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Observational Evidence

> X-ray observations (Chandra) show
the emergence of bipolar jets
extending to the SE and NW of

the pulsar;

> A region of diffuse emission (Anvil)
may be associated with shocks and
marks the base of the X-ray and

optical jet;

> Knots of emission are seen along the jets;

> In the SE jet material flows with v/c~0.4 slowing
down to ~0.02 into the nebula;



Jet Wiggling

> SE jet morphology is “S” shaped and show remarkable time
variability:

> -2 evidence for some kind of flow instability (Current Driven ?)



On the Origin of the Jet

Magnetic hoop stress C

> Jet forms downstream of the st o

towards the poles

wind termination shock;

> Magnetic fields confine matter

towards polar axis; ' I
2 . unshocked pulsar wind

with ram pressure

- “tooth-paste” effect: hoop e

stress of the azimuthal Michel (1973)

magnetic field carried by the
wind (Lyubarsky 2002).

> Models confirmed by 2D axisymmetric numerical simulations (komissarov &
Lyubarski 2003,2004, Del Zanna et al. 2004, Bogovalov et al. 2005)



Jet Origin: Axisymmetric Models

> For moderate/large ¢ = B%/(4mpc?y?) magnetic hoop stress suppresses
high velocity outflows in the equatorial plane and divert them towards
the polar axis partially driving the super-fast jet?

Del Zanna et al, A&A (2004) 421,1063



Axisymmetric PWN Models

> Results from 2D axisymmetric simulations predict hollow and hot jets
initially carrying purely axial current (ngqt 0, B, = B; = 0);

» Bz=0-2 Pitch=0; 1.3<Msx<2 (hotjet); p;/p,<10°
» Two free parameters: 0.1 o< 10 and 2 57y < 4;



Jet Models

> We consider a 2-parameter (y, o) family of light, hot jets with
P;/Pe=10"°; M, = 1.7;
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Equations and Numerical Method

> We solve the equations of a relativistic perfectly conducting fluid describing

energy/momentum and particle conservation (relativistic MHD equations)
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> We use the PLUTO'? code for astrophysical fluid dynamics

(http://plutocode.ph.unito.it);

> Linear reconstruction + HLLD Riemann solver;

> Numerical resolution 320 x 320 x 768 zones ( = 20 zones on the jet).

IMignone et al, ApJS (2007) 170, 228; 2Mignone et al, ApJS (2012) 198, 7


http://plutocode.ph.unito.it/

Instabilities in Periodic Jets

> These jet configurations
are unstable to a variety of oo t=0.00 (yrs)

ar: sigma

modes, mainly KH and CD; tggg
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> For non-zero velocities KH o oo
and CD modes mix up?.

> At large magnetizations,
the m=1 CD mode (kink)
prevails.

> At large velocities KH L
modes prevails. ——

!Bodo et al. MINRAS (2013, accepted) c=1; Y = P




A More Realistic 3D Scenario

We consider a 3D Cartesian domain with
X,y € [-0.8, 0.8] (ly), z €[0, 2.5] (ly).

R Remnant

Freely expanding supernova ejecta
(3M,,., E=10""1erg)for0.2<r<1(ly)

sun’

Pulsar wind structure not considered: jet
already formed as the result of the
collimation process;

Supersonic injection nozzle at the lower
z-boundary.



Simulation Cases

» v and o are free parameters. We consider slow and and fast jets
with weak, moderate and strong magnetic fields (6 cases)

y=2 y=4
- >
c=0.1 Al Bl !
c=1 A2 B2
6 =10 A3 B3

Q <€



Results: Case A2

Y=2

o P

Case A2, 1=0.00 (yrs) Case A2, 1=0.00 (yrs)

Volume
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General Features: low speed jets

> Low speed jets advance slowly (v,..4 < 0.02) € large density contrast;
> Evolve entirely inside the remnant;

> Larger o drive magnetically supported jets and show the largest
deflections;

Case A1,1=151.67 (yrs) Case A2, 1=130.09 (yrs) Case A3, t=95.19 (yrs)
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Max: 2.07e+01
Min: 0.00e+00

aaaaa




General Features: high speed jets

> High-speed jets propagete faster (v, .4 < 0.05);
> Reach the outer supernova remnant after = 50 years;

> For large o deflections are present but smaller than low speed jets 2
Lorentz factor has a stabilizing effect.

www.videomach. | www.videomach
Case B1,1=30.14 (yrs) Case B2, 1=47.60 (yrs) Case B3, t=47.60 (yrs)




Propagation Speed

> Jets with y=4 “drill out” of the remnant in less than 50 years...

Jet Position
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Jet Structure

» Back-end regions: quasi-periodic stationary pinch (m=0) shocks;
» Front-end regions: jet fragmentation at deflection sites forming
short-lived unstable structures;

Case A2, 1=9297 (yrs)

Case A2, 1=93 29 (yrs) Case A2, 1=93 60 (yrs)
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Jet Structure

» Front-end regions:
= rapid variability

Case A3, 1=0.00 (yrs)
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10.0

Jet Deflections

» Center of mass =2 amount of

deflection;

0 20 40 &0 80 100 120 140
t (yrs)

> Low-speed (y = 2), magnetized (c = 1)
jets show the largest bending (2 20 R));

> Larger Lorentz factors (y = 4) have a
stabilizing effect?;
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> Weakly magnetized jets less affected
by the growth of instability;
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Flow Direction

> Change in trajectory = variation of the
average propagation velocity.

> Low-speed jets = large-scale curved
structure with 0 gradually changing from
O° (base) to 90° (head);

> High-speed jets stabilized by the larger
inertia, build large kicks at the head.
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Magnetic Fields

> Magnetic field remains mainly toroidal or
helical during the propagation;

> Azimuthal field “shields” the core preventing
interaction with the surrounding?.

> Poynting flux efficiently diverted at the
termination shock and scattered via the
backflow to feed the cocoon.

> Magnetic field dissipates and becomes &
turbulent in the cocoon (= randomization?)

Mignone et al, MNRAS (2010) 402, 7; ?Porth et al., MNRAS (2013)



Current Sheets

» Current sheets localized in two regions:
* at conical pinch shocks
— quasi-steady, periodic
* at jet “kinks” = short-lived episodes

» Magnetic reconnection

—> particle acceleration regions ?
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Summary

> 3D models of azimuthally confined relativistic jets are very
different from 2D axisymmetric models:

= Kink-unstable non-axisymmetric structures with large time-variability;

= lLarge o (= 1) leads to considerable jet deflections, one-sided propagation;
= Jet wiggling progressively more pronounced towards the jet head

= Larger Lorentz factors = stabilizing effect;

= Multiple shocks observed at pinching regions and deflection sites where
flow changes direction;

> Low-speed (y < 2), moderately/highly magnetized jets (c ~ 1-10)
are promising candidates for explaining the morphology of the
Crab jet.

> Future models will consider the jet-torus connection in 3D



Thank you



