fractional step method scaling test (3200 $ 3200 grid points), calculated at the Vienna
Scientific Cluster 2 (VSC2).

# Cores Time in s

256 24:15:00
1024 06:39:44
2048 04:44:25
4096 04:38:15

Table 7
Explicit solver scaling test (3200 $ 3200 grid points), calculated at the Vienna Scientific
Cluster 2 (VSC2).

# Cores Time in s

1024 02:11:21
2048 01:42:29
4096 01:22:03
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Fig. 8. Results of the Sod shocktube test at t = 0.25 s. Density and Pressure are plotted against an explicit reference solution. The results indicate well
resolved shock waves.

112 N. Happenhofer et al. / Journal of Computational Physics 236 (2013) 96–118
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Kwatra's method III

1D smooth, low Mach number flow test test from Happenhofer et al. 
(2013), JCP 236, 96 confirming Kwatra et al. (2009), JCP 228, 4146

Author's personal copy

5.5.2. The Gresho vortex test
The Gresho vortex is a time-independent rotation pattern. Angular velocity depends only on the radius and centrifugal

force is balanced by the pressure gradient. The original setup is found in [21]. We use the slightly modified initial condition
of [22], which permits the variation of the Mach number.

We use a Cartesian domain [0,1] ! [0,1] and employ periodic boundary conditions. The initial condition is given

dependent on the radius r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx$ 0:5Þ2 þ ðy$ 0:5Þ2

q
as

q ¼ 1:0 ð51Þ

P0 ¼ q
cMa2 ð52Þ

u/ ¼
5r if 0 6 r 6 0:2
2$ 5r if 0:2 6 r 6 0:4
0 if 0:4 6 r

8
><

>:
ð53Þ

P ¼
P0 þ 25

2 r2 if 0 6 r 6 0:2
P0 þ 25

2 r2 þ 4 ð1$ 5r $ lnð0:2Þ þ lnðrÞÞ if 0:2 6 r 6 0:4
P0 $ 2þ 4 lnð2Þ if 0:4 6 r

8
><

>:
ð54Þ

Ma denotes the Mach number and u/ denotes the angular velocity. The cartesian velocity components are obtained via

ux ¼ sinðhÞ u/ ð55Þ
uy ¼ cosðhÞ u/ ð56Þ

where h ¼ a tan2ðy$ 0:5; x$ 0:5Þ.
We run the Gresho vortex test with Ma ¼ 0:1; Ma ¼ 0:01 and Ma ¼ 0:001. Fig. 11 compares the results obtained in this

setting by the semi-implicit method and the fully explicit solver. In this test, both solvers use, for proper comparison, the
same sound-speed induced timestep and a Courant number of 0.5. The simulation time is 2 s.

Table 8
Timing results from the smooth flow test for different Courant numbers. Simulation time is t = 2:5! 10$5 s.

Method CFL-number Timestep Dt Wallclocktime

Explicit 0.5 1:53! 10$8 01:18:04
Semi-implicit 0.5 1:53! 10$8 00:35:04
Semi-implicit 3 9:18! 10$8 00:06:33
Semi-implicit 30 9:18! 10$7 00:01:59
Semi-implicit 300 9:18! 10$6 00:00:20
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Fig. 10. Numerical results comparing the pressure at t = 1:25! 10$5 s in the smooth flow test run with different CFL numbers.

114 N. Happenhofer et al. / Journal of Computational Physics 236 (2013) 96–118
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Kwatra's method IV
scaling test of simulation 
of fully compressible 
convection (Ra=1.6 × 106, 
Pr = 0.1, run over 0.5 
sound crossing times), 
from Happenhofer et al. 
(2013), JCP 236, 96

Author's personal copy
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Fig. 8. Results of the Sod shocktube test at t = 0.25 s. Density and Pressure are plotted against an explicit reference solution. The results indicate well
resolved shock waves.
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further tests passed: 
convergence rate, 2D 
circular shock (from 
Kwatra et al.), 2D Gresho 
vortex test (new test, for 
Ma = 0.1 to 0.001)
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IMEX RK-Methods I

Consider the ODE initial value problem

ẏ(t) = F (y(t)) +G(y(t)), y(0) = y0, (1)

where the vector fields F and G have different stiffness properties.
An s-stage Runge–Kutta method characterized by coefficient matrices A =

(ai,j) and Ã = (ãi,j) defines one step yold → ynew by

yi = yold +∆t
s�

j=1

ai,jF (yj) +∆t
s�

j=1

ãi,jG(yj), i = 1, . . . , s, (2)

ynew = yold +∆t
s�

j=1

bjF (yj) +∆t
s�

j=1

b̃jG(yj). (3)

If ai,j = 0 for j ≥ i, the method is called an implicit–explicit (IMEX) method.

Definition of IMEX RK-Methods

(following Kupka et al. (2012), JCP 231, 3561)
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IMEX RK-Methods II
Strong Stability Preserving (SSP) property:

– monotonicity:   |u(t)| ⩽ |u(t0)|                         ∀  t ⩾ t0 with |.| some (semi-)norm
– contractivity:    |u(t)-v(t)| ⩽ |u(t0)-v(t0)|           ∀  t ⩾ t0
– boundedness: m ⩽ u(t) ⩽ M, if m ⩽ u(t0) ⩽ M  ∀  t ⩾ t0

(special cases: m = 0  ➔	  positivity, likewise: |u(t)| ⩽ M ∀  t ⩾ t0)
– monotonicity u(t) with respect to v(t): u(t) ⩽ v(t), if u(t0) ⩽ v(t0)  ∀  t ⩾ t0

Preserve these using SSP schemes for ODEs:
– if the exact solution is monotonic ➔ also require the same from RK scheme !
– numerical monotonicity: strong stability means |Uni| ⩽ |un|  for any stage i and 

internal stage solution Uni computed at time tn and also |un+1| ⩽ |un|
➔ radius of absolute monotonicity (Kraaijevanger 1991)	 ➔ restricts step size

– reformulate RK schemes (Shu & Osher 1988) ➔ if for a spatial discretization 
the Euler forward scheme is strongly stable, then an RK scheme is strongly 
stable, too (for any scheme: usually only under step size restrictions)
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IMEX RK-Methods III
Higueras (2006) develops a comprehensive theory of strong stability pre-

serving additive Runge–Kutta schemes which extends the concepts for standard

Runge–Kutta methods in a natural way:

Let τ, τ̃ be the step-size restrictions for monotonicity of the explicit Euler

method for the vector fields F and G, respectively. We define the region of
absolute monotonicity

R(A, Ã) = {(r, r̃) ∈ R2
: (A, Ã) is absolutely monotonous on [−r, 0]× [−r̃, 0]},

where the absolute monotonicity at a point (r0, r̃0) is characterized by alge-

braic relations for the matrices A, Ã. The boundary in the first quadrant,

∂R(A, Ã) ∩ {(r, r̃) : r, r̃ ≥ 0}, is denoted as the curve of absolute monotonicity.
The significance of the region R(A, Ã) is expressed in the following theorem.

Theorem 1.1 Let (A, Ã) be absolutely monotonous at (−r,−r̃) with step-size
coefficients τ, τ̃ . Then for h ≤ min {rτ, r̃τ̃}, diminishing of the norm holds,

�yi� ≤ �yold�, i = 1, . . . , s, �ynew� ≤ �yold�.
(from Kupka et al. (2012), JCP 231, 3561)
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IMEX RK-Methods IV

Pareschi & Russo (2005) give an IMEX SSP2(2,2,2) method with nontrivial

region of absolute monotonicity (γ = 1− 1√
2
):

0 0 0

1 1 0

A 1
2

1
2

γ γ 0

1− γ 1− 2γ γ

Ã 1
2

1
2

. (6)

The coefficients imply R(A) = 1, R(Ã) = 1 +
√
2, and

R(A, Ã) = {(r, r̃) : 0 ≤ r ≤ 1, 0 ≤ r̃ ≤
√
2(1− r)},

see Higueras (2006).

(from Kupka et al. (2012), JCP 231, 3561)
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IMEX RK-Methods V
Higueras (2006) gives an IMEX SSP2(3,3,2) method with nontrivial region

of absolute monotonicity:

0 0 0 0

1
2

1
2 0 0

1
1
2

1
2 0

A 1
3

1
3

1
3

1
5

1
5 0 0

3
10

1
10

1
5 0

1
1
3

1
3

1
3

Ã 1
3

1
3

1
3

(8)

This is a modification of a scheme from Pareschi & Russo (2005), where the

latter turned out to have a trivial region of absolute monotonicity. It holds that

R(A) = 2 and R(Ã) =
5
9 (
√
70− 4), and

R(A, Ã) = {(r, r̃) : 0 ≤ r ≤ 1, 0 ≤ r̃ ≤ φ(r)},

where

φ(r) =

�
1

4
(−28 + 9r) +

1

4

�
1264− 984r + 201r2

�
.

We note that the latter is a correction with respect to Higueras (2006), since we

have found r to be necessarily bound by 1 in R(A, Ã).

(from Kupka et al. (2012), JCP 231, 3561)
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Applications I
Simulations of Double-Diffusive Convection

– simulation of semiconvection (based on two-species NSE)
• 400 × 400 points, Cartesian grid, horizontally periodic, DNS
• compressible, Kwatra's method to deal with ∇p terms
• time-steps: 24,000 to 300,000; ~ 6 hours @ 64 MPI-processes; 3 GB per run

– using the ANTARES code (Muthsam et al. (2010), New Astronomy 15, 460)
• default method: conservative 5th order WENO (also with Marquina flux splitting)
• parabolic terms consistent with WENO (Happenhofer et al. (2013), JCP 236, 96)
• 1D, 2D, 3D and various grids (Cartesian, co-moving polar, curvi-linear in prep.)
• optional: grid refinement, DNS/iLES/LES, radiative transfer, MHD mode
• various open and closed boundary conditions, one- and two-component fluids
• flexible microphysics modules, compressible or Boussinesq approximation
• hybrid parallelization (MPI, optionally OpenMP), modular Fortran95, parallel I/O
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Applications II

Semiconvection in a compressible layer: explicit vs. semi-implicit time integration.
Computations: N. Happenhofer @ VSC1 (from Kupka et al. 2012, JCP 231, 3561).



Improved Time IntegrationASTRONUM 2013, Biarritz, 4 July 2013
18

Applications IIIAuthor's personal copy

for each case. For the IMEX SSP2(2,2,2) method both the results for the standard choice of c ¼ 1" 1=
ffiffiffi
2

p
and the best per-

forming value of 0.24 are displayed. We also show the normalized root mean square differences between the reference solu-
tion and the SSP second order explicit methods computed with their standard CFL number given in Table 8.

Fig. 10. Time-step evolution over 200 scrt in Simulation 1 (see text for definitions). Pictures (a) and (b) compare the time-step Dt of the second order
schemes whereas (c) shows the evolution of Dt using SSPRK(3,3) and IMEX SSP3(3,3,3).

3576 F. Kupka et al. / Journal of Computational Physics 231 (2012) 3561–3586

Time step size as a
function of scrt for the
case Pr = 0.1

from Kupka et al. 2012, 
JCP 231, 3561 
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Applications IV
Simulations of pulsating Cepheids

– preparing 2D and 3D simulations first consider 1D case:
convection-pulsation interacton neglected

– for details on 2D models with explicit time integration see Mundprecht et al. 
(2013) (submitted to MNRAS, for a preprint see arXiv:1209.2952)

– Cepheid model parameters:
• Teff = 5125 K, log(g) ~ 1.97, M = 5 M⊙, R ~ 38.5 R⊙, L ~ 913 L⊙, 

X = 0.7, Y = 0.29, Z = 0.01, P = 3.85 d, first overtone (1O)
• outer 42% of R, vertical grid spacing: 0.47 Mm ... 124 Mm

(modelling only the outer 42%  ➔  implies P somewhat too short) 

– 1D models: are used to create initial state for the 2D simulations
• also assume spherical geometry
• radially stretched grid co-moving with mean pulsation velocity
• closed boundary conditions
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Applications V

. . . . . .

The ANTARES Code
IMEX Methods and the Cepheid Model

.. First Results: 1D Deep Cepheid Model

Simulation Details: 454 grid points, q=1.007
Dirichlet boundary conditions
Temperature range: 34000 K - 320 000 K
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Figure: Comparison of x-Momentum at T=1 scrt.

Natalie Happenhofer Efficient Time Integration(courtesy of N. Happenhofer)
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Applications VI

. . . . . .

The ANTARES Code
IMEX Methods and the Cepheid Model

.. First Results: 1D Deep Cepheid Model
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Figure: Timestep evolution with different time integrators.

Natalie Happenhofer Efficient Time Integration
(courtesy of N. Happenhofer)
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Applications VII

. . . . . .

The ANTARES Code
IMEX Methods and the Cepheid Model

.. First Results: 1D Deep Cepheid Model

1D Deep Cepheid Model
∆tmean

∆t
∆tSSPRK(2,2)

∆t
∆tSSPRK(3,2)

WCT

SSPRK(2,2) 0.62 s 1 0.28 6:17:35
SSPRK(3,2) 2.21 s 3.56 1 02:29:31

IMEX SSP2(2,2,2) 63.1 s 101.8 18.6 00:13:10
γ = 0.24

IMEX SSP2(3,3,2) 63.1 s 101.8 18.6 00:16:18

Table: Numerical Results

new IMEX-EWMS methods perform as IMEX SSP2(3,3,2)

Natalie Happenhofer Efficient Time Integration

(courtesy of N. Happenhofer)
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Applications VIII
Is the SSP property really needed for such flows?

– case of semiconvection simulations (400 × 400 points)
• Kennedy & Carpenter (2003), Appl. Num. Math. 44, 139: ARK3(2)4L[2]SA method

– fails at CFLstart used for IMEX-RK SSP schemes (after 78 time steps)
– even after 10 scrt never permits to exceed CFL values of explicit schemes !
– explicitly designed for such systems (L-stable, stiffly accurate, but non-SSP)

• original Pareschi & Russo, J. Sci. Comp. 25, 129 (2005)) SSP2(3,3,2) scheme
– at orginal resolution works (SSP in an asymptotic sense: stiffness ➔ infinity)
– at 100 x 100 points resolution: works during the diffusive phase, fails during 

the advective phase (Δt ➔ 0 at 113 scrt) (no problem for true SSP schemes)
– case of solar surface convection (2D model with 219 × 159 points) 

• the explicit, non-SSP 3rd order RK method by Heun: found to fail after 9.2 scrt 
while the SSPRK(3,3) method by Fehlberg (1970) (= TVD3) works for ⩾ 20 scrt

–  Cylindrical MHD explosion test (poster by Aloy et al. at this conference):
• only modified SSP2(3,3,2) scheme works with MCL limiter in the test
• 3 to 4 time larger time step than original scheme in shock-tube test
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New SSP IMEX RK-Methods I
Motivations for further improvements
– Degrees of freedom of RK scheme can be used to fulfil many properties 

simultaneously instead of just maximizing the region of absolute monotonicity !
– Suggested (Higueras et al. 2013 to be submitted, see ASC Report 14/2012):

1. Overall scheme: second order in time. The error constant should be small. (p=2 O.K., 
if accuracy is limited by spatial resolution ➔ third order in time not that important).

2. IMEX scheme should be SSP and have a large region of absolute monotonicty  
(Higueras 2006, 2009) ➔  both the explicit and the implicit schemes must be SSP. 
The Kraaijevanger radius of each of them should be large, too.

3. The stability function of the implicit scheme should tend to zero at infinitiy, its stability 
region containing a large subinterval of the negative real axis. Ensured by L-stability.

4. For both schemes, the stability function g should be nonnegative for a large interval 
of the negative real axis (related to step-size restrictions due to the dissipativity of the 
spatial discretization). Prevents spurious oscillations of the numerical solution.

Properties 3 & 4 are guided by exact solutions of the heat equation !
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New SSP IMEX RK-Methods II
– Further design goals of optimization:

5. Ensure uniform convergence (to guarantee higher than first order convergence for
arbitrarily stiff terms, see Boscarino (2008), SIAM J. Num. Analysis 45, 1600).

6. For the explicit scheme, the stability region should a) contain large subintervals of 
the negative real axis, [-z, 0] with z > 0, and b) also of the imaginary axis, [-w i,  w i] 
with w > 0. The latter requirement is associated with a stable integration of the 
hyperbolic advection terms (see Motamed et al. 2009, Wang & Spiteri (2007)).

7. The region of absolute stability of the combined IMEX scheme should be large.
8. For a convenient and memory-efficient implementation, the coefficients of the 

scheme should be rational numbers which (recombine the stages in a suitable way).
– Optimize only of the coefficients of the implicit scheme ?

9. Use optimal second order three stage method by Kraaijevanger (1991), the 
SSPRK(3,2) method, as explicit method and abandon requirement 6b) from above.

–  Possibly consider additional optimizations, if sufficient degrees of freedom 
 are still available ...



Improved Time IntegrationASTRONUM 2013, Biarritz, 4 July 2013
26

New SSP IMEX RK-Methods III
We give the coefficients of the IMEX scheme obtained from our earlier con-

siderations, that is

0 0 0 0
5
6

5
6 0 0

11
12

11
24

11
24 0

A 24
55

1
5

4
11

2
11

2
11 0 0

289
462

205
462

2
11 0

751
924

2033
4620

21
110

2
11

Ã 24
55

1
5

4
11

(22)

and summarize its properties.
This is a second order IMEX scheme such that the implicit method is L–

stable. The stability functions for the explicit and implicit schemes are

RA(z) = 1 + z +
z2

2
+

5

36
z3 , RÃ(z) =

11
�
13 z2 + 110 z + 242

�

2 (11− 2 z)3
. (23)

(see ASC Report 14/2012 and Higueras et al. (2013) to be submitted)
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New SSP IMEX RK-Methods IV
Optimized IMEX Methods for Simulations in Astrophysics 15
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Fig. 3.5. Stability region and a zoom of the stability region of the explicit scheme in (3.30)

(top) and the implicit scheme in (3.30) (bottom).

Fig. 3.6. For IMEX (3.30): stability region (right), a zoom of the region at the origin (center)
and region of absolute monotonicity (right).

In Figure 3.5, we show the stability regions for the explicit and the implicit schemes
in (3.30), as well as a zoom of the region in a neighborhood of the origin. In Figure
3.6, we show the stability region of the IMEX scheme and a zoom of the region at the
origin.

For the explicit scheme, we obtain R(z) ≥ 0 for z ∈ [−1.81803, 0], and |R(z)| ≤ 1
for z ∈ [−2.84745, 0]. Furthermore, |R(iw)| ≤ 1 for w ∈ [−1.2, 1.2].

For the implicit scheme, R(z) ≥ 0 and |R(z)| ≤ 1 for z ≤ 0. Furthermore,
|R(iw)| ≤ 1 for w ∈ R.

This IMEX method satisfies condition (2.4) for uniform convergence.

With regard to the radius of absolute monotonicity, for linear problems we have

(see ASC Report 14/2012 and Higueras et al. (2013) to be submitted)
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New SSP IMEX RK-Methods V

Due to the properties listed above, we will refer to to this scheme as SSP2(3,3,2)–
LSPUM, where the letters have the following meanings:

’L’: L–stable;
’S’: the stability region for the explicit part contains an interval

on the imaginary axis;
’P’: the amplification factor g is always positive;
’U’: the IMEX method features uniform convergence (21);
’M’: the IMEX method has a nontrivial region of absolute monotonicity.

(24)

Optimized IMEX Methods for Simulations in Astrophysics 15

Fig. 3.5. Stability region and a zoom of the stability region of the explicit scheme in (3.30)

(top) and the implicit scheme in (3.30) (bottom).
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Fig. 3.6. For IMEX (3.30): stability region (right), a zoom of the region at the origin (center)
and region of absolute monotonicity (right).

In Figure 3.5, we show the stability regions for the explicit and the implicit schemes
in (3.30), as well as a zoom of the region in a neighborhood of the origin. In Figure
3.6, we show the stability region of the IMEX scheme and a zoom of the region at the
origin.

For the explicit scheme, we obtain R(z) ≥ 0 for z ∈ [−1.81803, 0], and |R(z)| ≤ 1
for z ∈ [−2.84745, 0]. Furthermore, |R(iw)| ≤ 1 for w ∈ [−1.2, 1.2].

For the implicit scheme, R(z) ≥ 0 and |R(z)| ≤ 1 for z ≤ 0. Furthermore,
|R(iw)| ≤ 1 for w ∈ R.

This IMEX method satisfies condition (2.4) for uniform convergence.

With regard to the radius of absolute monotonicity, for linear problems we have
(see ASC Report 14/2012 and Higueras et al. (2013) to be submitted)
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New SSP IMEX RK-Methods VI
IMEX method based on the explicit SSP(3,2) scheme with uniform conver-

gence: in this case, the IMEX scheme obtained by imposing (21) is given by the
coefficient tableaux
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2
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42
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2
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Ã 1
3

1
3

1
3

(25)

Due to its properties, we refer to method as SSP2(3,3,2)–LPUM.
Optimized IMEX Methods for Simulations in Astrophysics 17
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Fig. 4.1. For the IMEX method (4.2): Left: Stability region; center: zoom of the stability
region; right: region of absolute monotonicity.

2. In the second one, we optimize the radius of absolute monotonicity of the
SDIRK scheme, see §4.2.

3. In the third one, we optimize the region of absolute monotonicity of the IMEX
scheme, see §4.3.

4.1. IMEX method with uniform convergence (2.4). In this case, the
IMEX scheme obtained by imposing (2.4) is given by the coefficient tableaux
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Ã 1
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3
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3

(4.2)

This method satisfies condition (2.4) for uniform convergence. Note that (3.23) must
not be reused to derive (4.2), because (3.23) has been derived assuming (3.10) where
b2 = 1/5 instead of b2 = 1/3.

Recalling (3.2) and (3.3), the stability function for the explicit scheme is

RA(z) = 1 + z +
1

2
z2 +

1

12
z3 , (4.3)

whereas for the implicit scheme it is given by RÃ(z) in (3.31), since it depends only
on γ (see (3.15)).

For linear problems, the radius of absolute monotonicity for the explicit scheme
is RLin(A) = 2, whereas for the implicit scheme RLin(Ã) is given by (3.32). For
nonlinear problems, the explicit scheme is the optimal second order 3–stage explicit
SSP method and thus R(A) = 2; for the implicit method, from (2.5), we get

R(Ã) = 1694

275 +
√
74701

≈ 3.08947 .

For the IMEX scheme,

R(A, Ã) =
�
(r1, r2) ∈ R2 : 0 ≤ r1 <

1
24

�
308− 117 r1 −

√
37

�
213 r21 − 1320 r1 + 1936

��
.

The points (0, 1.6816) and (2, 0) are included in the region of absolute monotonic-
ity R(A, Ã). In Figure 4.1 we show the stability region and the region of absolute

(see ASC Report 14/2012 and Higueras et al. (2013) to be submitted)
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Fig. 5.1. Simulation A: Time–step evolution with time integrator IMEX SSP1(1,1,1)–LPM.
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Fig. 5.2. Simulation A: Time–step evolution over the entire 200 scrt.

The parameters are Pr = 0.05, Le = 0.05, Ra∗ = 1.6 ∗ 10
5
, Rρ = 1.15. The

resolution is 400x400 grid points. The simulations were run on the VSC 2 on 64 cores.

For better comparison, we also tested the best performing scheme IMEX SSP2(3,3,2)–

LUM from [21] (see (7.3)).

Note that for stability reasons, the adaptive time–step–criterion of [21] was slightly

modified. In Simulation A the time–step was readjusted at the occurence of ny ∗ 0.1
two–point oscillations (ny denoting the number of grid points in the horizontal direc-

tion), and, to permit the system to readjust itself, no modifications on the time–step

were allowed in the subsequent 15 time–steps. However, for Simulation B, this cri-

terion was chosen to be more restrictive, namely, the time–step is diminished at the

occurence of ny ∗ 0.05 two–point instabilities and if the system has not adjusted itself

after 8 time–steps, the time–step is further reduced.

In Table 5.2 we show the time–steps, the CFL–numbers, and wallclocktimes over

the first 80 scrt.

Figure 5.3 compares the time–step evolution of the different time integration

case with Pr = 0.1

LUM-scheme is 
previously best method:
modified SSP2(3,3,2)

(see ASC Report 14/2012 and Higueras et al. (2013) to be submitted)

case with Pr = 0.1

failure of Euler forward-
backward scheme, i.e.
IMEX SSP1(1,1,1)-LPM.
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Results II
case with Pr = 0.05

(based on pre-cond.
CG solver and Schur
complement, see
Happenhofer et al.
(2013), JCP 236, 96)

22 Higueras et al.

Method ∆tmax ∆tmean CFLmax CFLmean CFLstart Time

SSP2(3,3,2)–
103.19 s 60.53 s 5.54 3.25 0.5 02:07:28

LUM

SSP2(3,3,2)–
146.81 s 91.42 s 7.88 4.90 0.3 01:53:42

LSPUM

SSP2(3,3,2)–
176.51 s 106.62 s 9.48 5.73 0.4 01:48:47

LPUM
Table 5.2

Simulation B: Time–steps, CFL–numbers and wallclocktimes over the first 80 scrt.
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Fig. 5.3. Simulation B: Time–step evolution over the entire 200 scrt.

schemes whereas the Figures 5.4, 5.5, 5.6 show the time–step evolution of each simu-
lation in more detail.

According to [21], the time–step used is determined as

τdiff = min(τc, τT ) , ∆t = min(τdiff , τvisc, τfluid) .

In the present simulations, this criterion results in τdiff posing a lower bound and
τvisc posing an upper limit on τ . As soon as the fluid velocity is high enough to pose
a more severe restriction than τvisc, the simulation migrates from the diffusive phase
to the advective phase and τfluid replaces τvisc as an upper limit on τ .

5.3. Resolution Test. Due to the fact that the upper limit set by τvisc is not
reached in Simulation B, we perform a resolution test to determine whether this dis-
crepancy results from the inaccuracy of the spatial discretization. To this end, the first
20 scrt of Simulation B are run with a resolution of 200x200, 400x400, 800x800, and
1600x1600 grid points. Table 5.3 compares the observed Courant numbers. Indeed,
the Courant numbers appear to display some trend as the resolution improves.

5.4. Summary of numerical tests. Simulation A shows that the schemes
SSP2(3,3,2)–LSPUM and SSP2(3,3,2)–LPUM, which are constructed so as to per-
mit the highest possible time–step in the diffusive regime, are not only competitive to
the schemes of [21] but in particular enable to reach the highest CFL numbers. Espe-
cially IMEX SSP2(3,3,2)–LPUM achieves a mean CFL number of 4.18, which is about

24 Higueras et al.

Fig. 5.6. Simulation B: Time–step evolution with time integrator IMEX SSP2(3,3,2)–LPUM
and CFLstart = 0.4.

SSP2(3,3,2)–LSPUM (3.30)

Resolution CFLmn CFLmax

200x200 1.27 4.55

400x400 4.90 7.88

800x800 5.00 8.56

1600x1600 5.09 8.23

SSP2(3,3,2)–LPUM (4.2)

Resolution CFLmn CFLmax

200x200 1.27 4.55

400x400 5.73 9.48

800x800 5.71 10.27

1600x1600 6.47 10.19

Table 5.3
Resolution Test for Simulation B. Left: SSP2(3,3,2)–LSPUM method (3.30). Right:

SSP2(3,3,2)–LPUM method (4.2).

namely, they amount to about 8% in Simulation A (71.63 s vs. 77.79 s) and to about

16% (91.42 s vs. 106.62 s) in Simulation B. But, as soon as the simulation reaches

the advective phase, the disadvantage of a smaller CFLstart is quite obvious. Our

experiments show that although the time–step in the diffusive phase is significantly

larger, in the advective phase the calculation is slowed down such that there is almost

no benefit from the new time integration schemes in this kind of setting as far as

computation time is concerned. The new schemes would in turn be clearly favored for

problems where the restriction in time stepping is mostly or exclusively due to τdiff
during the entire simulation time.

It is interesting to note that, although there are almost no differences in the spec-

ifications of SSP2(3,3,2)–LPUM, and SSP2(3,3,2)–LPM as far as zeros of the stability

function, radii of absolute monotonicity etc. are concerned, the SSP2(3,3,2)–LPM

scheme performs considerably worse than SSP2(3,3,2)–LPUM. The crucial deficiency

in this context seems to be the property of uniform convergence, which SSP2(3,3,2)–

LPUM possesses and SSP2(3,3,2)–LPM lacks.

6. Conclusions. We have constructed and analyzed IMEX Runge–Kutta meth-

ods which, in addition to being strong stability preserving, have properties which

increase their performance for the time integration of models of flow and radiative

transfer in astrophysics. We show that this increase in performance can also be ob-

tained in practice by a set of simulations in the parameter regime commonly associated

(data from Higueras et al., 
ASC Report 14/2012)
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Results III

again a case with Pr = Le = 0.05, 429 × 428 points, 
VSC-1 @ 64 CPUs but this time based on parallel multigrid 
solver (see Higueras et al. (2013), to be submitted)

Method ∆tmax ∆tmean CFLmax CFLmean CFLstart Time

SSP2(2,2,2)–
26.02 s 15.02 s 1.22 0.7 0.5 01:55:47

PM, γ=0.24 (53)

SSP2(3,3,2)–
79.60 s 48.33 s 3.7 2.24 0.4 00:51:58

LUM (54)

SSP2(3,3,2)–
125.14 s 75.53 s 5.8 3.5 0.3 00:45:17

LSPUM (15)

SSP2(3,3,2)–
179.54 s 86.79 s 8.31 4.02 0.3 00:31:16

LPUM (18)

SSP2(3,3,2)–
58.57 s 38.51 s 2.71 1.8 0.3 00:57:23

LPM (21)

SSP1(1,1,1)–
15.33 s 1.15 s 0.71 0.053 0.05 9:36:12

LPM (52)

Table 2: Simulation of double-diffusive convection: Time–steps, CFL–numbers and wallclock-
times over the first 80 scrt.

(14), we will refer to these methods as SSP1(1,1,1)–LPM, SSP2(2,2,2)–PM, and
SSP2(3,3,2)–LUM.

In Table 2 we show the time–steps, CFL–numbers and wallclocktimes over
the first 80 scrt. For IMEX SSP1(1,1,1)–LPM (52), the time–steps observed in
the course of the simulation are shown in Figure 7.

Figure 7: Simulation of double-diffusive convection: Time–step evolution with time integrator
IMEX SSP1(1,1,1)–LPM (52).

Figure 8 compares the time–step evolution of the different time integration
schemes whereas the Figures 9, 10, 11 and 12 show the time–step evolution of
each simulation in more detail.

16
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