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Introduction: Flapping oscillations 
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Sergeev et al. (2003), Geophys. Res. Lett. 30, 1327; Runov et al. (2005), Ann. Geophys. 23, 
1391; Petrukovich et al. (2006), Ann. Geophys. 24, 1695. 
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Geophys. Res., 111, A11216. 
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24, 2015–2024. 
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Introduction: Equilibrium 
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In equilibrium state 

Displacement along the Z axis 
yields the restoring force 

Equation of motion of the 
plasma element 
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A plasma element at the center 

of the current sheet (CS) 



Introduction: (in)stability 
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Minimum of the total 
pressure in the center 

of the CS,  
Stable situation,  

Oscillations 
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Features of the configuration: 



Introduction: Analytical solution of 
Erkaev et al., Ann. Geophys., 27, 417, 2009 

System of ideal MHD equations 
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Simplifying assumptions 
 
 

 incompressibility 
 

 B = [   Bx(z),   0,   Bz(x)   ] 
 

 perturbations are slow waves 
propagating in Y direction 

 
 perturbations depend on Y 

and Z coordinates only, not on X 



Introduction: Analytical solution 
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Even function vz(z) – 
kink-like mode of the solution 

Odd function vz(z) –  
sausage-like mode of the solution 
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• Obtain two modes of solution for  ( )kω

( )2 2 2 2 2 1 0z z fd v dz k v ω ω+ − =

• Linearize the ideal MHD system 
• Neglect small terms 
 

• Substitute Fourier harmonics of perturbations 
 
• Derive a second order ordinary differential equation for the 
amplitude of vz perturbation: 

2 2,ε εν~

exp[ ( )]i t kyω −~

tanh( ),     x zB z B a bx= = +
• background configuration 



Introduction: Analytical solution 

Dispersion curves of the double-gradient  
oscillations (Im[ω] =0) / instability (Re[ω]=0).  

Kink mode is faster 



Two different magnetic configurations  

Curvature Radius System Size Wave Length 

1. 2. 

“Ballooning” branch 

“Double-gradient” branch 



The “Ballooning” instability 
Qualitatively: When plasma pressure decreases too sharply on R, plasma 

becomes unstable to the “ballooning” mode, which 
represents a locally swelling blobs. Some analogue to the 
Rayleigh-Taylor instability, where the curvature of the 
magnetic field replaces the gravitational force.  

Mathematically: Consider a system of coupled equations for poloidal Alfvenic 
and SMS modes in a curvilinear magnetic field.  

Result: The analytical dispersion relation  for the small-scale,  
oblique-propagating (                 ) disturbances.  0⋅ ≠k B

For our 
particular case: 
B = (Bx, 0, Bz) 
k = (0, ky, 0) 
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The limiting  (                ) value of the “ballooning” growth rate:  yk →∞

κ   – Polytropic index, β   – Plasma parameter, 
p   – Plasma pressure, VA – Alfvenic velocity. 



DG and Ballooning growth rates 
BALLOONING BRANCH 

Mazur et al. (2012) [Geomagnetism 
and Aeronomy, 52, 603–612] 

DOUBLE-GRADIENT BRANCH 
Erkaev et al. (2007)  

[Phys. Rev. Lett., 99, 235003]  
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The unstable ballooning 
branch exists when  

ωb
2 < 0.  

For equilibrium state  
this condition requires: 
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The common physical 
nature of these two 

branches (the Ampere 
force against the 

pressure gradient) is 
seen clearly in one 

particular case : 

2
2

2   

2
f

b

β
κ
ω

ω

=

=



Generally: Ballooning 

Double-
gradient 
segment 

Ballooning 
segment ? 
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Aim 

Isn’t it excessively simple? 

Aim: 
 

Numerical examination of the double-gradient instability in the 
frame of linearized 2D / fully 3D ideal MHD  

to confirm / amend / disprove the Erkaev model. 

Analytical solution 
of Erkaev et al. [Phys. Rev. Lett., 99, 235003, 2007] has 

Advantages:  
 

 Match observational data 
on flapping oscillations 
[Erkaev et al., 2007; Forsyth et 
al., Ann. Geophys., 27, 2457 – 
2474, 2009]  
 Simplicity, clearness 

Disadvantages: 
 

 Simplicity of the equations: 
quasy-1-D problem is solved 
 Simplicity of the configuration 



2D simulations: Equations 

2 20.5( )E e V Bρ ρ= + +

Normalization:            Δ, B* = B(0,zmax), ρ* = ρ(0,0), t* = Δ/VA, 
               VA = B*/(4πρ*)1/2, p* = B*2 /(4π). 
 
Linearization: 
 
 
 
Perturbations: 
 
Linearized system 
for the amplitudes: 
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Korovinskiy et al. (2011), Adv. Space Res., 48, 1531–1536. 

Solving this system 
for several fixed k 
we obtain                ( )kω



2D simulations: Method 
γ = Im[ω].  Assume,  * ( )h A hγ γ= −

Calculated value True value Scheme damping Mesh step 

1Richardson, Phil. Trans. Royal Soc. Lond., A 210, 307 – 357, 1911. 
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Seed 
perturbation 

Courant 
number 
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Lax-Friedrichs scheme 
one-step method 
I-order accuracy 

Grid [ ] 0.1 0.025x zh h× = ×

Grid [ ] 0.05 0.0125x zh h× = × →

→

2* 2 h hγ γ γ= −The Richardson1 
extrapolation: 

II-order 
accuracy 



2D simulations: Growth rate 
The sample solution for some fixed wave number 
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Erkaev’s background: Dispersion curve 

20% 



Dispersion curves for different p(x,z) 

5% 



The Pritchett solution1: Profiles 
The Pritchett 

approximate solution 
of the Grad-Shafranov 

equation for the 
magnetic potential A 
(normalized units), 
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1Pritchett and Coroniti, JGR,115, A06301, doi:10.1029/2009JA014752, 2010 

Reverse grad Bz 

Earth 



Magnetic configuration and ωf 

Stable 
region 

Unstable 
region 

γ = Im[ωf] 
γmax = 0.127 

Small Rc Large Rc 



The configuration features 
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Disp. curves: DGI-favorable segment +  
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ρ0(z)  
matters 

Erkaev et al.,  
Ann. Geophys., 
27, 417–425, 

2009. 

0 1ρ =

2
0 cosh (0.4z)ρ −=



Disp. curves: stable segment +  

5% 



Disp. Curves: Large-Rc region 

Looks 
more 
or less 
DG-like 

Transient region? 



3D MHD: background relaxation1 

1Hesse&Birn (1993), JGR, 98, 3973–3982, doi:10.1029/92JA02905 
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2-dimensional 
friction MHD 
simulation is 
performed to 
minimize the 

net force 
p∇ − ×j B



Initial (green) and relaxed (black) 
background configurations 



Relaxation efficiency 
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Run parameters 
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BC in relaxation phase (2D in XZ plane) 
fix the magnetic flux entering domain 
 
In the main phase the same BC are applied at Z-boundaries, 
and the Earthward X-boundary  
 
Free BC are imposed at the tailword 
X-boundary and Y-boundaries 
 
The instability is seeded with a mode my = 2 kick of Vz velocity: 
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3D simulation: Seed perturbation 
δVz(x,y)|z=0, t=0 



|Vz| perturbation modes my = {1,2,3,4}   
integrated over all z and x ∈ [3.75, 11.25] 

At t =130  
the non-linear 

evolution 
starts 



ρ, t = 117, x-slices 



Estimation of γ: Method 

 Use Fourier transform to find the amplitude of the  mode 
2 of the plasma density variation in Y direction, A2(x,z) 
 Calculate A2 at different times t1, t2  
 Calculate growth rate: 
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Growth rate by 3D simulation |z = 0, t = 86 

1 

The inclination angle:  –2*10–4 – growth rate is 
uniform  on X 

35% 

γA   – analytical prediction 
γ 3D – numerically obtained values 
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Instability 
develops in 
the stable 
part of the 

CS also  

1 



Conclusions1 

  DGI does not develop in the 
regions of too large Rc. 
 
  DGI can develop in the 
domains with mixed uniform / 
tailward-growing Bz. 
 
 The uniform / Earthward-
growing-Bz regions produce 
strong stabilizing effect. 
 
 The growth rate is close to 
the analytical  estimation 
averaged over the domain. 

Fully 3D MHD sim. 2D linearized MHD sim. 

   
 
 
   
 
 
 
 
  
 
 
 
 The growth rate is close to 
the maximal analytical  
estimation in the domain. 

1Korovinskiy et al. (2013), J. Geophys. Res., 118, 1146 – 1158. 
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