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Introduction: Flapping oscillations

Kink mode

Sergeev et al. (2006), Ann. Geophys., Golovchanskaya et al. (2006), J.
24, 2015-2024. Geophys. Res., 111, A11216.

T=100-200s, V,=30-70km/s, 1=2-5R;

Sergeev et al. (2003), Geophys. Res. Lett. 30, 1327; Runov et al. (2005), Ann. Geophys. 23,
1391; Petrukovich et al. (2006), Ann. Geophys. 24, 1695.



Introduction: Equilibrium

In equilibrium state
oP 1 5 0B,
01 4r " OX

Displacement along the Z axis
yields the restoring force
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Equation of motion of the
plasma element
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A plasma element at the center a)f :< 1 JB, dB, >
of the current sheet (CS) drp 0z OX [,




Introduction: (in)stability

w? >0
Minimum of the total
pressure in the center

of the CS,
Stable situation,
Oscillations

2
w; <0
Maximum of the total
pressure in the center

Features of the configuration: of the CS,
v=A/L<<1 oB. /B Unstable situation,
v~0.1 :( axz/ 5;) wel Wave growth

z=0
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Introduction: Analytical solution of
Erkaev et al., Ann. Geophys., 27, 417, 2009

System of ideal MHD equations

VAR S,
dt Ao
C_@vv. Lo
dt dt
V-V =0, V-B=0.

Normalization
* * * B*2
B, p’, A&L, P =—,
A
V, = 5 .t =V, /A

- Ao

Simplifying assumptions

incompressibility
B=[ By(z), 0, B,(x) ]

perturbations are slow waves
propagating in Y direction

perturbations depend on Y
and Z coordinates only, not on X



Introduction: Analytical solution

e Linearize the ideal MHD system
e Neglect small terms ~ g2, gv/°

* background configuration
B, =tanh(z), B, =a+Dbx

e Substitute Fourier harmonics of perturbations ~ exp[i(wt —ky)]

e Derive a second order ordinary differential equation for the
amplitude of v, perturbation: ¢%y /dz? +k?v (a)? /0)2 _1) .y
Z Z

e Obtain two modes of solution for w(k)

—

Even function v,(z) -
kink-like mode of the solution

KA
D= O KA +1

Odd function v,(z) -
sausage-like mode of the solution

@ KA
\/(kA)Z +3KA +2

), =




Introduction: Analytical solution

—(nk/cof

-- -a)s/oof

Dispersion curves of the double-gradient
oscillations (Im[w] =0) / instability (Re[w]=0).



Two different magnetic configurations

“Double-gradient” branch

_' “Ballooning” branch /

1. 2.
R ~L>A R <A<L

Curvature Radius Wave Length System Size



The

Qualitatively:

Mathematically:
Result:

For our
particular case:
B=(8,,0,8,)
k= (0, ky, 0)

Q. =
" 2+xk8R| 2 & R

“Ballooning” instability

When plasma pressure decreases too sharply on R, plasma
becomes unstable to the “ballooning” mode, which
represents a locally swelling blobs. Some analogue to the
Rayleigh-Taylor instability, where the curvature of the
magnetic field replaces the gravitational force.

Consider a system of coupled equations for poloidal Alfvenic
and SMS modes in a curvilinear magnetic field.

The analytical dispersion relation for the small-scale,
oblique-propagating ( k - B # 0) disturbances.

The limiting (ky — o0 ) value of the “ballooning” growth rate:

, —N:B 1| 2+xB0In(p) 2k

C

Kk — Polytropic index, B — Plasma parameter,
p — Plasma pressure, V, — Alfvenic velocity.



DG and Ballooning growth rates

BALLOONING BRANCH

Mazur et al. (2012) [Geomagnetism
and Aeronomy, 52, 603—-612]

DOUBLE-GRADIENT BRANCH
Erkaev et al. (2007)
[Phys. Rev. Lett., 99, 235003]

K — oo k ~27z/L-27x/R,
2
of = ~V2B 1| 2+xB0In(p) 2« »__1 oB B,
2+xB R| 2 o R ' 4ap Oz OX
The unstable ballooning \
branch exists when 21—¢ The common physical
0,2 < 0. e
For equilibrium state kl+e LTS G UIEse i9e 2
this condition requires: - 0B, /an brafnches (the ,?rtnhpere p= ;
= orce against the
OX 0z pressure gradient) is 2
seen clearly in one a)Z _ &
particular case : D ?




Generally: Ballooning

2etale- Balloonin
@1 gradient &
segment
segment
> k

"'O)f

=—==DQG segment

B increases

= = = Transient segment




Aim
Analytical solution
of Erkaev et al. [Phys. Rev. Lett., 99, 235003, 2007] has

—

Advantages: Disadvantages:

Match observational data Simplicity of the equations:
on flapping oscillations guasy-1-D problem is solved
[Erkaev et al., 2007; Forsyth et Simplicity of the configuration
al., Ann. Geophys., 27, 2457 —

) . . . ?
2474, 2009] IsnAtlt}esswelv simple”
Simplicity, clearness Aim-

Numerical examination of the double-gradient instability in the
frame of linearized 2D / fully 3D ideal MHD
to confirm / amend / disprove the Erkaev model.




2D simulations: Equations

Normalization: A, B* = B(0,z,,.), p* = p(0,0), t* = A/V,,
V, = B*/(4mp*)Y2, p* = B*2 /(4m).

Linearization: U, =(p,,V,,B,,.E,), U, =(p,V,,B,,E),
U=U,+U,. E=pe+0.5(pV°+B?)

Perturbations: U,(X,z,t;y) = 0U(X, z,t) exp(iky)
Linearized system | 0(6U) oF, oOF, S
for the amplitudes: ot U oX U oz

{F,.F,,S}=f[U,(x,2), 5U(x,z,t); k]. ~ poVingthissystem

2 for several fixed k
Korovinskiy et al. (2011), Adv. Space Res., 48, 1531-1536. |\ Sbtain a)(k)




2D simulations: Method
y = Im[w]. Assume, Vi = 7/*—A(h)

"/

Calculated value True value Scheme damping Mesh step

Grid [h,xh,]=0.1x0.025 —> |Lax-Friedrichs scheme |[— 7,

| one-step method
Grid [h,xh ]=0.05x0.0125 — |-order accuracy — 7/h/2

The Richardson? *x_ 9 . |1-order
extrapolation: V / h/2 V' accuracy
BCL%I?[tom - SU=0 Seed Courant
o perturbation number
e .
BCy : 00U/ox=0 8V, = exp(~z?) C=01

IRichardson, Phil. Trans. Royal Soc. Lond., A 210, 307 — 357, 1911.



2D simulations: Growth rate

The sample solution for some fixed wave number

oU(X,z,t) =

SU(x, 2) exp(yt)

In|sU(t,)|-In|sU(L,)

tz _tl
Im[w]




Erkaev’s background: Dispersion curve

—Grid 101 x 401 |
—Grid 201 x 801 |
——Extrapolation |
—Analytical curve|
- - -Limiting value |
- - -Limiting value |

4 5 6




Dispersion curves for different p(x,z)

- =—— background
- = background




The Pritchett solution!: Profiles

The Pritchett
approximate solution
of the Grad-Shafranov
equation for the
Reverse grad B, magnetic potential A

(normalized units),

~..[ cosh[F(x)z]
Aoy_ln( F(x) j

1

p =] exp(-2A,) +1]

1Pritchett and Coroniti, JGR,115, A06301, doi:10.1029/2009JA014752, 2010



Magnetic configuration and s




The configuration features

R <A<L,+ R <L

€ - - >
. Stable

part
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o, is real

ballooning
mode is
stabilized

favourable
segment of
the CS

—y=Im[o ]|

_O.llg(RC)
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Disp. curves: DGI-favorable segment +

_Ptz), x=4
—p), x=8
—p@), x=12
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kink
Hausage

-I.I-|.]-IJLI-I.J

=N

p, =cosh?(0.42)

e e W

kink

sausage Erkaev et al.,

Ann. Geophys.,
27, 417-425,

2009.

]-I.J




Disp. curves: stable segment +




Disp. Curves: Large-R_ region

Transient region?




3D MHD: background relaxation?

op +V-(pV)=0, 2-dimensional
ot friction MHD

8,0V simulation is
- +V(V®pV-B®B)+VP : performed to

minimize the

B v (V®B-B®V)=0, net force
ot Vp-jxB
%+v (Ve+VP—B®B-V)=
2 2 )
o = p1+P\2/ +E;, 0.1+10cos(7t/40), t < 20,
K — y <o_1, t > 20,
P=p+— 0, t > 80.

'Hesse&Birn (1993), JGR, 98, 3973-3982, do0i:10.1029/92JA02905



Initial (green) and relaxed (black)
background configurations




Relaxation efficiency

Total k= AXAZZ f (Xi’zj)1
Net ]
Force f, =[jxB-Vp] .




L, xL,xL, =156x7.5x7.5 Run parameters
N, xN, xN, =384x192x192

BC in relaxation phase (2D in XZ plane) 8/8n {P’ B., p} =0,
fix the magnetic flux entering domain  5p /8’[ -0 V=0

In the main phase the same BC are applied at Z-boundaries,
and the Earthward X-boundary

Free BC are imposed at the tailword _
X-boundary and Y-boundaries 6/8n {'0’ B, V, p} =0

The instabllity is seeded with a mode m, = 2 kick of V, velocity:

oV, =0.003f (x)sin(kyy)exp(—ZZZ), K, = 27zmy/Ly =1.675

f(x)=0.5| tanh(x - L, /4)—tanh(x—3L,/4) |
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3D simulation




|V, | perturbation modes m, ={1,2,3,4}
integrated over all zand x €[3.75, 11.25]

- - —Model1
| jm——\Oode 2

Att=130

the non-linear |

evolution
starts

150




p,t =117, x-slices




Estimation of y: Method

Use Fourier transform to find the amplitude of the mode
2 of the plasma density variation in Y direction, A,(x,z)

Calculate A, at different times t, t,

Calculate growth rate:

1 AL

& tz _tl AZ(tl)



Growth rate by 3D simulation,_, ;- g

Instalbilityl
develops in

the stable - - =</ (17/27)"% 0052

3D

Y

--- y3D linear fit = 0.040

The inclination angle: —2*10~* — growth rate is

uniform on X
yA — analytical prediction

- Y 3P —numerically obtained values

5 6.7 8 9 10 11
X




Conclusionst

Fully 3D MHD sim.

2D linearized MHD sim.

DGI does not develop in the
regions of too large R...

DGl can develop in the
domains with mixed uniform /
tailward-growing B..

The uniform / Earthward-
growing-B, regions produce
strong stabilizing effect.

The growth rate is close to
the analytical estimation
averaged over the domain.

v

v

The growth rate is close to
the maximal analytical
estimation in the domain.

lKorovinskiy et al. (2013), J. Geophys. Res., 118, 1146 — 1158.
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