Constrained Transport Methods for the 3D Ideal Magnetohydrodynamic Equations

Christiane Helzel, James A. Rossmanith, Bertram Taetz

ASTRONUM 2013

The MHD equations

$$
\begin{array}{r}
\frac{\partial}{\partial t}\left[\begin{array}{c}
\rho \\
\rho \mathbf{u} \\
\mathcal{E} \\
\mathbf{B}
\end{array}\right]+\nabla \cdot\left[\begin{array}{c}
\rho \mathbf{u} \\
\rho \mathbf{u u}+\left(p+\frac{1}{2}\|\mathbf{B}\|^{2}\right) \mathbb{I}-\mathbf{B B} \\
\mathbf{u}\left(\mathcal{E}+p+\frac{1}{2}\|\mathbf{B}\|^{2}\right)-\mathbf{B}(\mathbf{u} \cdot \mathbf{B}) \\
\mathbf{u B}-\mathbf{B u}
\end{array}\right] \\
=0 \\
\nabla \cdot \mathbf{B}=0
\end{array}
$$

$\rho, \rho \mathbf{u}$, and \mathcal{E} are the total mass, momentum, and energy densities of the plasma system, and \mathbf{B} is the magnetic field

EOS:

$$
p=(\gamma-1)\left(\mathcal{E}-\frac{1}{2}\|\mathbf{B}\|^{2}-\frac{1}{2} \rho\|\mathbf{u}\|^{2}\right)
$$

where $\gamma=5 / 3$ is the ideal gas constant

The MHD equations

The equation for the magnetic field comes from Faraday's law:

$$
\partial_{t} \mathbf{B}+\nabla \times \mathbf{E}=0
$$

where the electric field, \mathbf{E}, is approximated by Ohm's law for a perfect conductor:

$$
\mathbf{E}=\mathbf{B} \times \mathbf{u}
$$

$$
\partial_{t} \mathbf{B}+\nabla \times(\mathbf{B} \times \mathbf{u})=\partial_{t} \mathbf{B}+\nabla \cdot(\mathbf{u B}-\mathbf{B u})=0
$$

Since the electric field is determined entirely from Ohm's law, we do not require an evolution equation for it; and thus, the only other piece that we need from Maxwell's equations is the divergence-free condition on the magnetic field.

The MHD equations

Remark: If $\nabla \cdot \mathbf{B}=0$ is true at some time $t=T$, then the evolution equation guarantees that $\nabla \cdot \mathbf{B}=0$ is true for all time.
(take the divergence of Faraday's law)

For this reason $\nabla \cdot \mathbf{B}=0$ should not be regarded as constrained (such as $\nabla \cdot \mathbf{u}=0$ for the Navier-Stokes equation), but rather an involution.

Outline of the talk

Discretization of $\nabla \cdot \mathbf{B}=0$:

- Projection methods and divergence cleaning methods
- Constrained transport methods

Numerical difficulties:

- weak hyperbolicity of the magnetic vector potential equation
- limiting of the magnetic potential

Discretization of $\nabla \cdot \mathbf{B}=0$

Constrained transport:

Evans and Hawley, 1988
step 1: take a time step using some finite volume method which produces cell average values $\left(\rho^{n+1}, \rho \mathbf{u}^{n+1}, \mathcal{E}^{n+1}, \mathbf{B}^{*}\right)$
step 2: Using the ideal Ohm's law relationship, $\mathbf{E}=\mathbf{B} \times \mathbf{u}$, and some space and time interpolation scheme for \mathbf{B} and \mathbf{u}, reconstruct a space and time staggered electric field value $\mathbf{E}^{n+\frac{1}{2}}$
step 3: compute the corrected magnetic field value

$$
\mathbf{B}^{n+1}=\mathbf{B}^{n}-\Delta t \nabla \times \mathbf{E}^{n+\frac{1}{2}}
$$

Discretization of $\nabla \cdot \mathbf{B}=0$

Alternative formulation of step 3:
step 1: take a time step using some finite volume method which produces cell average values $\left(\rho^{n+1}, \rho \mathbf{u}^{n+1}, \mathcal{E}^{n+1}, \mathbf{B}^{*}\right)$
step 2: Using the ideal Ohm's law relationship, $\mathbf{E}=\mathbf{B} \times \mathbf{u}$, and some space and time interpolation scheme for B and u, reconstruct a space and time staggered electric field value $\mathbf{E}^{n+\frac{1}{2}}$
step 3a: Produce the magnetic potential value, \mathbf{A}^{n+1}, from the induction equation written in potential form

$$
\mathbf{A}^{n+1}=\mathbf{A}^{n}-\Delta t \mathbf{E}^{n+\frac{1}{2}}
$$

step 3b: Compute

$$
\mathbf{B}^{n+1}=\nabla \times \mathbf{A}^{n+1}
$$

Unstaggered Constrained transport methods

Consider the induction equation

$$
\mathbf{B}_{t}+\nabla \times(\mathbf{B} \times \mathbf{u})=0
$$

and assume for the moment that \mathbf{u} is a given vector valued function.
Set $\mathbf{B}=\nabla \times \mathbf{A}$ to obtain

$$
\begin{aligned}
\nabla \times\left(\mathbf{A}_{t}+(\nabla \times \mathbf{A}) \times \mathbf{u}\right) & =0 \\
\Rightarrow \quad \mathbf{A}_{t}+(\nabla \times \mathbf{A}) \times \mathbf{u} & =-\nabla \psi
\end{aligned}
$$

where ψ is an arbitrary scalar function.
Different choices of ψ represent different gauge condition choices.

Unstaggered Constrained transport methods

$$
\mathbf{A}_{t}+(\nabla \times \mathbf{A}) \times \mathbf{u}=-\nabla \psi
$$

The 2d case (e.g., in the $x-y$ plane) is much simpler:
The only component of \mathbf{A} that influences the evolution is A^{3} (i.e., the component of the potential that is perpendicular to the evolution plane).
All gauge choices lead to the same equation:

$$
A_{t}^{3}+u^{1} A_{x}^{3}+u^{2} A_{y}^{3}=0
$$

Ref.: Rossmanith, SISC 2006

The Weyl gauge

The Weyl gauge: $\psi=0$

$$
\mathbf{A}_{t}+(\nabla \times \mathbf{A}) \times \mathbf{u}=\mathbf{0}
$$

which can be written in the form

$$
\mathbf{A}_{t}+N_{1}(\mathbf{u}) \mathbf{A}_{x}+N_{2}(\mathbf{u}) \mathbf{A}_{y}+N_{3}(\mathbf{u}) \mathbf{A}_{z}=\mathbf{0}
$$

$$
N_{1}=\left[\begin{array}{ccc}
0 & -u^{2} & -u^{3} \\
0 & u^{1} & 0 \\
0 & 0 & u^{1}
\end{array}\right], N_{2}=\left[\begin{array}{ccc}
u^{2} & 0 & 0 \\
-u^{1} & 0 & -u^{3} \\
0 & 0 & u^{2}
\end{array}\right], N_{3}=\left[\begin{array}{ccc}
u^{3} & 0 & 0 \\
0 & u^{3} & 0 \\
-u^{1} & -u^{2} & 0
\end{array}\right]
$$

The Weyl gauge

Flux Jacobian in direction $\mathbf{n} \in S^{2}$

$$
n^{1} N_{1}+n^{2} N_{2}+n^{3} N_{3}=\left[\begin{array}{ccc}
n^{2} u^{2}+n^{3} u^{3} & -n^{1} u^{2} & -n^{1} u^{3} \\
-n^{2} u^{1} & n^{1} u^{1}+n^{3} u^{3} & -n^{2} u^{3} \\
-n^{3} u^{1} & -n^{3} u^{2} & n^{1} u^{1}+n^{2} u^{2}
\end{array}\right]
$$

eigenvalues and eigenvectors:

$$
\lambda=\{0, \mathbf{n} \cdot \mathbf{u}, \mathbf{n} \cdot \mathbf{u}\}
$$

$R=\left[\mathbf{r}^{(1)}\left|\mathbf{r}^{(2)}\right| \mathbf{r}^{(3)}\right]=\left[\begin{array}{lll}n^{1} & n^{2} u^{3}-n^{3} u^{2} & u^{1}(\mathbf{u} \cdot \mathbf{n})-n^{1}\|\mathbf{u}\|^{2} \\ n^{2} & n^{3} u^{1}-n^{1} u^{3} & u^{2}(\mathbf{u} \cdot \mathbf{n})-n^{2}\|\mathbf{u}\|^{2} \\ n^{3} & n^{1} u^{2}-n^{2} u^{1} & u^{3}(\mathbf{u} \cdot \mathbf{n})-n^{3}\|\mathbf{u}\|^{2}\end{array}\right]$
for $\|\mathbf{u}\| \neq 0, \mathbf{n} \in S^{2}$ we get

$$
\operatorname{det}(R)=-\|\mathbf{u}\|^{3} \cos (\alpha) \sin ^{2}(\alpha)
$$

where α is the angle between the vectors \mathbf{n} and \mathbf{u}
$\Rightarrow \quad$ The system is weakly hyperbolic.

Example of a weakly hyperbolic system

$$
\begin{gathered}
{\left[\begin{array}{l}
u \\
v
\end{array}\right]_{t}+\left[\begin{array}{cc}
-\varepsilon & 1 \\
0 & \varepsilon
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]_{x}=0, \quad \varepsilon \in \mathbb{R}} \\
{\left[\begin{array}{cc}
-\varepsilon & 1 \\
0 & \varepsilon
\end{array}\right]=R \Lambda R^{-1}=\left[\begin{array}{cc}
1 & 1 \\
0 & 2 \varepsilon
\end{array}\right] \cdot\left[\begin{array}{cc}
-\varepsilon & 0 \\
0 & \varepsilon
\end{array}\right] \cdot \frac{1}{2 \varepsilon}\left[\begin{array}{cc}
2 \varepsilon & -1 \\
0 & 1
\end{array}\right] .}
\end{gathered}
$$

Exact solution for the Cauchy problem for all ε :

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{c}
u_{0}(x+\varepsilon t)-\frac{1}{2 \varepsilon}\left\{v_{0}(x+\varepsilon t)-v_{0}(x-\varepsilon t)\right\} \\
v_{0}(x-\varepsilon t)
\end{array}\right]
$$

In the weakly hyperbolic limit we obtain:

$$
\lim _{\varepsilon \rightarrow 0}\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{c}
u_{0}(x)-t v_{0}^{\prime}(x) \\
v_{0}(x)
\end{array}\right]
$$

i.e. the amplitude of the solution grows linearly in time.

Discretization of the vector potential equation

We have constructed methods for the weakly hyperbolic vector potential equation which are based on

- An operator splitting approach
- The idea of path conservative methods

Operator splitting

First splitting approach:

Sub-problem 1: $\quad \mathbf{A}_{t}^{1}+u^{2} \mathbf{A}_{y}^{1}+u^{3} \mathbf{A}_{z}^{1}=0$,

$$
\begin{aligned}
& \mathbf{A}_{t}^{2}-u^{1} \mathbf{A}_{y}^{1}=0 \\
& \mathbf{A}_{t}^{3}-u^{1} \mathbf{A}_{z}^{1}=0
\end{aligned}
$$

Sub-problem 2: $\quad \mathbf{A}_{t}^{1}-u^{2} \mathbf{A}_{x}^{2}=0$,

$$
\begin{aligned}
& \mathbf{A}_{t}^{2}+u^{1} \mathbf{A}_{x}^{2}+u^{3} \mathbf{A}_{z}^{2}=0 \\
& \mathbf{A}_{t}^{3}-u^{2} \mathbf{A}_{z}^{2}=0
\end{aligned}
$$

Sub-problem 3: $\quad \mathbf{A}_{t}^{1}-u^{3} \mathbf{A}_{x}^{3}=0$,

$$
\begin{aligned}
& \mathbf{A}_{t}^{2}-u^{3} \mathbf{A}_{y}^{3}=0 \\
& \mathbf{A}_{t}^{3}+u^{1} \mathbf{A}_{y}^{3}+u^{2} \mathbf{A}_{x}^{3}=0
\end{aligned}
$$

Operator splitting

Second splitting approach:

Sub-problem 1: $\quad \mathbf{A}_{t}^{1}-u^{2} \mathbf{A}_{x}^{2}-u^{3} \mathbf{A}_{x}^{3}=0$,

$$
\begin{aligned}
& \mathbf{A}_{t}^{2}+u^{1} \mathbf{A}_{x}^{2}=0 \\
& \mathbf{A}_{t}^{3}+u^{1} \mathbf{A}_{x}^{3}=0
\end{aligned}
$$

Sub-problem 2: $\quad \mathbf{A}_{t}^{1}+u^{2} \mathbf{A}_{y}^{1}=0$,

$$
\begin{aligned}
& \mathbf{A}_{t}^{2}-u^{1} \mathbf{A}_{y}^{1}-u^{3} \mathbf{A}_{y}^{3}=0 \\
& \mathbf{A}_{t}^{3}+u^{2} \mathbf{A}_{y}^{3}=0
\end{aligned}
$$

Sub-problem 3: $\quad \mathbf{A}_{t}^{1}+u^{3} \mathbf{A}_{z}^{1}=0$,

$$
\begin{aligned}
& \mathbf{A}_{t}^{2}+u^{3} \mathbf{A}_{z}^{2}=0 \\
& \mathbf{A}_{t}^{3}-u^{1} \mathbf{A}_{z}^{1}-u^{2} \mathbf{A}_{z}^{2}=0
\end{aligned}
$$

The 2.5 dimensional problem - a useful test

$\mathbf{u}, \mathbf{B} \in \mathbb{R}^{3}$, but all conserved quantities are functions of two spatial variables $\mathbf{x}=(x, y)^{t}$.

1st approach: update \mathbf{A}^{3} as in 2d case and set $B^{1}=\mathbf{A}_{y}^{3}$, $B^{2}=-\mathbf{A}_{x}^{3}$; use B^{3} from the base scheme;
2nd approach: solve

$$
\begin{aligned}
\mathbf{A}_{t}^{1}-u^{2} \mathbf{A}_{x}^{2}-u^{3} \mathbf{A}_{x}^{3}+u^{2} \mathbf{A}_{y}^{1} & =0 \\
\mathbf{A}_{t}^{2}+u^{1} \mathbf{A}_{x}^{2}-u^{1} \mathbf{A}_{y}^{1}-u^{3} \mathbf{A}_{y}^{3} & =0 \\
\mathbf{A}_{t}^{3}+u^{1} \mathbf{A}_{x}^{3}+u^{2} \mathbf{A}_{y}^{3} & =0
\end{aligned}
$$

and update $B^{1}=\mathbf{A}_{y}^{3}, B^{2}=-\mathbf{A}_{x}^{3}, B^{3}=\mathbf{A}_{x}^{2}-\mathbf{A}_{y}^{1}$

Test computations: cloud-shock interaction

Figure: The 2.5-dimensional cloud-shock interaction problem. Shown here are the out-of-plane magnetic field at time $t=0.06$ as calculated on a 512×512 mesh using (a) a 2 d approach that only uses \mathbf{A}^{3}, and (b) the proposed scheme using the full vector potential \mathbf{A}.

Unsplit discretization of weakly hyperbolic system

Consider 1d weakly hyperbolic system

$$
q_{t}+A(x) q_{x}=0
$$

$\tilde{q}, \tilde{A}:$ piecewise polynomial reconstructions

$$
\begin{aligned}
q_{i-\frac{1}{2}}^{+} & :=\lim _{\varepsilon \rightarrow 0} \tilde{q}_{i}\left(x_{i-\frac{1}{2}}+\varepsilon\right), & q_{i+\frac{1}{2}}^{-}:=\lim _{\varepsilon \rightarrow 0} \tilde{q}_{i}\left(x_{i+\frac{1}{2}}-\varepsilon\right) \\
A_{i-\frac{1}{2}}^{+} & :=\lim _{\varepsilon \rightarrow 0} \tilde{A}_{i}\left(x_{i-\frac{1}{2}}+\varepsilon\right), & A_{i+\frac{1}{2}}^{-}:=\lim _{\varepsilon \rightarrow 0} \tilde{A}_{i}\left(x_{i+\frac{1}{2}}-\varepsilon\right)
\end{aligned}
$$

Unsplit discretization of weakly hyperbolic system

Semi-discrete form of the method:

$$
Q_{i}^{\prime}(t)=-\frac{1}{\Delta x}\left(\mathcal{A}^{-} \Delta q_{i+\frac{1}{2}}+\mathcal{A}^{+} \Delta q_{i-\frac{1}{2}}+\mathcal{A} \Delta q_{i}\right)
$$

with

$$
\begin{aligned}
\mathcal{A} \Delta q_{i} & :=\int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \tilde{A}_{i}(x)\left(\tilde{q}_{i}\right)_{x} d x \approx \lim _{\varepsilon \rightarrow 0} \int_{x_{i-\frac{1}{2}}+\varepsilon}^{x_{i+\frac{1}{2}}-\varepsilon} A(x) q_{x} d x \\
\mathcal{A}^{+} \Delta q_{i-\frac{1}{2}} & \approx \lim _{\varepsilon \rightarrow 0} \int_{x_{i-\frac{1}{2}}^{2}}^{x_{i-\frac{1}{2}}+\varepsilon} A(x) q_{x} d x \\
\mathcal{A}^{-} \Delta q_{i+\frac{1}{2}} & \approx \lim _{\varepsilon \rightarrow 0} \int_{x_{i+\frac{1}{2}}-\varepsilon}^{x_{i+\frac{1}{2}}} A(x) q_{x} d x
\end{aligned}
$$

Unsplit discretization of weakly hyperbolic system

Introduce a regularization of q at each grid cell interface
$q_{i-\frac{1}{2}}^{\varepsilon}(t, x)=\left\{\begin{array}{ccc}q_{i-\frac{1}{2}}^{-}(t) & : & x \leq x_{i-\frac{1}{2}}-\varepsilon, \\ \Psi_{i-\frac{1}{2}}\left(\frac{x-x_{i-\frac{1}{2}}+\varepsilon}{2 \varepsilon}, t\right) & : & x \in\left(x_{i-\frac{1}{2}}-\varepsilon, x_{i-\frac{1}{2}}+\epsilon\right), \\ q_{i-\frac{1}{2}}^{+}(t) & : & x \geq x_{i-\frac{1}{2}}+\varepsilon,\end{array}\right.$
straight-line path: $\Psi_{i-\frac{1}{2}}=q_{i-\frac{1}{2}}^{-}+s\left(q_{i-\frac{1}{2}}^{+}-q_{i-\frac{1}{2}}^{-}\right), s \in(0,1)$
leads to

$$
\mathcal{A}^{-} \Delta q_{i-\frac{1}{2}}+\mathcal{A}^{+} \Delta q_{i-\frac{1}{2}}=\left.A\right|_{\Psi_{i-\frac{1}{2}}}\left(q_{i-\frac{1}{2}}^{+}-q_{i-\frac{1}{2}}^{-}\right)
$$

with $\left.A\right|_{\Psi_{i-\frac{1}{2}}}:=\frac{1}{2} A_{i-\frac{1}{2}}^{-}+\frac{1}{2} A_{i-\frac{1}{2}}^{+}$

Unsplit discretization of weakly hyperbolic system

Definition of the fluctuations using generalized Rusanov flux:

$$
\mathcal{A}^{-} \Delta q_{i+1 / 2}=\frac{1}{2}\left[\left.A\right|_{\Psi_{i+1 / 2}}-\alpha_{i+1 / 2} \mathbb{I}\right]\left(q_{i+\frac{1}{2}}^{+}-q_{i+\frac{1}{2}}^{-}\right)
$$

and

$$
\mathcal{A}^{+} \Delta q_{i-1 / 2}=\frac{1}{2}\left[\left.A\right|_{\Psi_{i-1 / 2}}+\alpha_{i-1 / 2} \mathbb{I}\right]\left(q_{i-\frac{1}{2}}^{+}-q_{i-\frac{1}{2}}^{-}\right),
$$

with $\left|\lambda^{k}\right| \leq \alpha$, for $k=1, \ldots, m, \lambda^{k}$ is eigenvalue of $\left.A\right|_{\Psi}$

Extension to 2d and 3d is straight forward.

Outline of the method using a MOL approach

Stage 1. Start with $Q_{M H D}^{n}$ and Q_{A}^{n}, then update via:

$$
\begin{aligned}
Q_{M H D}^{(1 \star)} & =Q_{M H D}^{n}+\Delta t \mathcal{L}_{1}\left(Q_{M H D}^{n}\right), \\
Q_{A}^{(1)} & =Q_{A}^{n}+\Delta t \mathcal{L}_{2}\left(Q_{A}^{n}, Q_{M H D}^{n}\right),
\end{aligned}
$$

where $Q_{M H D}^{(1 *)}=\left(\rho^{(1)}, \rho \mathbf{u}^{(1)}, \mathcal{E}^{(1)}, \mathbf{B}^{(1 *)}\right)$ and $\mathbf{B}^{(1 *)}$ denotes the predicted value of the magnetic field in the first Runge-Kutta stage. The magnetic field components of $Q_{M H D}^{(1 *)}$ are then corrected by $\nabla \times Q_{A}^{(1)}$; we denote this result by
$Q_{M H D}^{(1)}=\left(\rho^{(1)}, \rho \mathbf{u}^{(1)}, \mathcal{E}^{(1)}, \mathbf{B}^{(1)}\right)$.
Continue with Stage 2 and Stage 3.
3rd order accurate for smooth Alfvén wave problem.

Cloud-shock interaction problem

Density at time $\mathrm{t}=0.06$

References

- J.A. Rossmanith, An unstaggered, high-resolution constrained transport method for magnetohydrodynamic flows, SISC, 28:1766-1797, 2006.
- C. Helzel, J.A. Rossmanith, B. Taetz, An unstaggered constrained transport method for the 3d ideal magnetohydrodynamic equations, JCP, 230:3803-3829, 2011.
- C. Helzel, J.A. Rossmanith, B. Taetz, A high-order unstaggered constrained transport method for the 3d ideal magnetohydrodynamic equations based on the method of lines, SISC in press.

