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The MHD equations
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ρ, ρu, and E are the total mass, momentum, and energy
densities of the plasma system, and B is the magnetic field

EOS:
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where γ = 5/3 is the ideal gas constant



The MHD equations

The equation for the magnetic field comes from Faraday’s law:

∂tB+∇×E = 0,

where the electric field, E, is approximated by Ohm’s law for a
perfect conductor:

E = B× u.

∂tB+∇× (B× u) = ∂tB+∇ · (uB−Bu) = 0

Since the electric field is determined entirely from Ohm’s law, we do not

require an evolution equation for it; and thus, the only other piece that we

need from Maxwell’s equations is the divergence-free condition on the

magnetic field.



The MHD equations

Remark: If ∇ ·B = 0 is true at some time t = T , then the
evolution equation guarantees that ∇ ·B = 0 is true for all time.

(take the divergence of Faraday’s law)

For this reason ∇ ·B = 0 should not be regarded as
constrained (such as ∇ · u = 0 for the Navier-Stokes equation),
but rather an involution.



Outline of the talk

Discretization of ∇ ·B = 0:

• Projection methods and divergence cleaning methods

• Constrained transport methods

Numerical difficulties:

• weak hyperbolicity of the magnetic vector potential equation
• limiting of the magnetic potential



Discretization of ∇ ·B = 0

Constrained transport:

Evans and Hawley, 1988

step 1: take a time step using some finite volume method which
produces cell average values (ρn+1, ρun+1, En+1,B∗)

step 2: Using the ideal Ohm’s law relationship, E = B× u, and
some space and time interpolation scheme for B and u,
reconstruct a space and time staggered electric field value
E

n+ 1

2

step 3: compute the corrected magnetic field value

B
n+1 = B

n −∆t∇×E
n+ 1

2



Discretization of ∇ ·B = 0

Alternative formulation of step 3:

step 1: take a time step using some finite volume method which
produces cell average values (ρn+1, ρun+1, En+1,B∗)

step 2: Using the ideal Ohm’s law relationship, E = B× u, and
some space and time interpolation scheme for B and u,
reconstruct a space and time staggered electric field value
E

n+ 1

2

step 3a: Produce the magnetic potential value, An+1, from the
induction equation written in potential form

A
n+1 = A

n −∆tEn+ 1

2

step 3b: Compute
B

n+1 = ∇×A
n+1



Unstaggered Constrained transport methods

Consider the induction equation

Bt +∇× (B× u) = 0

and assume for the moment that u is a given vector valued
function.
Set B = ∇×A to obtain

∇× (At + (∇×A)× u) = 0

⇒ At + (∇×A)× u = −∇ψ

where ψ is an arbitrary scalar function.
Different choices of ψ represent different gauge condition
choices.



Unstaggered Constrained transport methods

At + (∇×A)× u = −∇ψ

The 2d case (e.g., in the x-y plane) is much simpler:

The only component of A that influences the evolution is A3

(i.e., the component of the potential that is perpendicular to the
evolution plane).
All gauge choices lead to the same equation:

A3
t + u1A3

x + u2A3
y = 0

Ref.: Rossmanith, SISC 2006



The Weyl gauge

The Weyl gauge: ψ = 0

At + (∇×A)× u = 0

which can be written in the form

At +N1(u)Ax +N2(u)Ay +N3(u)Az = 0
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The Weyl gauge

Flux Jacobian in direction n ∈ S2

n1N1 + n2N2 + n3N3 =
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n2 n3u1 − n1u3 u2 (u · n)− n2‖u‖2

n3 n1u2 − n2u1 u3 (u · n)− n3‖u‖2





for ‖u‖ 6= 0, n ∈ S2 we get

det(R) = −‖u‖3 cos(α) sin2(α),

where α is the angle between the vectors n and u

⇒ The system is weakly hyperbolic.



Example of a weakly hyperbolic system

[

u
v

]

t

+

[

−ε 1
0 ε

] [

u
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]

x

= 0, ε ∈ R

[

−ε 1
0 ε

]

= RΛR−1 =

[

1 1
0 2ε

]

·

[

−ε 0
0 ε

]

·
1

2ε

[

2ε −1
0 1

]

.

Exact solution for the Cauchy problem for all ε:
[

u
v

]

=

[

u0(x+ εt)− 1
2ε

{

v0(x+ εt)− v0(x− εt)
}

v0(x− εt)

]

.

In the weakly hyperbolic limit we obtain:

lim
ε→0

[

u
v

]

=

[

u0(x)− t v′0(x)
v0(x)

]

,

i.e. the amplitude of the solution grows linearly in time.



Discretization of the vector potential equation

We have constructed methods for the weakly hyperbolic vector
potential equation which are based on

• An operator splitting approach

• The idea of path conservative methods



Operator splitting

First splitting approach:

Sub-problem 1: A
1
t + u2A1

y + u3A1
z = 0,

A
2
t − u1A1

y = 0,

A
3
t − u1A1

z = 0,

Sub-problem 2: A
1
t − u2A2

x = 0,

A
2
t + u1A2

x + u3A2
z = 0,

A
3
t − u2A2

z = 0,

Sub-problem 3: A
1
t − u3A3

x = 0,

A
2
t − u3A3

y = 0,

A
3
t + u1A3

y + u2A3
x = 0.



Operator splitting

Second splitting approach:

Sub-problem 1: A
1
t − u2A2

x − u3A3
x = 0,

A
2
t + u1A2

x = 0,

A
3
t + u1A3

x = 0,

Sub-problem 2: A
1
t + u2A1

y = 0,

A
2
t − u1A1

y − u3A3
y = 0,

A
3
t + u2A3

y = 0,

Sub-problem 3: A
1
t + u3A1

z = 0,

A
2
t + u3A2

z = 0,

A
3
t − u1A1

z − u2A2
z = 0.



The 2.5 dimensional problem - a useful test

u,B ∈ R
3, but all conserved quantities are functions of two

spatial variables x = (x, y)t.

1st approach: update A
3 as in 2d case and set B1 = A

3
y,

B2 = −A
3
x; use B3 from the base scheme;

2nd approach: solve

A
1
t − u2A2

x − u3A3
x + u2A1

y = 0,

A
2
t + u1A2

x − u1A1
y − u3A3

y = 0,

A
3
t + u1A3

x + u2A3
y = 0.

and update B1 = A
3
y, B2 = −A

3
x, B3 = A

2
x −A

1
y



Test computations: cloud-shock interaction

(a) (b)

Figure: The 2.5-dimensional cloud-shock interaction problem. Shown
here are the out-of-plane magnetic field at time t = 0.06 as calculated
on a 512×512 mesh using (a) a 2d approach that only uses A

3, and
(b) the proposed scheme using the full vector potential A.



Unsplit discretization of weakly hyperbolic system

Consider 1d weakly hyperbolic system

qt +A(x)qx = 0

q̃, Ã: piecewise polynomial reconstructions
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Unsplit discretization of weakly hyperbolic system

Semi-discrete form of the method:

Q′
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Ãi(x)(q̃i)xdx ≈ lim
ε→0

∫ x
i+1

2

−ε

x
i− 1

2

+ε
A(x)qxdx

A+∆qi− 1

2

≈ lim
ε→0

∫ x
i− 1

2

+ε

x
i− 1

2

A(x)qxdx

A−∆qi+ 1

2

≈ lim
ε→0

∫ x
i+1

2

x
i+1

2

−ε
A(x)qxdx



Unsplit discretization of weakly hyperbolic system

Introduce a regularization of q at each grid cell interface
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Unsplit discretization of weakly hyperbolic system

Definition of the fluctuations using generalized Rusanov flux:

A−∆qi+1/2 =
1

2

[

A
∣

∣

Ψi+1/2
−αi+1/2 I

](

q+
i+ 1

2

− q−
i+ 1

2

)

and

A+∆qi−1/2 =
1

2

[

A
∣

∣

Ψi−1/2
+αi−1/2 I

](

q+
i− 1

2

− q−
i− 1

2

)

,

with |λk| ≤ α, for k = 1, . . . ,m, λk is eigenvalue of A
∣

∣

Ψ

Extension to 2d and 3d is straight forward.



Outline of the method using a MOL approach

Stage 1. Start with Qn
MHD and Qn

A, then update via:

Q
(1⋆)
MHD = Qn

MHD +∆tL1 (Q
n
MHD) ,

Q
(1)
A = Qn

A +∆tL2 (Q
n
A, Q

n
MHD) ,

where Q(1⋆)
MHD =

(

ρ(1), ρu(1), E(1), B(1⋆)
)

and B
(1⋆) denotes the

predicted value of the magnetic field in the first Runge-Kutta
stage. The magnetic field components of Q(1⋆)

MHD are then

corrected by ∇×Q
(1)
A ; we denote this result by

Q
(1)
MHD =

(

ρ(1), ρu(1), E(1), B(1)
)

.

Continue with Stage 2 and Stage 3.

3rd order accurate for smooth Alfvén wave problem.



Cloud-shock interaction problem
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