MHD modeling of the kink "double-gradient" branch of the ballooning instability in the magnetotail

$$
\begin{aligned}
& \text { Korovinskiy }{ }^{1} \text { D., Divin }{ }^{2} \text { A., Ivanova }{ }^{3} \text { V., Erkaer }{ }^{\text {4,5 }} \text { N., } \\
& \text { Semenov }{ }^{6} \text { V., Ivanov }{ }^{7} \text { I., Biernat }{ }^{1,8} \text { H., Lapenta }{ }^{9} \text {., } \\
& \text { Markidis }{ }^{10} \text { S, Zellinger }{ }^{I /} \text { M. }
\end{aligned}
$$

1. Space Research Institute, Austrian Academy of Sciences, Austria;
2. Swedish Institute of Space Physics, Sweden;
3. Orel State Technical University, Russia;
4. Institute of Computational Modelling, Siberian Branch of the RAS, Russia;
5. Siberian Federal University, Russia;
6. State University of St. Petersburg, Russia;
7. Theoretical Physics Division, Petersburg Nuclear Physics Institute, Russia;
8. Institute of Physics, University of Graz, Austria;
9. Departement Wiskunde, Katholieke Universiteit Leuven, Belgium;
10. PDC Center for High Performance Computing, KTH Royal Institute of Technology, Sweden; 11. Graz University of Technology, Graz, Austria.

Introduction: Flapping oscillations

Sergeev et al. (2006), Ann. Geophys., 24, 2015-2024.

Golovchanskaya et al. (2006), J. Geophys. Res., 111, A11216.

$$
T=100-200 \mathrm{~s}, \quad V_{g}=30-70 \mathrm{~km} / \mathrm{s}, \quad \lambda=2-5 \mathrm{R}_{E}
$$

Sergeev et al. (2003), Geophys. Res. Lett. 30, 1327; Runov et al. (2005), Ann. Geophys. 23, 1391; Petrukovich et al. (2006), Ann. Geophys. 24, 1695.

Introduction: Equilibrium

A plasma element at the center of the current sheet (CS)

In equilibrium state

$$
\frac{\partial P}{\partial z}=\frac{1}{4 \pi} B_{x} \frac{\partial B_{z}}{\partial x}
$$

Displacement along the Z axis yields the restoring force

$$
F_{z}=-\frac{1}{4 \pi} \delta z\left(\frac{\partial B_{x}}{\partial z} \frac{\partial B_{z}}{\partial x}\right)_{z=0}
$$

Equation of motion of the plasma element
$\frac{\partial^{2} \delta z}{\partial t^{2}}=-\omega_{f}^{2} \delta z$,

$$
\omega_{f}^{2}=\left\langle\frac{1}{4 \pi \rho} \frac{\partial B_{x}}{\partial z} \frac{\partial B_{z}}{\partial x}\right\rangle_{z=0}
$$

Introduction: (in)stability

Features of the configuration:
$\nu=\Delta / L \ll 1$
$\nu \sim 0.1$

$$
\begin{array}{ll}
\varepsilon=\left(\frac{\partial B_{z}}{\partial x} / \frac{\partial B_{x}}{\partial z}\right)_{z=0} \ll 1 & \\
\varepsilon \sim 0.01 & \varepsilon \ll v
\end{array}
$$

$$
\omega_{f}^{2}>0
$$

Minimum of the total pressure in the center of the CS,
Stable situation, Oscillations

$$
\omega_{f}^{2}<0
$$

Maximum of the total pressure in the center of the CS,
Unstable situation, Wave growth

Introduction: Analytical solution of

Erkaev et al., Ann. Geophys., 27, 417, 2009

System of ideal MHD equations
$\rho \frac{d \mathbf{V}}{d t}+\nabla P=\frac{1}{4 \pi \rho}(\mathbf{B} \cdot \nabla) \mathbf{B}$,
$\begin{aligned} \frac{d \mathbf{B}}{d t} & =(\mathbf{B} \cdot \nabla) \mathbf{V}, & \frac{d \rho}{d t} & =0, \\ \nabla \cdot \mathbf{V} & =0, & \nabla \cdot \mathbf{B} & =0 .\end{aligned}$
Normalization

$$
B^{*}, \quad \rho^{*}, \quad \Delta \& L, \quad P^{*}=\frac{B^{* 2}}{4 \pi}
$$

$$
V_{A}=\frac{B^{*}}{\sqrt{4 \pi \rho^{*}}}, \quad t^{*}=V_{A} / \Delta
$$

Simplifying assumptions

- incompressibility
- $\mathrm{B}=\left[\mathrm{B}_{\mathrm{x}}(\mathrm{z}), 0, \mathrm{~B}_{\mathrm{z}}(\mathrm{x})\right]$
perturbations are slow waves propagating in Y direction
- perturbations depend on Y and Z coordinates only, not on X

Introduction: Analytical solution

- Linearize the ideal MHD system
- Neglect small terms $\sim \varepsilon^{2}, \varepsilon v^{2}$
- background configuration
$B_{x}=\tanh (\mathrm{z}), \quad B_{z}=a+b x$
- Substitute Fourier harmonics of perturbations $\sim \exp [i(\omega t-k y)]$
- Derive a second order ordinary differential equation for the amplitude of v_{z} perturbation: $d^{2} v_{z} / d z^{2}+k^{2} v_{z}\left(\omega_{f}^{2} / \omega^{2}-1\right)=0$
- Obtain two modes of solution for $\omega(k)$

Even function $v_{\mathrm{z}}(\mathrm{z})$ -kink-like mode of the solution

$$
\omega_{k}=\omega_{f} \sqrt{\frac{k \Delta}{k \Delta+1}}
$$

Odd function $v_{z}(\mathrm{z})-$ sausage-like mode of the solution

$$
\omega_{s}=\frac{\omega_{f} k \Delta}{\sqrt{(k \Delta)^{2}+3 k \Delta+2}}
$$

Introduction: Analytical solution

Dispersion curves of the double-gradient oscillations $(\operatorname{Im}[\omega]=0) /$ instability $(\operatorname{Re}[\omega]=0)$.

Two different magnetic configurations

The "Ballooning" instability

Qualitatively:
When plasma pressure decreases too sharply on R , plasma becomes unstable to the "ballooning" mode, which represents a locally swelling blobs. Some analogue to the Rayleigh-Taylor instability, where the curvature of the magnetic field replaces the gravitational force.

Mathematically: Consider a system of coupled equations for poloidal Alfvenic and SMS modes in a curvilinear magnetic field.

Result:
The analytical dispersion relation for the small-scale, oblique-propagating ($\mathbf{k} \cdot \mathbf{B} \neq 0$) disturbances.

The limiting $\left(k_{y} \rightarrow \infty\right)$ value of the "ballooning" growth rate:
$\omega_{b}^{2}=\frac{-2 V_{A}^{2} \beta}{2+\kappa \beta} \frac{1}{R_{c}}\left[\frac{2+\kappa \beta}{2} \frac{\partial \ln (\mathrm{p})}{\partial x}-\frac{2 \kappa}{R_{c}}\right]$
κ - Polytropic index, β - Plasma parameter,
p - Plasma pressure, V_{A} - Alfvenic velocity.

DG and Ballooning growth rates

BALLOONING BRANCH
 DOUBLE-GRADIENT BRANCH

Mazur et al. (2012) [Geomagnetism and Aeronomy, 52, 603-612]
$k \rightarrow \infty$
$\omega_{b}^{2}=\frac{-2 V_{A}^{2} \beta}{2+\kappa \beta} \frac{1}{R_{c}}\left[\frac{2+\kappa \beta}{2} \frac{\partial \ln (\mathrm{p})}{\partial x}-\frac{2 \kappa}{R_{c}}\right]$

The unstable ballooning
branch exists when

$$
\omega_{\mathrm{b}}{ }^{2}<0 .
$$

For equilibrium state this condition requires:

$$
\begin{aligned}
& \beta \leq \frac{2}{\kappa} \frac{1-\varepsilon}{1+\varepsilon}, \\
& \varepsilon=\frac{\partial B_{z}}{\partial x} / \frac{\partial B_{x}}{\partial z} .
\end{aligned}
$$

Erkaev et al. (2007)
[Phys. Rev. Lett., 99, 235003]

$$
\begin{aligned}
& k \sim 2 \pi / L-2 \pi / R_{c} \\
& \omega_{f}^{2}=\frac{1}{4 \pi \rho} \frac{\partial B_{x}}{\partial z} \frac{\partial B_{z}}{\partial x}
\end{aligned}
$$

The common physical nature of these two branches (the Ampere force against the pressure gradient) is seen clearly in one particular case :

$$
\begin{aligned}
& \beta=\frac{2}{\kappa} \\
& \omega_{b}^{2}=\frac{\omega_{f}^{2}}{2}
\end{aligned}
$$

Generally: Ballooning

$\omega \uparrow \begin{aligned} & \text { Double- } \\ & \text { gradient } \\ & \text { segment }\end{aligned}$

Ballooning segment

Aim

Analytical solution
of Erkaev et al. [Phys. Rev. Lett., 99, 235003, 2007] has

Advantages:

Disadvantages:

- Match observational data on flapping oscillations
[Erkaev et al., 2007; Forsyth et al., Ann. Geophys., 27, 2457 2474, 2009]
Simplicity, clearness
- Simplicity of the equations: quasy-1-D problem is solved
Simplicity of the configuration
Isn't it excessively simple?
Aim:
Numerical examination of the double-gradient instability in the frame of linearized 2D / fully 3D ideal MHD to confirm / amend / disprove the Erkaev model.

2D simulations: Equations

Normalization:

$$
\begin{aligned}
& \Delta, B^{*}=B\left(0, z_{\text {max }}\right), \rho^{*}=\rho(0,0), t^{*}=\Delta V_{A} \\
& V_{A}=B^{*}\left(\left(4 \pi \rho^{*}\right)^{1 / 2}, p^{*}=B^{* 2} /(4 \pi) .\right.
\end{aligned}
$$

Linearization:

$$
\begin{aligned}
& \mathbf{U}_{0}=\left(\rho_{0}, \mathbf{V}_{0}, \mathbf{B}_{0}, E_{0}\right), \quad \mathbf{U}_{1}=\left(\rho_{1}, \mathbf{V}_{1}, \mathbf{B}_{1}, E_{1}\right), \\
& \mathbf{U}=\mathbf{U}_{0}+\mathbf{U}_{1} . \quad E=\rho e+0.5\left(\rho V^{2}+B^{2}\right)
\end{aligned}
$$

Perturbations:

$$
\mathbf{U}_{1}(x, z, t ; y)=\delta \mathbf{U}(x, z, t) \exp (i k y)
$$

Linearized system for the amplitudes:

$$
\frac{\partial(\delta \mathbf{U})}{\partial t}+\frac{\partial \mathbf{F}_{x}}{\partial x}+\frac{\partial \mathbf{F}_{z}}{\partial \mathbf{z}}=\mathbf{S} .
$$

$\left\{\mathbf{F}_{x}, \mathbf{F}_{z}, \mathbf{S}\right\}=\mathbf{f}\left[\mathbf{U}_{0}(x, z), \delta \mathbf{U}(x, z, t) ; k\right]$.
Korovinskiy et al. (2011), Adv. Space Res., 48, 1531-1536.

Solving this system for several fixed k we obtain $\omega(k)$

2D simulations: Method

$\gamma=\operatorname{Im}[\omega]$. Assume,
Calculated value True value Scheme damping Mesh step
Grid $\left[h_{x} \times h_{z}\right]=0.1 \times 0.025$
\rightarrow Lax-Friedrichs scheme $\rightarrow \gamma_{h}$
Grid $\left[h_{x} \times h_{z}\right]=0.05 \times 0.0125 \rightarrow$ I-order accuracy $\rightarrow \gamma_{h / 2}$

The Richardson ${ }^{1}$ extrapolation:

$$
\gamma^{*}=2 \gamma_{h / 2}-\gamma_{h}
$$

II-order accuracy
$\mathbf{B C}_{\text {bottom }}^{\text {top }}: \delta \mathbf{U}=0$
$\mathbf{B C}_{\text {right }}^{\text {left }}: \partial \delta \mathbf{U} / \partial x=0$

Seed
perturbation

$$
\delta V_{z}=\exp \left(-z^{2}\right)
$$

Courant number
$C=0.1$
${ }^{1}$ Richardson, Phil. Trans. Royal Soc. Lond., A 210, 307 - 357, 1911.

2D simulations: Growth rate

Erkaev's background: Dispersion curve

Dispersion curves for different $p(x, z)$

The Pritchett solution¹: Profiles

The Pritchett approximate solution of the Grad-Shafranov equation for the magnetic potential A (normalized units),

$$
\begin{aligned}
& A_{0 y}=\ln \left(\frac{\cosh [F(x) z]}{F(x)}\right) \\
& \rho=\frac{1}{2}\left[\exp \left(-2 A_{0 y}\right)+1\right]
\end{aligned}
$$

${ }^{1}$ Pritchett and Coroniti, JGR,115, A06301, doi:10.1029/2009JA014752, 2010

Magnetic configuration and ω_{f}

The configuration features

Disp. curves: DGI-favorable segment +

$\rho_{0}=1$

$\rho_{0}(z)$ matters

Erkaev et al., Ann. Geophys., 27, 417-425, 2009.

Disp. curves: stable segment +

Disp. Curves: Large- R_{c} region

3D MHD: background relaxation¹

$\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{V})=0$,
$\frac{\partial \rho \mathbf{V}}{\partial t}+\nabla \cdot(\mathbf{V} \otimes \rho \mathbf{V}-\mathbf{B} \otimes \mathbf{B})+\nabla P=-\alpha \rho \mathbf{V}$,
$\frac{\partial \mathbf{B}}{\partial t}+\nabla \cdot(\mathbf{V} \otimes \mathbf{B}-\mathbf{B} \otimes \mathbf{V})=0$,

2-dimensional friction MHD simulation is performed to minimize the net force
$\nabla p-\mathbf{j} \times \mathbf{B}$
$\frac{\partial e}{\partial t}+\nabla \cdot(\mathbf{V} e+\mathbf{V} P-\mathbf{B} \otimes \mathbf{B} \cdot \mathbf{V})=-\alpha \rho V^{2}$.
$\begin{aligned} & e=\frac{p}{\kappa-1}+\frac{\rho V^{2}}{2}+\frac{B^{2}}{2}, \\ & P=p+\frac{B^{2}}{2} .\end{aligned} \alpha(t)= \begin{cases}0.1+10 \cos (\pi t / 40), & t \leq 20, \\ 0.1, & t \geq 20, \\ 0, & t>80 .\end{cases}$
${ }^{1}$ Hesse\&Birn (1993), JGR, 98, 3973-3982, doi:10.1029/92JA02905

Initial (green) and relaxed (black) background configurations

Relaxation efficiency

Total $\quad F_{k}=\Delta x \Delta z \sum_{i, j} f_{k}\left(\mathrm{x}_{i}, \mathrm{z}_{\mathrm{j}}\right)$, Net
Force $f_{k}=[\mathbf{j} \times \mathbf{B}-\nabla p]_{k}$.

$$
k= \begin{cases}x, & \text { blue } \\ z, & \text { red }\end{cases}
$$

$L_{x} \times L_{y} \times L_{z}=15 \times 7.5 \times 7.5$

Run parameters

$N_{x} \times N_{y} \times N_{z}=384 \times 192 \times 192$
$B C$ in relaxation phase (2D in XZ plane) $\partial / \partial \mathbf{n}\left\{\rho, \mathbf{B}_{\tau}, p\right\}=0$, fix the magnetic flux entering domain

$$
\partial B_{n} / \partial t=0, \quad \mathbf{V}=0
$$

In the main phase the same BC are applied at Z-boundaries, and the Earthward X-boundary

Free BC are imposed at the tailword X-boundary and Y-boundaries
$\partial / \partial \mathbf{n}\{\rho, \mathbf{B}, \mathbf{V}, p\}=0$

The instability is seeded with a mode $m_{y}=2$ kick of V_{z} velocity:

$$
\begin{aligned}
& \delta V_{z}=0.003 f(x) \sin \left(k_{y} y\right) \exp \left(-2 z^{2}\right), \quad k_{y}=2 \pi m_{y} / L_{y}=1.675 \\
& f(x)=0.5\left[\tanh \left(x-L_{x} / 4\right)-\tanh \left(x-3 L_{x} / 4\right)\right] .
\end{aligned}
$$

3D simulation: Seed perturbation

$\left|V_{z}\right|$ perturbation modes $m_{y}=\{1,2,3,4\}$ integrated over all z and $x \in[3.75,11.25]$

$\rho, \mathrm{t}=117, \mathrm{x}$-slices

Estimation of γ : Method

Use Fourier transform to find the amplitude of the mode 2 of the plasma density variation in Y direction, $A_{2}(x, z)$ Calculate A_{2} at different times $\mathrm{t}_{1}, \mathrm{t}_{2}$
Calculate growth rate:

$$
\gamma=\frac{1}{t_{2}-t_{1}} \ln \frac{A_{2}\left(t_{2}\right)}{A_{2}\left(t_{1}\right)}
$$

Growth rate by 3D simulation

$$
z=0, t=86
$$

Conclusions ${ }^{1}$

Fully 3D MHD sim. \quad 2D linearized MHD sim.

- DGI does not develop in the regions of too large R_{c}.
- DGI can develop in the domains with mixed uniform / tailward-growing B_{z}.
- The uniform / Earthward-growing- B_{z} regions produce strong stabilizing effect.
- The growth rate is close to the analytical estimation averaged over the domain.

The growth rate is close to the maximal analytical estimation in the domain.

¹Korovinskiy et al. (2013), J. Geophys. Res., 118, 1146 - 1158.

