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The MHD equations
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p, pu, and & are the total mass, momentum, and energy
densities of the plasma system, and B is the magnetic field
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where v = 5/3 is the ideal gas constant



The MHD equations

The equation for the magnetic field comes from Faraday’s law:
0B+V xE =0,

where the electric field, E, is approximated by Ohm’s law for a
perfect conductor:
E=B xu.

O0B+Vx(Bxu)=0B+V:-(uB—-Bu)=0

Since the electric field is determined entirely from Ohm’s law, we do not
require an evolution equation for it; and thus, the only other piece that we
need from Maxwell’s equations is the divergence-free condition on the
magnetic field.



The MHD equations

Remark: If V- B = 0 is true at some time ¢t = T, then the
evolution equation guarantees that V - B = 0 is true for all time.

(take the divergence of Faraday’s law)

For this reason V - B = 0 should not be regarded as
constrained (such as V - u = 0 for the Navier-Stokes equation),
but rather an involution.



Outline of the talk

Discretization of V- B = 0:

¢ Projection methods and divergence cleaning methods

e Constrained transport methods

Numerical difficulties:

e weak hyperbolicity of the magnetic vector potential equation
¢ limiting of the magnetic potential



Discretization of V-B =0

Constrained transport:
Evans and Hawley, 1988
step 1. take a time step using some finite volume method which
produces cell average values (p"+!, pu™t! &7l B*)

step 2: Using the ideal Ohm'’s law relationship, E = B x u, and
some space and time interpolation scheme for B and u,
reconstruct a space and time staggered electric field value
E" s

step 3: compute the corrected magnetic field value

B"tl — B" — AtV x B2



Alternative formulation of step 3:

step 1: take a time step using some finite volume method which
produces cell average values (p"*!, pu™t! £l B*)

step 2: Using the ideal Ohm'’s law relationship, E = B x u, and
some space and time interpolation scheme for B and u,
reconstruct a space and time staggered electric field value
E"ts
step 3a: Produce the magnetic potential value, A"*!, from the
induction equation written in potential form

A"l — A" _ AtE"T2

step 3b: Compute
Bn+1 v % An+1



Unstaggered Constrained transport methods

Consider the induction equation
B:+Vx(Bxu)=0

and assume for the moment that u is a given vector valued
function.
Set B =V x A to obtain

VX (Ai+(VxA)xu) =0
= A+ (VXA)xu=-Vy¢
where 1 is an arbitrary scalar function.

Different choices of ¢ represent different gauge condition
choices.



Unstaggered Constrained transport methods

A+ (VXxA)xu=-Vy

The 2d case (e.g., in the z-y plane) is much simpler:

The only component of A that influences the evolution is A3
(i.e., the component of the potential that is perpendicular to the
evolution plane).

All gauge choices lead to the same equation:

AP+ ut A3+ uzAf/ =0

Ref.: Rossmanith, SISC 2006



The Weyl gauge: v =0

A+ (VxA)xu=0

which can be written in the form

A+ Nl(u)Agg + NQ(H)Ay + Ng(u)Az =0




The Weyl gauge

Flux Jacobian in direction n € S2

n2u? + n3u —ntu? —nlyd
n'Ny + n?Ny +niNy = —n2ul nlul + ndud —n2y3
—n3ul —n3u? nlul + n2u?

eigenvalues and eigenvectors:

)\:{O,n-u,n~u}

nt n?u® — n3u? ul (u-n) —ntful?
R=[rM|r® r(?’)] = |n* ndul—n'v®  u?(u-n)—n?ul?
n3 ntu? — n2ul v (u-n) —n3||ul?

for |lul| # 0, n € S? we get
det(R) = —|Ju||® cos(a) sin*(a),
where « is the angle between the vectors n and u

= The system is weakly hyperbolic.



Example of a weakly hyperbolic system
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Exact solution for the Cauchy problem for all &:

m _ [uo(x+et) — & {vo(z +et) —m(x—et)}} ,

v vo(x — et)

In the weakly hyperbolic limit we obtain:

. H _ [uo(x) - wgm] |

e—=0 |V Vo (:I,‘)

i.e. the amplitude of the solution grows linearly in time.



Discretization of the vector potential equation

We have constructed methods for the weakly hyperbolic vector
potential equation which are based on

e An operator splitting approach
e The idea of path conservative methods



Operator splitting

First splitting approach:

Sub-problem 1: A} +u’A, +u’Al =0,
A? - ulAzlJ =0,
A} —u'Al =0,

Sub-problem 2: Al —u?A2 =0,
A? +utA2 4+ uPAZ =0,
A} —u?A? =0,

Sub-problem 3: A} —u*A3 =0,
A7 —uPAY =0,
A+ ulAi’, +u*A3 =0.



Operator splitting

Second splitting approach:

Sub-problem 1. A} —u?AZ —w3A3 =0,
A7 +u'AZ =0,
A +u'AT =0,

Sub-problem 2: A} +u’A, =0,
A7 —u'A) —uPA) =0,
A+ UQAZ% =0,

Sub-problem 3: A} +u?Al =0,
A7 +u’A2 =0,
Al —u'Al —uPAZ = 0.



The 2.5 dimensional problem - a useful test

u, B € R3, but all conserved quantities are functions of two
spatial variables x = (z, ).

1st approach: update A® as in 2d case and set B! = A?,
B? = —A3; use B3 from the base scheme;
2nd approach: solve
Al —u?AZ — A + WA =0,
A7 +u'AL —u'AL —uPAY =0,
A} +u'AS +uPAS =0.

and update B! = A3, B2 = —A3, B> = A2 — A}



Test computations: cloud-shock interaction

(@) (b)

Figure: The 2.5-dimensional cloud-shock interaction problem. Shown
here are the out-of-plane magnetic field at time ¢t = 0.06 as calculated
on a 512x512 mesh using (a) a 2d approach that only uses A2, and

(b) the proposed scheme using the full vector potential A.



Unsplit discretization of weakly hyperbolic system

Consider 1d weakly hyperbolic system

¢+ A(r)gz =0

g, A: piecewise polynomial reconstructions

gt ZZIimqi(l‘i7%+8), q
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Unsplit discretization of weakly hyperbolic system

Semi-discrete form of the method:
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Unsplit discretization of weakly hyperbolic system

Introduce a regularization of ¢ at each grid cell interface

%t : argxi_%—s,
CE
Qf_%( ( ) S (xi_% €, %1 —|—€)
q : rT>T,_1+E,
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Unsplit discretization of weakly hyperbolic system

Definition of the fluctuations using generalized Rusanov flux:
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Extension to 2d and 3d is straight forward.



Outline of the method using a MOL approach

Stage 1. Start with Q},;, and @, then update via:

Qg\ﬁm = Qhrup + At L1 (Qhrup)

QY = @l + At L2 Q4 Qi)
where QE}[&D = (pW, puM), 1) B(*)) and B! denotes the
predicted value of the magnetic field in the first Runge-Kutta
stage. The magnetic field components of QE&[*QID are then

corrected by V x Q(Al); we denote this result by
%D = (pM, pu®, g® BW),

Continue with Stage 2 and Stage 3.

3rd order accurate for smooth Alfvén wave problem.



Cloud-shock interaction problem

Density at time t=0.06




References

¢ J.A. Rossmanith, An unstaggered, high-resolution
constrained transport method for magnetohydrodynamic
flows, SISC, 28:1766-1797, 2006.

e C. Helzel, J.A. Rossmanith, B. Taetz, An unstaggered
constrained transport method for the 3d ideal
magnetohydrodynamic equations, JCP, 230:3803-3829,
2011.

e C. Helzel, J.A. Rossmanith, B. Taetz, A high-order
unstaggered constrained transport method for the 3d ideal
magnetohydrodynamic equations based on the method of
lines, SISC in press.



	Title page
	outline
	div B = 0
	constrained transport

