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Introduction: Flapping oscillations 
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Sergeev et al. (2003), Geophys. Res. Lett. 30, 1327; Runov et al. (2005), Ann. Geophys. 23, 
1391; Petrukovich et al. (2006), Ann. Geophys. 24, 1695. 
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Introduction: Equilibrium 
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In equilibrium state 

Displacement along the Z axis 
yields the restoring force 

Equation of motion of the 
plasma element 
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A plasma element at the center 

of the current sheet (CS) 



Introduction: (in)stability 
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pressure in the center 
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Stable situation,  
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Features of the configuration: 



Introduction: Analytical solution of 
Erkaev et al., Ann. Geophys., 27, 417, 2009 

System of ideal MHD equations 
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Simplifying assumptions 
 
 

 incompressibility 
 

 B = [   Bx(z),   0,   Bz(x)   ] 
 

 perturbations are slow waves 
propagating in Y direction 

 
 perturbations depend on Y 

and Z coordinates only, not on X 



Introduction: Analytical solution 
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Even function vz(z) – 
kink-like mode of the solution 

Odd function vz(z) –  
sausage-like mode of the solution 
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• Obtain two modes of solution for  ( )kω

( )2 2 2 2 2 1 0z z fd v dz k v ω ω+ − =

• Linearize the ideal MHD system 
• Neglect small terms 
 

• Substitute Fourier harmonics of perturbations 
 
• Derive a second order ordinary differential equation for the 
amplitude of vz perturbation: 

2 2,ε εν~

exp[ ( )]i t kyω −~

tanh( ),     x zB z B a bx= = +
• background configuration 



Introduction: Analytical solution 

Dispersion curves of the double-gradient  
oscillations (Im[ω] =0) / instability (Re[ω]=0).  

Kink mode is faster 



Two different magnetic configurations  

Curvature Radius System Size Wave Length 

1. 2. 

“Ballooning” branch 

“Double-gradient” branch 



The “Ballooning” instability 
Qualitatively: When plasma pressure decreases too sharply on R, plasma 

becomes unstable to the “ballooning” mode, which 
represents a locally swelling blobs. Some analogue to the 
Rayleigh-Taylor instability, where the curvature of the 
magnetic field replaces the gravitational force.  

Mathematically: Consider a system of coupled equations for poloidal Alfvenic 
and SMS modes in a curvilinear magnetic field.  

Result: The analytical dispersion relation  for the small-scale,  
oblique-propagating (                 ) disturbances.  0⋅ ≠k B

For our 
particular case: 
B = (Bx, 0, Bz) 
k = (0, ky, 0) 

2
2 2 1 2 ln(p) 2

2 2
A

b
c c

V
R x R

β κβ κω
κβ

 − + ∂
= − + ∂ 

The limiting  (                ) value of the “ballooning” growth rate:  yk →∞

κ   – Polytropic index, β   – Plasma parameter, 
p   – Plasma pressure, VA – Alfvenic velocity. 



DG and Ballooning growth rates 
BALLOONING BRANCH 

Mazur et al. (2012) [Geomagnetism 
and Aeronomy, 52, 603–612] 

DOUBLE-GRADIENT BRANCH 
Erkaev et al. (2007)  

[Phys. Rev. Lett., 99, 235003]  
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The unstable ballooning 
branch exists when  

ωb
2 < 0.  

For equilibrium state  
this condition requires: 
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The common physical 
nature of these two 

branches (the Ampere 
force against the 

pressure gradient) is 
seen clearly in one 

particular case : 
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Generally: Ballooning 

Double-
gradient 
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Ballooning 
segment ? 
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Aim 

Isn’t it excessively simple? 

Aim: 
 

Numerical examination of the double-gradient instability in the 
frame of linearized 2D / fully 3D ideal MHD  

to confirm / amend / disprove the Erkaev model. 

Analytical solution 
of Erkaev et al. [Phys. Rev. Lett., 99, 235003, 2007] has 

Advantages:  
 

 Match observational data 
on flapping oscillations 
[Erkaev et al., 2007; Forsyth et 
al., Ann. Geophys., 27, 2457 – 
2474, 2009]  
 Simplicity, clearness 

Disadvantages: 
 

 Simplicity of the equations: 
quasy-1-D problem is solved 
 Simplicity of the configuration 



2D simulations: Equations 

2 20.5( )E e V Bρ ρ= + +

Normalization:            Δ, B* = B(0,zmax), ρ* = ρ(0,0), t* = Δ/VA, 
               VA = B*/(4πρ*)1/2, p* = B*2 /(4π). 
 
Linearization: 
 
 
 
Perturbations: 
 
Linearized system 
for the amplitudes: 
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Korovinskiy et al. (2011), Adv. Space Res., 48, 1531–1536. 

Solving this system 
for several fixed k 
we obtain                ( )kω



2D simulations: Method 
γ = Im[ω].  Assume,  * ( )h A hγ γ= −

Calculated value True value Scheme damping Mesh step 

1Richardson, Phil. Trans. Royal Soc. Lond., A 210, 307 – 357, 1911. 
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Lax-Friedrichs scheme 
one-step method 
I-order accuracy 
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→
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2D simulations: Growth rate 
The sample solution for some fixed wave number 
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Erkaev’s background: Dispersion curve 

20% 



Dispersion curves for different p(x,z) 

5% 



The Pritchett solution1: Profiles 
The Pritchett 

approximate solution 
of the Grad-Shafranov 

equation for the 
magnetic potential A 
(normalized units), 
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1Pritchett and Coroniti, JGR,115, A06301, doi:10.1029/2009JA014752, 2010 

Reverse grad Bz 

Earth 



Magnetic configuration and ωf 

Stable 
region 

Unstable 
region 

γ = Im[ωf] 
γmax = 0.127 

Small Rc Large Rc 



The configuration features 
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Disp. curves: DGI-favorable segment +  

25% 

5% 

2% 

max

min

1.24ρ
ρ

=

1

2

1.05ρ
ρ

=



ρ0(z)  
matters 

Erkaev et al.,  
Ann. Geophys., 
27, 417–425, 

2009. 

0 1ρ =

2
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Disp. curves: stable segment +  

5% 



Disp. Curves: Large-Rc region 

Looks 
more 
or less 
DG-like 

Transient region? 



3D MHD: background relaxation1 

1Hesse&Birn (1993), JGR, 98, 3973–3982, doi:10.1029/92JA02905 
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2-dimensional 
friction MHD 
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net force 
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Initial (green) and relaxed (black) 
background configurations 



Relaxation efficiency 
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Run parameters 

{ }, , 0,
0,    0.n

p
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V
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BC in relaxation phase (2D in XZ plane) 
fix the magnetic flux entering domain 
 
In the main phase the same BC are applied at Z-boundaries, 
and the Earthward X-boundary  
 
Free BC are imposed at the tailword 
X-boundary and Y-boundaries 
 
The instability is seeded with a mode my = 2 kick of Vz velocity: 
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3D simulation: Seed perturbation 
δVz(x,y)|z=0, t=0 



|Vz| perturbation modes my = {1,2,3,4}   
integrated over all z and x ∈ [3.75, 11.25] 

At t =130  
the non-linear 

evolution 
starts 



ρ, t = 117, x-slices 



Estimation of γ: Method 

 Use Fourier transform to find the amplitude of the  mode 
2 of the plasma density variation in Y direction, A2(x,z) 
 Calculate A2 at different times t1, t2  
 Calculate growth rate: 
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Growth rate by 3D simulation |z = 0, t = 86 

1 

The inclination angle:  –2*10–4 – growth rate is 
uniform  on X 

35% 

γA   – analytical prediction 
γ 3D – numerically obtained values 
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Instability 
develops in 
the stable 
part of the 

CS also  

1 



Conclusions1 

  DGI does not develop in the 
regions of too large Rc. 
 
  DGI can develop in the 
domains with mixed uniform / 
tailward-growing Bz. 
 
 The uniform / Earthward-
growing-Bz regions produce 
strong stabilizing effect. 
 
 The growth rate is close to 
the analytical  estimation 
averaged over the domain. 

Fully 3D MHD sim. 2D linearized MHD sim. 

   
 
 
   
 
 
 
 
  
 
 
 
 The growth rate is close to 
the maximal analytical  
estimation in the domain. 

1Korovinskiy et al. (2013), J. Geophys. Res., 118, 1146 – 1158. 
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