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An accretion problem...

Accretion discs are known to form around young 
stars and compact objects
Gas can fall on the central object only if it looses 
angular momentum.
One needs a way to transport angular momentum 
outward to have accretion: 
«angular momentum transport problem»

Turbulence produces a «turbulent viscosity»
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⌫t = ↵csH



The magnetorotational instability (MRI)

Field line

A
B

A

B

Balbus & Hawley 1991, Balbus 2003
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MRI is an efficient mechanism which seems 
to produce
Need a relatively weak field (sub-thermal)
Ideal MHD instability, modified by nonideal 
effects

↵ ⇠ 10�3—10�1



Simulation example

Simulation parameters: Re=1000, 
Pm=1, β=1000
3D map of vy (azimuthal velocity)
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It works!

Is it the end of the 
story?



Protoplanetary discs

Protoplanetary discs are far from being in the ideal 
MHD regime: very low ionisation fraction
3 non-ideal effects

Ohmic resistivity (electrons-neutrals collisions)
Hall effect (electrons-ions drift)
Ambipolar diffusion (electrons-neutral drift)

Hall dominates for «intermediate» densities
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ions and neutrals, respectively (for a derivation see, e.g., Balbus 2011). The terms on the right-
hand-side describe magnetic induction (the frozen-in field behavior of ideal MHD) and the three
nonideal effects, Ohmic diffusion (denoted as O), the Hall effect (H), and ambipolar diffusion
(A). Physically, ambipolar diffusion is dominant when the field is well-coupled to the ions and
electrons, such that the field drifts with the charged species relative to the neutral component.
Ohmic diffusion dominates when the conductivity is so low that the field is imperfectly coupled
to both the electrons and the ions. Finally, the Hall effect is most important in an intermediate
regime where the field is well coupled to the electrons but not to the ions.

Determining the absolute importance of the nonideal terms (i.e., their ratios to the inductive
term) requires solving for the ionization state of the disk. As we have already observed, this is
difficult everywhere except in the very innermost regions, interior to about 0.1 AU, where thermal
ionization dominates. It is much easier to assess the relative magnitude of the nonideal terms, which
depend only upon the temperature, T, and total number density, n. Balbus & Terquem (2001)
estimate these ratios by assuming that electrons and singly-ionized ions are the charge carriers,
that the typical fluid velocities are ∼vA, the Alfvén speed, and that typical gradients are ∼h−1.
They obtain,

O
H

=
(

n
8 × 1017 cm−3

)1/2 (
vA

c s

)−1

, (26)

A
H
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9 × 1012 cm−3

)−1/2 (
T

103 K

)1/2 (
vA

c s

)
. (27)

Using these expressions, we show in Figure 5 the relative importance of the three nonideal effects
as a function of density and temperature (after Kunz & Balbus 2004). Over-plotted on the figure
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Figure 5
The relative importance of nonideal magnetohydrodynamic terms is shown in the (ρ, T ) plane (Balbus &
Terquem 2001, Kunz & Balbus 2004), assuming a magnetic field strength such that vA/c s = 0.1. Also
plotted are very approximate tracks showing the radial variation of physical conditions at the midplane, and
near the surface, of protoplanetary disks. The midplane conditions are estimated for a disk around a
solar-mass star with " = 103(r/1 AU)−1 g cm−2 and (h/r) = 0.04. The surface conditions are estimated
from the density at z = ±4h (using a Gaussian density profile), assuming that the temperature is the effective
temperature for a steady-state disk accreting at Ṁ = 10−7 M$ year−1.
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Non-ideal protoplanetary discs



me
due

dt
= �e(E + ue ⇥B)� 1

ne
rPe � ⌫eime(ue � ui)

Hall effect basics
Fully ionised plasmas

Equation of motion for electrons

Introduce currents and average bulk velocity

Ohm’s Law:

Whistler waves:

Long timescale 
compared to electrons 

gyro-frequency U ⇠ ui

Ideal MHD Hall effect Electron
pressure Ohmic resistivity
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MRI in the Hall regime
Linear stability analysis
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Introduce two dimensionless numbers

Growth rate of the most unstable MRI mode

MRI is more unstable with Hall and 

⇤⌘ =
v2A
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⇤H =
eneB

⇢c⌦
Ohmic Elsasser number Hall Elsasser number

⌦ ·B > 0



THE EFFECT OF THE HALL TERM ON THE NONLINEAR EVOLUTION OF THE
MAGNETOROTATIONAL INSTABILITY. II. SATURATION LEVEL AND

CRITICAL MAGNETIC REYNOLDS NUMBER
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ABSTRACT

The nonlinear evolution of the magnetorotational instability (MRI) in weakly ionized accretion disks,
including the effect of the Hall term and ohmic dissipation, is investigated using local three-dimensional
MHD simulations and various initial magnetic field geometries. When the magnetic Reynolds number,
ReM ! v2A=!! (where vA is the Alfvén speed, ! is the magnetic diffusivity, and ! is the angular frequency), is
initially larger than a critical value ReM;crit, theMRI evolves intoMHD turbulence in which angular momen-
tum is transported efficiently by theMaxwell stress. If ReM < ReM;crit, however, ohmic dissipation suppresses
the MRI, and the stress is reduced by several orders of magnitude. The critical value is in the range of 1–30
depending on the initial field configuration. The Hall effect does not modify the critical magnetic Reynolds
number by much but enhances the saturation level of the Maxwell stress by a factor of a few. We show that
the saturation level of the MRI is characterized by v2Az=!!, where vAz is the Alfvén speed in the nonlinear
regime along the vertical component of the field. The condition for turbulence and significant transport is
given by v2Az=!!e1, and this critical value is independent of the strength and geometry of the magnetic field
or the size of the Hall term. If the magnetic field strength in an accretion disk can be estimated observationally
and the magnetic Reynolds number v2A=!! is larger than about 30, this would imply that the MRI is operat-
ing in the disk.
Subject headings: accretion, accretion disks — diffusion — instabilities — MHD — turbulence
On-line material: color figures

1. INTRODUCTION

The nonlinear regime of the magnetorotational instability
(MRI; Balbus & Hawley 1991) can strongly affect the struc-
ture and evolution of accretion disks. In ideal MHD, the
MRI initiates and sustains MHD turbulence in which angu-
lar momentum is transported outward by Maxwell (mag-
netic) stress. Thus, the MRI is thought to be the most
promising source of anomalous viscosity in disks. In weakly
ionized disks, however, the coupling between the gas and
magnetic field may be so poor that nonideal MHD effects
must be considered.

When nonthermal processes (such as irradiation by cos-
mic rays or high-energy photons) dominate the ionization
rate in the disk, the abundance of charged particles
decreases as the number density of the neutral gas nn
increases. At high densities (nne1018 cm"3), ohmic dissipa-
tion dominates the evolution of the MRI (Jin 1996; Flem-
ing, Stone, & Hawley 2000; Sano & Inutsuka 2001). At low
densities (nnd1013 cm"3), ambipolar diffusion dominates
(Blaes & Balbus 1994; Hawley & Stone 1998). However, at
intermediate densities, the ions are decoupled from the mag-
netic field and can drift relative to the electrons (which
remain frozen-in to the field). Thus, in this regime Hall cur-
rents can significantly alter the MHD of the plasma, and the
Hall term dominates the other nonideal MHD effects.
Detailed calculations reveal that the Hall term could be
important in dwarf nova disks in quiescence and in proto-
planetary disks around young stellar objects (Sano & Stone
2002, hereafter Paper I).

The properties of the MRI are strongly affected by the
Hall term (Wardle 1999; Balbus & Terquem 2001). In Hall

MHD the critical wavenumber and maximum growth rate
of the MRI both depend on the direction of the magnetic
field with respect to the angular frequency vector X. The
Hall term can increase the maximum growth rate when the
disk is threaded by a uniform vertical field in the same direc-
tion asX, whereas the MRI can be completely suppressed if
the field is oppositely directed toX.

In Paper I, the effect of the Hall term on the nonlinear
evolution of the MRI was investigated using axisymmetric
numerical MHD simulations. These calculations included
ohmic dissipation as well as the Hall effect because at some
densities both processes may be important. In two dimen-
sions, depending on the relative amplitude of the Hall and
ohmic dissipation terms in the induction equation, the MRI
evolves into either a two-channel flow without saturation or
MHD turbulence that eventually dies away.

In this paper we continue our study of the Hall effect on
the MRI using fully three-dimensional numerical MHD
simulations. Previous studies have shown that only in three
dimensions is sustained MHD turbulence generated by the
MRI (e.g., Hawley, Gammie, & Balbus 1995). Moreover,
the effect of nonaxisymmetric modes on the saturation
amplitude and resulting stress can only be explored in three
dimensions. Previous three-dimensional simulations includ-
ing only ohmic dissipation have shown that there exists a
critical value for the magnetic Reynolds number ReM;crit for
significant turbulence and stress to be generated in the satu-
rated state (Fleming et al. 2000; Sano & Inutsuka 2001).
Moreover, this critical value depends on the field geometry
in the disk (Fleming et al. 2000). The value of ReM;crit has
important implications for the structure and evolution of
accretion disks (Gammie 1996; Glassgold, Najita, & Igea
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Hall effect «does nothing»

hhv2Az=!!ii is also listed in the tables. The meaning of
hhv2Az=!!ii is discussed in x 6.1.

3.2.1. Effect of Initial Field Strength

First we study the effect of the initial field strength.
Figure 5 depicts the saturated Maxwell stress as a function
of the Hall parameter X0 for various models with different
"0. All the models shown in this figure have the same mag-
netic Reynolds number ReM0 ¼ 1. For any "0, the satura-
tion levels in the positive X0 runs are higher than those in

the negative X0 runs. The ratio of the stress between the
X0 ¼ "2 runs is 28, 4.1, and 2.6 for "0 ¼ 800, 3200, and
12,800, respectively. All models withX0 # 0 show large time
variability as a result of the nonlinear growth of the channel
flow, while no growth of the two-channel flow can be seen in
all models withX0 < 0. If we compare models with the same
X0, larger "0 models have a lower saturation level, which
means that the magnetic energy and stress increase as the
initial field strength increases, as in the ideal MHD cases
(Hawley et al. 1995).

Since the linear growth rate of the MRI is higher for
X0 > 0 (Balbus & Terquem 2000; Paper I), this may account
for the higher saturation level in this case. In addition, the
evolution of the MRI shows the recurrent growth of the
channel flow when the Hall parameter is X0 # 1. Since the
channel flow can amplify the magnetic field more efficiently
than disorganized MHD turbulence, this could also be a
reason for the larger saturation level in the positive X0 runs.
This result may also be understood in terms of the linear
properties of the MRI: if X0 # 0, the critical wavelength is
proportional to the field strength #crit $ vA=!, so that #crit
increases as the magnetic energy is amplified, leading to the
emergence of large-scale channel flows. When the Hall
parameter is negative, on the other hand, the critical wave-
number for theMRI is infinity, so that small-scale perturba-
tions are unstable. The MRI continuously excites small-
scale disturbances in this case, and these small fluctuations
impede the nonlinear growth of the two-channel flow.

3.2.2. Effect ofMagnetic Reynolds Number

When the magnetic Reynolds number is very small,
ohmic dissipation can dramatically reduce the linear growth
rate (Jin 1996) and the nonlinear saturation level of the
MRI (Sano & Inutsuka 2001). The dependence of the satu-
rated stress on the magnetic Reynolds number is illustrated
in Figure 6, which shows the time-averaged stress for the
models with ReM0 ¼ 100, 1, and 0.1. The same field strength

TABLE 4

Time- and Volume-averaged Values in Uniform Bz Simulations

Quantity Z2 Z3 Z4 Z12 Z13 Z14

"0 .................................... 3200 3200 3200 3200 3200 3200
ReM0 ............................... 100 100 100 0.1 0.1 0.1
X0.................................... 2 0 %2 2 0 %2
B2
x=8$h ih i=P0 .................. 0.0435 0.0272 0.00974 3.79& 10%5 1.16& 10%4 1.89& 10%6

B2
y=8$

! "! "
=P0 ................. 0.314 0.210 0.0742 2.21& 10%4 6.64& 10%4 2.22& 10%5

B2
z=8$h ih i=P0 .................. 0.0139 0.00913 0.00386 3.37& 10%4 3.81& 10%4 3.14& 10%4

%v2x=2h ih i=P0 ................... 0.0513 0.0333 0.0193 0.00154 0.00335 5.09& 10%5

%&v2y=2
! "! "

=P0 ................ 0.0458 0.0301 0.0125 0.00129 0.00291 2.19& 10%5

%v2z=2h ih i=P0 ................... 0.0160 0.0135 0.00816 0.00833 0.00812 0.00514
hhPii=P0.......................... 2.78 4.63 2.68 26.6 84.7 1.52
hhwMii=hhwRii ................ 4.78 4.95 3.19 0.294 0.226 0.371
hhwMii= B2=8$h ih i ........... 0.454 0.454 0.470 0.457 0.405 0.297
hhPii= B2=8$h ih i .............. 7.81 19.5 32.0 1.04& 105 1.12& 105 7.03& 104

%&v2=2h ih i= B2=8$h ih i ...... 0.318 0.324 0.477 43.8 19.0 241
B2
xh ih i= B2

zh ih i .................. 3.12 2.98 2.52 0.112 0.304 0.00600
B2
y

! "! "
= B2

zh ih i ................. 22.5 23.0 19.2 0.657 1.74 0.0707
v2xh ih i= v2zh ih i .................... 3.21 2.46 2.36 0.184 0.413 0.00992
&v2y
! "! "

= v2zh ih i ................. 2.87 2.23 1.54 0.155 0.359 0.00426
hh"ii................................ 104 316 448 6.78& 104 1.71& 105 4.55& 103

hhReMii .......................... 1.27& 105 8.02& 104 2.88& 104 0.191 0.371 0.108
hhXeff ii ............................ 0.00277 0 %0.0344 1.41 0 %1.86
' ..................................... 0.195 0.130 0.0518 5.12& 10%4 0.00167 2.38& 10%5

Fig. 5.—Saturation level of the Maxwell stress as a function of the Hall
parameterX0 for the models with "0 ¼ 800, 3200, and 12,800. Themagnetic
Reynolds number is ReM0 ¼ 1 for all the models.
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Simulations did not explore the right regime
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ABSTRACT
The destabilizing effect of Hall diffusion in a weakly ionized Keplerian disc allows the
magnetorotational instability (MRI) to occur for much lower ionization levels than would
otherwise be possible. However, simulations incorporating Hall and Ohm diffusion give the
impression that the consequences of this for the non-linear saturated state are not as significant
as suggested by the linear instability. Close inspection reveals that this is not actually the case
as the simulations have not yet probed the Hall-dominated regime. Here we revisit the effect
of Hall diffusion on the MRI and the implications for the extent of magnetohydrodynamic
(MHD) turbulence in protoplanetary discs, where Hall diffusion dominates over a large range
of radii.

We conduct a local, linear analysis of the instability for a vertical, weak magnetic field sub-
ject to axisymmetric perturbations with a purely vertical wave vector. In contrast to previous
analyses, we express the departure from ideal MHD in terms of Hall and Pedersen diffusivities
ηH and ηP, which provide transparent notation that is directly connected to the induction equa-
tion. This allows us to present a crisp overview of the dependence of the instability on magnetic
diffusivity. We present analytic expressions and contours in the ηH–ηP plane for the maximum
growth rate and corresponding wavenumber, the upper cut-off for unstable wavenumbers and
the loci that divide the plane into regions of different characteristic behaviour. We find that
for sign(Bz)ηH < −2v2

A/#, where vA is the Alfvén speeds and # is the Keplerian frequency,
Hall diffusion suppresses the MRI irrespective of the value of ηP.

In the highly diffusive limit, the magnetic field decouples from the fluid perturbations
and simply diffuses in the background Keplerian shear flow. The diffusive MRI reduces to
a diffusive plane-parallel shear instability with effective shear rate (3/2)#. We give simple
analytic expressions for the growth rate and wavenumber of the most unstable mode.

We review the varied and confusing parametrizations of magnetic diffusion in discs that
have appeared in the literature, and confirm that simulations examining the saturation of the
instability under Hall–Ohm diffusion are consistent with the linear analysis and have yet to
probe the ‘deep’ Hall regime |ηH| > ηP > v2

A/# characteristic of protoplanetary discs where
Hall diffusion is expected to overcome resistive damping.

Finally, we illustrate the critical effect of Hall diffusion on the extent of dead zones in
protoplanetary discs by applying a local stability criterion to a simple model of the minimum-
mass solar nebula at 1 au, including X-ray and cosmic ray ionization and a population of 1-µm
grains. Hall diffusion increases or decreases the MRI-active column density by an order of
magnitude or more, depending on whether B is parallel or antiparallel to the rotation axis,
respectively. We conclude that existing estimates of the depth of magnetically active layers in
protoplanetary discs based on damping by Ohm diffusion are likely to be wildly inaccurate.

Key words: accretion, accretion discs – instabilities – MHD – protoplanetary discs – stars:
formation.

!E-mail: mark.wardle@mq.edu.au

C© 2012 The Authors
Monthly Notices of the Royal Astronomical Society C© 2012 RAS
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The incompressible shearing box model

Separate the mean shear from the fluctuations:

Shearing box equations:

H
x

y z
u = �q⌦xey + v

r · v = 0

@tv � q⌦x@yv + v ·rv = �rP +B ·rB � 2⌦⇥ v

+q⌦vxey + ⌫�v

@tB � q⌦x@yB = r⇥ (v ⇥B � xHJ ⇥B)� q⌦Bxey + ⌘�B
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Boundary conditions

Courtesy T. Heinemann
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Use shear-periodic boundary conditions= 
«shearing-sheet»
Allows one to use a sheared Fourier Basis
periodic in y and z (non stratified box)



Spectral methods for shearing boxes
Shearing wave decomposition

Courtesy T. Heinemann
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The Snoopy code
a spectral method for sheared flows

14

MHD equations solved in a co-moving sheared frame
Compute non linear terms using the pseudo spectral method
3rd order low storage Runge-Kutta integrator
Non-ideal effects: Ohmic, Hall, ambipolar (coming soon), Braginskii
Available online http://ipag.osug.fr/~glesur/snoopy.html
Advantages:

Shearing waves are computed exactly (natural basis)
Exponential convergence
Magnetic flux conserved to machine precision
Sheared frame & incompressible approximation: no CFL 
constrain due to the background sheared flow/sound speed.

http://ipag.osug.fr/~glesur/snoopy.html
http://ipag.osug.fr/~glesur/snoopy.html


Testing whistler waves with Snoopy
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Whistler waves are well captured down to the grid scale
Stable explicit scheme (RK3)
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Alfvén waves

Nyquist frequency

Falle (2003) «Explicit Hall-MHD codes are 
unconditionally unstable» Kunz & Lesur (2013): stable for high order schemes



Λ− 1
H

α

0 20 40 60 80 100
10− 7

10− 6

10− 5

10− 4

10− 3

10− 2

10− 1

!H sgn(Bz)
0 0 . 5 1 1 . 5 2

Hall-MRI: turbulent viscosity
Does Hall-MRI look like «ideal» MRI?

⇥t = �csH

Hall-dominated MRI turbulence 7
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Figure 1. Evolution of the kinetic energy in non-rotating shearing boxes
demonstrating the Hall-shear instability. Solid line: a simulation with the
Hall effect and Ohmic diffusion (run ZB1HNR); dashed line: a simulation
with Ohmic diffusion only (run ZB1INR).
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Figure 2.Volume-averaged turbulent transport α as a function of the inverse
Hall Elsasser number Λ−1

H for runs ZB3(I1, H1–9).

that a new saturation mechanism is at work, one that is not related
to the linear properties of the flow.

In order to isolate the cause of this new saturation mechanism,
we focus on the evolution of the box-averaged turbulent transport
at different Λ−1

H (Fig. 4). Simulations withΛ−1
H ! 5 show the same

qualitative behaviour exemplified in ideal- and resistive-MHD sim-
ulations of the MRI—a time-steadyα ∼ few×10−2 withmoderate
transport spikes. The intermediate case (Λ−1

H = 16) shows oscil-
lations between a low-transport state (LTS ≡ α < 10−4) and a
high-transport state (HTS) qualitatively similar to that seen in the
Λ−1

H ! 5 runs. For Λ−1
H = 32 and 100, the turbulence stays in

the LTS after an initial burst caused by the breakup of the chan-
nel mode. Note that the qualitative behaviour observed during the
linear phase in all of these simulations (i.e. t ! 50) is very similar.

Inspecting snapshots of the two extreme cases (Fig. 5) reveals
the origin of the LTS. In the ideal case (Λ−1

H = 0; top), the flow ex-
hibits turbulent fluctuations ofBz . This is the ‘traditional’ saturated
state of the MRI as described by Hawley et al. (1995) and others. In
the Hall-dominated case (Λ−1

H = 32; bottom), we observe a coher-
ent, axisymmetric, large-scale structure inBz , which we refer to as
a zonal magnetic field. In this zonal-field configuration, the verti-
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γ

0 5 10 15 20 25 30
0
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0 . 4

0 . 5
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0 . 7
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Figure 3. Linear growth rate γ as a function of Λ−1
H for simulations

ZB3H(1–9). Each line corresponds to a channel mode with kz = 2πn/Lz .
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Figure 4. Volume-averaged turbulent transport α as a function of time for
different Hall Elsasser numbers (runs ZB3I1, ZB3H3, ZB3H6, ZB3H7,
ZB3H9).

cal magnetic flux is accumulated in some radial (x) region, leaving
most of the box with a very weak Bz (typically |Bz| < 10−3).
In this configuration almost no turbulent activity is observed. Note
that the total vertical magnetic flux is conserved, indicating that this
feature is due to a redistribution of magnetic flux.

3.2.2 Characterising the low-transport state

In the previous Section, we described a new saturated state of the
MRI called the low-transport state (LTS). This state is characterised
by very weak turbulent transport, despite the presence of a vigor-
ous linear instability in the initial equilibrium. Here we conduct a
dedicated study of the LTS by examining our fiducial run ZB1H1
(β = 1000, Λ−1

H = 17.4, Λ−1
η = 1, Λ−1

ν = 0.2) in detail. This
simulation exhibits the same kind of LTS as described above, with
an averaged turbulent transport α = 1.8 × 10−4. Increasing the
resolution to 384 × 192 × 96 does not change the outcome of the
saturated state: a similar LTS is observed, demonstrating that our
simulations have converged.4

4 Due to the extreme cost of such a high-resolution simulation, this partic-
ular run was stopped at t = 160; it is therefore not listed in Table 1.

c© 2013 RAS, MNRAS 000, 1–17

Sano & Stone 2002

Although a powerful instability is present, Hall-MRI 
simulations have a very low level of turbulent transport
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Hall-MRI: turbulent viscosity
Does Hall-MRI look like «ideal» MRI?

Transport is controlled by 

17

Hall-dominated MRI turbulence 11
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Figure 11. Mean turbulent stress versus Hall effect for β = 1000, 3200,
and 10000, and Λ−1
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transport state.

does suggest an explanation for this negative result, a more system-
atic exploration of these cases is needed to verify our conclusions.
This is deferred to a future publication.

4 MEAN-FIELD THEORY OF ZONAL FIELDS AND
FLOWS

In this Section, we formulate a mean-field theory that explains the
observed transport bifurcation from a high- to a low-transport state
and the appearance of zonal magnetic fields and flows. We start
by separating the velocity and magnetic fields into fluctuating and
non-fluctuating parts:

v = v0 + 〈v〉+ δv and B = 〈B〉+ δB.

Upon averaging over azimuth and height, equations (3) and (4) be-
come ∂x〈vx〉 = 0 and ∂x〈Bx〉 = 0, respectively; it follows from
equation (2) that 〈Bx〉 = 0 if it is so initially. For clarity of presen-
tation, we further assume that 〈vx〉 = 0. Not only is this assump-
tion supported by our numerical results, but it also allows us to
cancel global epicyclic oscillations nonessential for understanding
the emergence of zonal fields and flows.

Introducing the Reynolds stress,

Rij ≡ ρδviδvj ,

and the Faraday tensor,

Fij ≡ δviδBj − δvjδBi,

the pertinent mean-field equations are the z-component of the av-
eraged induction equation (2),

∂〈Bz〉
∂t

= −∂〈Fxz〉
∂x

− c
ene

∂2〈Mxy〉
∂x2

+ η
∂2〈Bz〉
∂x2

, (22)

and the z-component of the averaged vorticity equation (5),

∂〈ωz〉
∂t

= −1
ρ
∂2〈Rxy〉
∂x2

+
1
ρ
∂2〈Mxy〉

∂x2
+ ν

∂2〈ωz〉
∂x2

. (23)

The mean vorticity,

〈ωz〉 =
∂〈vy〉
∂x

+ 2A,

in includes a contribution from the background shear (= 2A, which
is negative in Keplerian discs). Note that the averaged Maxwell
stress 〈Mij〉 comprises products of only the fluctuating magnetic
fields.

In order to solve equations (22) and (23), we must construct
models for 〈Fij〉, 〈Rij〉, and 〈Mij〉. The Faraday tensor has been
shown to be accurately modeled by a turbulent resistivity with coef-
ficient ηt (Lesur & Longaretti 2009), and we take this to be the case
in what follows. We follow a similar approach for the Reynolds
stress by modeling it as a turbulent viscosity with coefficient νt.
Adopting these simplifications, our mean-field equations become

∂〈Bz〉
∂t

% (η + ηt)
∂2〈Bz〉
∂x2

− c
ene

∂2M
∂x2

, (24)

∂〈ωz〉
∂t

% (ν + νt)
∂2〈ωz〉
∂x2

+
1
ρ
∂2M
∂x2

. (25)

We consider two models for the Maxwell stress, each of which will
produce zonal behaviour very similar to that seen in our nonlinear
numerical simulations.

4.1 Case I: 〈Mxy〉 = M(〈Bz〉)

As a first approach, we take the xy-component of the Maxwell
stress to be a function only of the local vertical magnetic flux,

〈Mxy〉 ≡ M(〈Bz〉),

and we concentrate on the evolutionary evolution for the mean ver-
tical magnetic field (eq. 24). We suppose that there is some 〈B0

z〉
that satisfies this equation in steady-state (e.g. 〈B0

z〉 constant) and
we examine small deviations 〈B1

z〉 about that state. Linearising
equation (24), we find that such deviations satisfy

∂〈B1
z〉

∂t
%

(

η + ηt −
c

ene

dM
d〈Bz〉

∣

∣

∣

∣

〈B0
z
〉

)

∂2〈B1
z〉

∂x2
. (26)

This equation has a simple interpretation. While resistivity acts dif-
fusively on 〈B1

z〉, the Hall term may be diffusive or anti-diffusive
depending upon the local gradient of the Maxwell stress.

Fortunately, even without a specific model for M , progress
can be made. For sufficiently large values of 〈Bz〉, we expect the
MRI to be stable and M → 0. We also expect M → 0 for suf-
ficiently small values of 〈Bz〉, since unstable modes exist only
at small wavelengths where Ohmic dissipation becomes impor-
tant and suppresses turbulent transport. In between these extremes,
we know that the Maxwell stress is negative since the MRI trans-
ports angular momentum outwards. Therefore, d2M/d〈Bz〉2 < 0,
and so there must be a value of 〈B0

z〉 = Bz,crit above which
dM/d〈Bz〉 > 0 and below which dM/d〈Bz〉 < 0.

First, let us consider 〈B0
z〉 < Bz,crit. Then both the Ohmic

and Hall contributions to equation (26) are positive and any devi-
ations from steady-state diffusively decay. Now let us consider the
opposite case, 〈B0

z〉 > Bz,crit. Then the Ohmic and Hall contribu-
tions to equation (26) have opposite signs and so the Hall effect acts
anti-diffusively. If the Hall effect can overcome diffusive processes,
any increment in the local magnetic flux continues to grow and con-
tract until 〈Bz〉 becomes large enough forM → 0. By flux conser-
vation, there must be accompanying patches of decreased magnetic
flux, which we anticipate having low levels of turbulent transport
as well. We associate this scenario with the transition to the LTS.

We now make these ideas concrete by specifying a simple
model for the Maxwell stress,

c© 2013 RAS, MNRAS 000, 1–18

`H ⌘
✓

mic2

4⇡e2ni

◆1/2 ✓
⇢

⇢i

◆1/2



Hall-MRI animation: Bz

MRI+Ohmic+Hall

18

MRI+Ohmic resistivity



Zonal field structures in Hall-dominated discs

Self Organisation!

Hall-dominated MRI turbulence 9

t

x

0 500 1000 1500 2000

−1

0

1

2

−0 . 1

−0 . 05

0

0 . 05

0 . 1

0 . 15

〈Bz〉 − B 0

t

x

0 500 1000 1500 2000

−1

0

1

2

−0 . 6

−0 . 4

−0 . 2

0

0 . 2

〈ω z〉 − 2A
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suggesting that the MRI is magnetically quenched in that region.
As we will see in Section 4, the presence of a region of magneti-
cally quenched MRI is of particular importance if one is to explain
the presence of zonal-field structures.

In order to verify that the formation of a zonal field is not de-
pendent upon the initial conditions of the simulation, we have also
run a purely resistive (Λ−1

H = 0) MRI simulation with the same pa-
rameters as run ZB1H1. This simulation was run up until t = 630,
at which point the Hall effect was switched on with Λ−1

H = 17.4.
Within ∼4 orbits, the fully developed 3D turbulence disappeared
and was replaced by a large-scale zonal field with an averaged tur-
bulent transport α ∼ 10−4. This demonstrates that the LTS, and
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Figure 8. (y, z, t) averages of the turbulent stress (top) and magnetic field
(bottom) for run ZB1H1. A clear correlation between the Maxwell stress
and the mean vertical magnetic field is exhibited, a feature which is re-
sponsible for the formation and sustainment of a zonal magnetic field (see
Section 3.2.2).

the zonal field associated with it, are robust nonlinear features of
the Hall-dominated MRI.

3.2.3 A criterion for the low-transport state

We have shown that an LTS exhibiting axisymmetric (‘zonal’)
fields emerges in several simulations of the Hall-dominated MRI.
To make any prediction about the saturation level, one must know
when the system will choose the LTS instead of the ‘classical’ tur-
bulent MRI state (HTS). To this end, we have systematically ex-
plored the parameter space (Λη , Λν , β). In this parameter space,
we include a regime which is stable without the Hall effect (runs
ZB10XX). We present in Figure 9 the growth rates of the most un-
stable Hall-MRI modes present in some representative runs from
ZB3XX and ZB10XX. As expected, all the runs but ZB10I1 are
linearly unstable with growth rates γ > 0.1. Note that the vertical
wavelength of the most unstable mode increases with $H (§ 2.6).

In Figure 10 we summarise all our results on a single plot
exhibiting the mean turbulent stress α as a function of $H. Despite
the differing initial β, viscosities, and resistivities, all of the values
of α tend to collapse onto a single curve dependent primarily upon
$H. We find that the system stays in the HTS up to $H " 0.2 for
all our simulations, independent of the mean field strength and of
the resistivity; in this case the typical turbulent stress α ∼ 10−2–
10−1. Beyond $H ∼ 0.2, the system transitions rapidly to an LTS
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suggesting that the MRI is magnetically quenched in that region.
As we will see in Section 4, the presence of a region of magneti-
cally quenched MRI is of particular importance if one is to explain
the presence of zonal-field structures.

In order to verify that the formation of a zonal field is not de-
pendent upon the initial conditions of the simulation, we have also
run a purely resistive (Λ−1

H = 0) MRI simulation with the same pa-
rameters as run ZB1H1. This simulation was run up until t = 630,
at which point the Hall effect was switched on with Λ−1

H = 17.4.
Within ∼4 orbits, the fully developed 3D turbulence disappeared
and was replaced by a large-scale zonal field with an averaged tur-
bulent transport α ∼ 10−4. This demonstrates that the LTS, and
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(bottom) for run ZB1H1. A clear correlation between the Maxwell stress
and the mean vertical magnetic field is exhibited, a feature which is re-
sponsible for the formation and sustainment of a zonal magnetic field (see
Section 3.2.2).

the zonal field associated with it, are robust nonlinear features of
the Hall-dominated MRI.

3.2.3 A criterion for the low-transport state

We have shown that an LTS exhibiting axisymmetric (‘zonal’)
fields emerges in several simulations of the Hall-dominated MRI.
To make any prediction about the saturation level, one must know
when the system will choose the LTS instead of the ‘classical’ tur-
bulent MRI state (HTS). To this end, we have systematically ex-
plored the parameter space (Λη , Λν , β). In this parameter space,
we include a regime which is stable without the Hall effect (runs
ZB10XX). We present in Figure 9 the growth rates of the most un-
stable Hall-MRI modes present in some representative runs from
ZB3XX and ZB10XX. As expected, all the runs but ZB10I1 are
linearly unstable with growth rates γ > 0.1. Note that the vertical
wavelength of the most unstable mode increases with $H (§ 2.6).

In Figure 10 we summarise all our results on a single plot
exhibiting the mean turbulent stress α as a function of $H. Despite
the differing initial β, viscosities, and resistivities, all of the values
of α tend to collapse onto a single curve dependent primarily upon
$H. We find that the system stays in the HTS up to $H " 0.2 for
all our simulations, independent of the mean field strength and of
the resistivity; in this case the typical turbulent stress α ∼ 10−2–
10−1. Beyond $H ∼ 0.2, the system transitions rapidly to an LTS
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M = −0.01(γ/γmax), (27)

where γ is the growth rate obtained by solving the dispersion rela-
tion (eqs 14–17) with K = 2πH−1, B0 = 〈Bz〉, and A = −3/4;
its dependence on 〈Bz〉 is shown in the bottom panel of Figure 12
as the solid line. While we do not advocate such a crude relation-
ship between the nonlinear Maxwell stress and the linear properties
of the Hall-MRI, this model does satisfy all of the qualitative ex-
pectations forM highlighted in the previous two paragraphs. (One
could have equally well approximated M by a non-positive func-
tion quadratic in 〈Bz〉 with upwards concavity.)

Using equation (27), we solve equation (24) in a periodic do-
main of length Lx = 4, in which a uniform vertical magnetic field
of strength 〈Bz〉 = 0.01 is initially disturbed by low-amplitude
white noise.5 The result is graphically presented in the top panel
of Figure 12 and bears a striking resemblance to the results of
the fully nonlinear numerical simulations (top panel of Fig. 7). A
zonal magnetic-field is produced, with accompanying regions of
low magnetic-field strength.

To quantify the evolution of 〈Bz〉, data are collected at fixed
intervals in time along lines of constant x where the magnetic
field achieves its global maximum and minimum; these points are
marked in the top panel of Figure 12 by the white crosses and
white circles, respectively. These data are mapped onto the solid
line (eq. 27) in the bottom panel of Figure 12. Regions of locally
increased magnetic-field strength (red crosses) find themselves as-
sociated with anti-diffusive transport (i.e. dM/d〈Bz〉 > 0), further
increasing their magnetic-field strength and moving to the right
along the curve until M = 0. By contrast, regions of locally de-
creased magnetic-field strength (blue circles) find themselves asso-
ciated with diffusive transport (i.e. dM/d〈Bz〉 < 0), further de-
creasing their magnetic-field strength and moving to the left along
the curve asM → 0. Note thatM %= 0 in the low-field region; oth-
erwise, the necessary inflection point in M(x) would vanish and
the zonal field would diffuse away.

4.2 An analytical criterion for the low-transport state

From these results, we deduce that a transition from a HTS to a LTS
can occur provided that

c
ene

dM
d〈Bz〉

∣

∣

∣

∣

〈B0
z
〉

> η + ηt (28)

for some 〈B0
z〉. To make this criterion more quantitative, we must

estimate the size of each of these terms in the HTS. First, we
neglect molecular resistivity, which we assume to be small com-
pared to the turbulent resistivity. Second, we assume that the tur-
bulent resistivity is related to the turbulent transport via ηt ∼
αΩH2/Pmt, where Pmt ∼ 2 is the turbulent Prandtl number es-
timated for this particular component of the turbulent resistivity by
Lesur & Longaretti (2009).6 Finally, we approximate dM/d〈Bz〉
by αρ(ΩH)2/Bz,stab, using the definition of α and introducing
Bz,stab as the critical magnetic-field strength above which the
longest-wavelength MRI mode is stabilised by magnetic tension.
Using these estimates, the bifurcation condition (28) reduces to

5 In order to regularise the solutions of our mean-field equations, we have
used a hyper-resistivity ∝k4 to damp small-scale growing modes. This ex-
tra term mimics the role played by the z direction, which would destabilise
and damp structures with radial lengths !H .
6 See also Guan & Gammie (2009) and Fromang & Stone (2009) for other
magnetic-field configurations.
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Figure 12. (top) Space-time diagram of the vertically and azimuthally av-
eraged vertical component of the magnetic field 〈Bz〉 in a toy model (§ 4.1)
based upon our mean-field theory. The appearance of a zonal magnetic
field is observed. (bottom) Regions of increased field strength (red crosses)
evolve anti-diffusively towards 〈Mxy〉 = 0, whereas regions of decreased
field strength (blue circles) evolve diffusively towards a low-transport state.

&H "
vA,stab

ΩPmt
, (29)

where vA,stab ≡ Bz,stab/(4πρ)
1/2. Solving the linear dispersion

relation for vA,stab, our criterion becomes &H " 0.2H , tantalis-
ingly close to the value deduced from Figure 11.

4.3 Case II: 〈Mxy〉 = M(〈Bz〉, 〈ωz〉)

Equation (25) indicates that the gradient of the Maxwell stress also
affects the mean vorticity. While the model for the Maxwell stress
presented in Section 4.1 is successful at explaining the bifurcation
from an HTS to an LTS, it does not take into account this effect,
nor does it take into account the feedback of a vorticity-dependent
Maxwell stress on the evolution on the magnetic field. Here, we
generalise the form of theMaxwell stress to allow for this interplay:

〈Mxy〉 = M(〈Bz〉, 〈ωz〉).

To leading order in the perturbation amplitudes, equations (24) and
(25) then become

∂〈B1
z〉

∂t
(
(

η + ηt −
c

ene

∂M
∂〈Bz〉

)

∂2〈B1
z 〉

∂x2
− c

ene

∂M
∂〈ωz〉

∂2〈ω1
z〉

∂x2
,

(30)

∂〈ω1
z〉

∂t
(
(

ν + νt +
1
ρ

∂M
∂〈ωz〉

)

∂2〈ω1
z〉

∂x2
+

1
ρ

∂M
∂〈Bz〉

∂2〈B1
z〉

∂x2
,

(31)
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M = −0.01(γ/γmax), (27)

where γ is the growth rate obtained by solving the dispersion rela-
tion (eqs 14–17) with K = 2πH−1, B0 = 〈Bz〉, and A = −3/4;
its dependence on 〈Bz〉 is shown in the bottom panel of Figure 12
as the solid line. While we do not advocate such a crude relation-
ship between the nonlinear Maxwell stress and the linear properties
of the Hall-MRI, this model does satisfy all of the qualitative ex-
pectations forM highlighted in the previous two paragraphs. (One
could have equally well approximated M by a non-positive func-
tion quadratic in 〈Bz〉 with upwards concavity.)

Using equation (27), we solve equation (24) in a periodic do-
main of length Lx = 4, in which a uniform vertical magnetic field
of strength 〈Bz〉 = 0.01 is initially disturbed by low-amplitude
white noise.5 The result is graphically presented in the top panel
of Figure 12 and bears a striking resemblance to the results of
the fully nonlinear numerical simulations (top panel of Fig. 7). A
zonal magnetic-field is produced, with accompanying regions of
low magnetic-field strength.

To quantify the evolution of 〈Bz〉, data are collected at fixed
intervals in time along lines of constant x where the magnetic
field achieves its global maximum and minimum; these points are
marked in the top panel of Figure 12 by the white crosses and
white circles, respectively. These data are mapped onto the solid
line (eq. 27) in the bottom panel of Figure 12. Regions of locally
increased magnetic-field strength (red crosses) find themselves as-
sociated with anti-diffusive transport (i.e. dM/d〈Bz〉 > 0), further
increasing their magnetic-field strength and moving to the right
along the curve until M = 0. By contrast, regions of locally de-
creased magnetic-field strength (blue circles) find themselves asso-
ciated with diffusive transport (i.e. dM/d〈Bz〉 < 0), further de-
creasing their magnetic-field strength and moving to the left along
the curve asM → 0. Note thatM %= 0 in the low-field region; oth-
erwise, the necessary inflection point in M(x) would vanish and
the zonal field would diffuse away.

4.2 An analytical criterion for the low-transport state

From these results, we deduce that a transition from a HTS to a LTS
can occur provided that
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for some 〈B0
z〉. To make this criterion more quantitative, we must

estimate the size of each of these terms in the HTS. First, we
neglect molecular resistivity, which we assume to be small com-
pared to the turbulent resistivity. Second, we assume that the tur-
bulent resistivity is related to the turbulent transport via ηt ∼
αΩH2/Pmt, where Pmt ∼ 2 is the turbulent Prandtl number es-
timated for this particular component of the turbulent resistivity by
Lesur & Longaretti (2009).6 Finally, we approximate dM/d〈Bz〉
by αρ(ΩH)2/Bz,stab, using the definition of α and introducing
Bz,stab as the critical magnetic-field strength above which the
longest-wavelength MRI mode is stabilised by magnetic tension.
Using these estimates, the bifurcation condition (28) reduces to

5 In order to regularise the solutions of our mean-field equations, we have
used a hyper-resistivity ∝k4 to damp small-scale growing modes. This ex-
tra term mimics the role played by the z direction, which would destabilise
and damp structures with radial lengths !H .
6 See also Guan & Gammie (2009) and Fromang & Stone (2009) for other
magnetic-field configurations.
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&H "
vA,stab

ΩPmt
, (29)

where vA,stab ≡ Bz,stab/(4πρ)
1/2. Solving the linear dispersion

relation for vA,stab, our criterion becomes &H " 0.2H , tantalis-
ingly close to the value deduced from Figure 11.

4.3 Case II: 〈Mxy〉 = M(〈Bz〉, 〈ωz〉)

Equation (25) indicates that the gradient of the Maxwell stress also
affects the mean vorticity. While the model for the Maxwell stress
presented in Section 4.1 is successful at explaining the bifurcation
from an HTS to an LTS, it does not take into account this effect,
nor does it take into account the feedback of a vorticity-dependent
Maxwell stress on the evolution on the magnetic field. Here, we
generalise the form of theMaxwell stress to allow for this interplay:

〈Mxy〉 = M(〈Bz〉, 〈ωz〉).

To leading order in the perturbation amplitudes, equations (24) and
(25) then become
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Mean field model reproduces self-organisation behaviour
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Figure 7. Space-time diagram of the vertically and azimuthally averaged
vertical component of the magnetic field 〈Bz〉 and the vorticity 〈ωz〉 in run
ZB1H1. The appearance of vorticity bands, anti-correlated with the zonal-
field structures, is observed.

outcome of the saturated state: a similar LTS is observed, demon-
strating that our simulations have converged.4

We quantify the presence of a zonal field by defining an aver-
aging procedure,

〈·〉 ≡ 1
LyLz

∫∫

dy dz,

and computing the evolution of the vertically and azimuthally av-
eraged vertical component of the magnetic field 〈Bz〉. In the top
panel of Figure 7 we present the resulting space-time diagram.
This diagram clearly exhibits a strong zonal field with a typical
radial thickness ∼1. Outside of this zonal-field region, the aver-
aged field is weak with |〈Bz〉| ! 10−2. A closer inspection shows
that the system initially exhibits two zonal-field regions, centred
at x % 0.3 and x % 1.8. At t % 160 a rapid reorganisation oc-
curs, and these two regions merge to produce one zonal field that
survives for more than 1000Ω−1. While zonal fields are generally
very long-lived structures in isolation, this demonstrates that they
may become strongly unstable when another is nearby.

It was shown in Section 2.2 that, in the presence of the Hall
effect, a new conserved quantity replaces the magnetic flux: the
canonical vorticity. Since canonical vorticity is conserved without
dissipative effects (e.g. viscosity, resistivity), we expect the for-
mation of axisymmetric bands of vertical vorticity that are anti-
correlated with the zonal fields. To check for this effect, we have

4 Due to the extreme cost of such a high-resolution simulation, this partic-
ular run was stopped at t = 160; it is therefore not listed in Table 1.
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Figure 8. Space-time diagram of the vertically and azimuthally averaged
vertical component of the magnetic field 〈Bz〉 in run ZB1H1L. Two stable
zonal-field regions are produced.

computed the vertically and azimuthally averaged vertical compo-
nent of the flow vorticity 〈ωz〉 = −∂x〈vy〉 + 2A in run ZB1H1.
The resulting space-time diagram is shown in Figure 7b, and clearly
demonstrates the formation of a zonal-vorticity region akin to a
zonal flow. In accordance with expectations from conservation of
canonical vorticity, we also find that the flow vorticity is anti-
correlated with the vertical magnetic field. However, the vorticity
and magnetic field do not have exactly the same shape—the mean
vorticity appears to be concentrated around the edges of the zonal-
field region. This difference is due to the explicit dissipation, and
in particular to the fact that Pm ' 1: magnetic-field lines dif-
fuse quite rapidly through the bulk ion/neutral fluid, whereas vor-
tex lines does not. Therefore, conservation of canonical vorticity is
only approximately verified in our simulations, owing to the pres-
ence of non-negligible dissipative terms.

Since our box size is limited, one may suspect that the pres-
ence of only one zonal-field region in run ZB1H1 is an artifact of
the boundary conditions. To check this, we have performed a sim-
ulation in a wider box (8× 8× 1) with the same physical parame-
ters as run ZB1H1. The space-time diagram of this simulation (run
ZB1H1L) is presented in Figure 8. We observe the formation of
two zonal-field regions of size≈1.5, which survive for the remain-
der of the simulation. This indicates that zonal-field regions have
an intrinsic width independent of the radial and azimuthal box size
(provided the latter is significantly larger than H).

In order to verify that the formation of a zonal field is not de-
pendent upon the initial conditions of the simulation, we have also
run a purely resistive (Λ−1

H = 0) MRI simulation with the same pa-
rameters as run ZB1H1. This simulation was run up until t = 630,
at which point the Hall effect was switched on with Λ−1

H = 17.4.
Within ∼4 orbits, the fully developed 3D turbulence disappeared
and was replaced by a large-scale zonal field with an averaged tur-
bulent transport α ∼ 10−4. This demonstrates that the LTS, and
the zonal field associated with it, are robust nonlinear features of
the Hall-dominated MRI.

To understand how this zonal-field structure is sustained, we
return to the argument given in Section 2.3. In particular, it was
shown that the Maxwell stress directly enters into the induction
equation through the Hall effect. We therefore compute the mean
stress and magnetic field in run ZB1H1, averaging these quantities
in y, z, and time (from t = 500 to t = 600). The resulting pro-
files are presented in Figure 9, and exhibit a very clear correlation
between the averaged Maxwell stress 〈Mxy〉 and the magnetic-
field profile 〈Bz〉. In particular, there are inflection points in the
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outcome of the saturated state: a similar LTS is observed, demon-
strating that our simulations have converged.4

We quantify the presence of a zonal field by defining an aver-
aging procedure,

〈·〉 ≡ 1
LyLz

∫∫

dy dz,

and computing the evolution of the vertically and azimuthally av-
eraged vertical component of the magnetic field 〈Bz〉. In the top
panel of Figure 7 we present the resulting space-time diagram.
This diagram clearly exhibits a strong zonal field with a typical
radial thickness ∼1. Outside of this zonal-field region, the aver-
aged field is weak with |〈Bz〉| ! 10−2. A closer inspection shows
that the system initially exhibits two zonal-field regions, centred
at x % 0.3 and x % 1.8. At t % 160 a rapid reorganisation oc-
curs, and these two regions merge to produce one zonal field that
survives for more than 1000Ω−1. While zonal fields are generally
very long-lived structures in isolation, this demonstrates that they
may become strongly unstable when another is nearby.

It was shown in Section 2.2 that, in the presence of the Hall
effect, a new conserved quantity replaces the magnetic flux: the
canonical vorticity. Since canonical vorticity is conserved without
dissipative effects (e.g. viscosity, resistivity), we expect the for-
mation of axisymmetric bands of vertical vorticity that are anti-
correlated with the zonal fields. To check for this effect, we have

4 Due to the extreme cost of such a high-resolution simulation, this partic-
ular run was stopped at t = 160; it is therefore not listed in Table 1.
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computed the vertically and azimuthally averaged vertical compo-
nent of the flow vorticity 〈ωz〉 = −∂x〈vy〉 + 2A in run ZB1H1.
The resulting space-time diagram is shown in Figure 7b, and clearly
demonstrates the formation of a zonal-vorticity region akin to a
zonal flow. In accordance with expectations from conservation of
canonical vorticity, we also find that the flow vorticity is anti-
correlated with the vertical magnetic field. However, the vorticity
and magnetic field do not have exactly the same shape—the mean
vorticity appears to be concentrated around the edges of the zonal-
field region. This difference is due to the explicit dissipation, and
in particular to the fact that Pm ' 1: magnetic-field lines dif-
fuse quite rapidly through the bulk ion/neutral fluid, whereas vor-
tex lines does not. Therefore, conservation of canonical vorticity is
only approximately verified in our simulations, owing to the pres-
ence of non-negligible dissipative terms.

Since our box size is limited, one may suspect that the pres-
ence of only one zonal-field region in run ZB1H1 is an artifact of
the boundary conditions. To check this, we have performed a sim-
ulation in a wider box (8× 8× 1) with the same physical parame-
ters as run ZB1H1. The space-time diagram of this simulation (run
ZB1H1L) is presented in Figure 8. We observe the formation of
two zonal-field regions of size≈1.5, which survive for the remain-
der of the simulation. This indicates that zonal-field regions have
an intrinsic width independent of the radial and azimuthal box size
(provided the latter is significantly larger than H).

In order to verify that the formation of a zonal field is not de-
pendent upon the initial conditions of the simulation, we have also
run a purely resistive (Λ−1

H = 0) MRI simulation with the same pa-
rameters as run ZB1H1. This simulation was run up until t = 630,
at which point the Hall effect was switched on with Λ−1

H = 17.4.
Within ∼4 orbits, the fully developed 3D turbulence disappeared
and was replaced by a large-scale zonal field with an averaged tur-
bulent transport α ∼ 10−4. This demonstrates that the LTS, and
the zonal field associated with it, are robust nonlinear features of
the Hall-dominated MRI.

To understand how this zonal-field structure is sustained, we
return to the argument given in Section 2.3. In particular, it was
shown that the Maxwell stress directly enters into the induction
equation through the Hall effect. We therefore compute the mean
stress and magnetic field in run ZB1H1, averaging these quantities
in y, z, and time (from t = 500 to t = 600). The resulting pro-
files are presented in Figure 9, and exhibit a very clear correlation
between the averaged Maxwell stress 〈Mxy〉 and the magnetic-
field profile 〈Bz〉. In particular, there are inflection points in the
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 long-lived zonal flows are associated to Hall-MRI
Good for planet formation?



Conclusions

Hall MRI does not saturate like ideal MRI
Turbulent transport reduced by 2-3 orders of magnitude
Production of zonal fields
Mean field theory captures this behaviour
Zonal flows produced by zonal field regions: dust trapping regions?

Open questions:
Stratification, compressibility?
Vertical ionisation profile?
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