Numerical study of Cosmic ray transport in compressible turbulence

Huirong Yan

Kavli Institute of Astronomy & Astrophysics, Peking U

With my PHD student: Siyao Xu

Importance: Cosmic Ray (CR) Propagation

Diffuse Galactic 511 keV radiation

LONGSTANDING PROBLEMS OF COSMIC RAY RESEARCH

- Ad hoc turbulence models
- Inadequate description of the interactions between MHD perturbations and particles, e.g. 90 degree problem.
- Perpendicular Cosmic Ray (CR) transport

Numerically tested models for MHD turbulence

fast modes

Quasilinear theory is not adequate

Long standing problem: 90 degree scattering $K_{res} = \Omega/v_{\parallel} \rightarrow \infty$, the scale is below the dissipation scale of turbulence $\lambda_{ll} \rightarrow \infty$?

Nonlinear theory:

In reality, the guiding center is perturbed, especially on large scales,

 $z = (v\mu \pm \Delta v_{\parallel})t.$

Nonlinear broadening of resonance solves the 90° problem!

On large scale, unperturbed orbit assumption in QLT fails due to conservation of adiabatic invariant v_{\perp}^2/B (Volk 75).

varying v₁ varying v₁₁

Broadened

resonance

vµt

-∆V_{II} t

 $\Delta V_{\parallel} t$

Comparison w. test particle simulation

Particle trajectory
 Magnetic field

Transit time damping (resonant mirror) dominates scattering of most pitch angles *except* for small ones.

CROSS FIELD TRANSPORT IS IMPOSSIBLE WITHOUT $\hat{\delta}$ B

fell, -> B

Perpendicular transport

Dominated by field line wandering.

B

Intensive studies: e.g., Jokipii & Parker 1969, Forman 74, Urch 77, Bieber & Matthaeus 97, Giacolone & Jokipii 99, Matthaeus et al 03

Test particle simulations with realistic turbulence

Particle trajectory
Magnetic field

Is there subdiffusion ($\Delta x^2 \propto \Delta t^a$, a<1) ?

Subdiffusion (or compound diffusion, Getmantsev 62, Lingenfelter et al 71, Fisk et al. 73, Webb et al 06) was observed in near-slab turbulence, which can occur on small scales due to instability.

 $\Delta x^2 \propto \Delta z$ $\supset \Delta x^2 \propto \sqrt{\Delta t}$ $\Delta z^2 \propto D_{\parallel} \Delta t$

Diffusion is slow if particles retrace their trajectories.

What if we use the tested model of turbulence?

Subdiffusion is not typical!

In turbulence, particles' trajactory become independent when field lines are separated by the smallest eddy size , l_{⊥,min}. The separation between field lines has a Lyapanov type growth, provides Rechester-Rosembluth distance, L_{RR} = l_{I,min} log(l_{⊥,min} / r_L) (Narayan & Medvedev 01, Lazarian 06)

Subdiffusion only occurs below $l_{\perp,min}$. – Particle trajectory Beyond $l_{\perp,min}$, normal diffusion applies (Yan & – Magnetic field Lazarian 2008).

Prediction for perpendicular transport $(\lambda_{\parallel} > L)$

 $^{\odot}M_{A}$ < 1, CRs free stream over distance L, thus $\Delta t = (R/L M_{A}^{2})^{2} L/v_{\parallel}$,

 $D_{\perp} = R^2 / \Delta t = 1/3 Lv M_A^4$ (Yan & Lazarian 2008)

(differs from the M_A^2 dependence in literature)

Numerical result for perpendicular diffusion $(\lambda_{\parallel} > L)$

Cross field transport in 3D turbulence is in general a normal diffusion, which has a M_A^4 dependence!

Perpendicular diffusion

Prediction: $M_A < 1$, $D_\perp = D_{\parallel} M_A^4$

Yan & Lazarian (2008)

(λ_{II} < L)

Numerical result:

 M_A^4 suppression compared to D_{\parallel} is confirmed!

CROSS FIELD TRANSPORT IN SOLAR WIND IS FAST!

Field lines are superdiffusive on small scales

 $\langle |\mathbf{x}_1(t) - \mathbf{x}_2(t)|^2 \rangle \sim t^3.$

Lazarian, Cho & Vishniac (2004)

SUPERDIFFUSION OF CRS IS OBSERVED

Consistent with earlier theoretical predictions (Narayan & Medvedev 2001, Lazarian 2006 for thermal particles; Yan & Lazarian 2008 for CRs)

field lines

SUPERDIFFUSION HAS M_A⁴ DEPENDENCE

Theoretical prediction

Lazarian & Vishniac 1999; Yan & Lazarian 2008

Numerical result

Summary

- Changes in the MHD turbulence paradigm necessitates revision of particle's transport theories.
- CR scattering is dominated by broadened TTD (resonant mirror) interaction for most pitch angles but small pitch angles, *including 90 degree*.
- Subdiffusion does not apply.
- On large scales, CR perpendicular diffusion is suppressed by M_A^4 compared to parallel diffusion.
- On small scales, CR transport is *super-diffusive*, has a dependence of M_A^{4} in sub-Alfvenic turbulence.
 - Implications are wide, from thermal conduction in turbulent medium to turbulent reconnection.