Applying a couple of solar wind heating mechanisms to heating coronal loops

Bo Li (BBL@SDU.EDU.CN)

School of Space Science & Physics, Shandong University at Weihai, Weihai 264209, China

In collaboration with: Xing Li @ IMAPS, Aberystwyth University, UK Applying a couple of solar wind heating mechanisms to heating coronal loops

Outline

- Motivations: from wind heating to loop heating
 Models contrasted with TRACE and YOHKOH measurements
- Summary

Observed ion temperature anisotropy

a

Solar wind heating mechanisms (to name but a few)

Ion-Cyclotron resonance (review by Hollweg & Isenberg 02) parallel cascade (Hollweg 86, X. Li et al.99, B. Li et al.04, 05,11, among others)

spectrum sweeping (some heritage from Axford & McKenzie 92; Tu & Marsch 97; X Li et al.03; He et al.08)

Anisotropic turbulence (originated by Matthaeus et al. 99, developed into fluid model by Cranmer & van Ballegooijen 05, Cranmer et al. 07, 12 Verdini et al. 05, 10; Chandran et al. 11, Li & Habbal 12)

basic idea: high-freq (kHz) waves launched by mag. recc. at chromospheric network, absorbed with distance as B decreases
 put into a global fluid model model by Tu & Marsch 97
 can produce a TR + fast wind simultaneously (Li et al.03)

Do they apply to coronal loops?

Words of caution

winds may be fundamentally different from loops

- winds (collision-dominated → collisionless; TR heating often neglected; open tubes: there is no other end)
- loops (collision-dominated; TR heating has to be an ingredient; closed tubes: both ends anchored to photosphere: discrete modes)
- uncertainties exist as to
 - how turbulence cascades and dissipates
 - how to properly account for e⁻ heat flux in TR
- Aim of this presentation
 - present a direct contrast between observations and models constructed using solar wind heating mechanisms

Parallel cascade

waves injected at one end

wave amplitude 10 km/s (Chae et al.98) Temperature = 2×10^4 K free boundary for density, speed

first developed by Li & Habbal 03; explored in O'Neill & Li 05; Li & Li o6; recently Xie & Li, manuscript

cascade: uniform loop

A substantial flow of observed magnitude (~30-40 km/s) results only with asymmetric heating (Li & Habbal 03, Patsourakos et al.04)

Dependence on base correlation length I_0

An observational test

TRACE

YOHKOH/SXT

Does loop expansion help?

 $l_0 = 60 \text{ km } L = 10^5 \text{ km}$

loop expansion constrained by TR measurements (Patsourakos et al.99)

footpoint expansion amounts to momentum deposition, resulting in speed peaks

Dependence on base correlation length I_0

Observational test again

TRACE

YOHKOH/SXT

data compiled by Winebarger et al.03

Does magnetic twist help?

Li & Li 06

- kinetic energy flux; magneto+inertial centrifugal forces associated with azimuthal motion not important
- twist reduces axial thermal conductivity, leading to higher temperature!

Does "waves from both ends" help?

 two wave eqs. solved
 amplitudes at ends chosen such that total fluc. ampl. agree with obs.
 symmetric heating → static loops

Dependence on base correlation length I_0

$L = 10^5 \text{ km}$

19

Does "waves from both ends" help

solid: strong expansion dashed: weak expansion

Summary of preliminary results

- A couple of solar wind heating mechanisms have been applied to heating coronal loops
- Observational test shows parallel cascade help explain some Yohkoh/SXT loops, but not TRACE EUV loops
 - Magnetic twist won't help
 - "Injection from both ends" won't help
- Spectrum sweeping may work
 - but TR heating should be more properly accounted for
 - but a detailed test needs to be done
- Anisotropic turbulence
 - seems worth pursuing but z- and z+ should be properly treated
 - has yet to be incorporated into a fluid model
 - has yet to be tested observationally

BACKUP SLIDES

Anisotropic turbulence

• $Q \propto \frac{\rho[z^-(z^+)^2 + z^+(z^-)^2]}{L_\perp}$

- successful in reproducing fast (Chandran et al.11) and slow wind parameters (Li & Habbal 12)
- turbulence proceeds in the way characterized by critical balance
- dissipated turbulence energy goes to e & p heating

