Current-Driven Instabilities in the Crab Nebula Jet: Results from Numerical Simultations

Andrea Mignone¹ <u>and</u>: A. Ferrari¹, E. Striani², M. Tavani²

¹Dipartimento di Fisica, Università di Torino (ITALY) ²IASF/IAPS Università di Tor Vergata (Roma, ITALY)

Outline

- **1**. Observational Evidence
- 2. Numerical Models of Relativistic MHD Jets
 - 2D Axisymmetric models
 - 3D models \rightarrow Kink instabilities
- 3. Results
- 4. Summary

Observational Evidence

- X-ray observations (Chandra) show the emergence of bipolar jets extending to the SE and NW of the pulsar;
- A region of diffuse emission (Anvil) may be associated with shocks and marks the base of the X-ray and optical jet;

- Knots of emission are seen along the jets;
- In the SE jet material flows with v/c~0.4 slowing down to ~0.02 into the nebula;

Jet Wiggling

SE jet morphology is "S" shaped and show remarkable time variability:

 \rightarrow evidence for some kind of flow instability (Current Driven ?)

On the Origin of the Jet

- Jet forms downstream of the wind termination shock;
- Magnetic fields confine matter towards polar axis;
 - → "<u>tooth-paste</u>" effect: hoop stress of the azimuthal magnetic field carried by the wind (Lyubarsky 2002).

Models confirmed by 2D axisymmetric numerical simulations (Komissarov & Lyubarski 2003,2004, Del Zanna et al. 2004, Bogovalov et al. 2005)

Jet Origin: Axisymmetric Models

For moderate/large σ = B²/(4πρc²γ²) magnetic hoop stress suppresses high velocity outflows in the equatorial plane and divert them towards the polar axis partially driving the super-fast jet¹

¹Del Zanna et al, A&A (2004) 421,1063

Axisymmetric PWN Models

▶ Results from 2D axisymmetric simulations predict hollow and hot jets initially carrying purely axial current ($B_{\phi} \neq 0$, $B_z = B_R = 0$);

Bz = 0 → Pitch = 0; 1.3 ≤ Ms ≤ 2 (hot jet); $ρ_j/ρ_e ≤ 10^{-6}$ Two free parameters: 0.1 ≤ σ ≤ 10 and 2 ≤ γ ≤ 4;

Jet Models

We consider a 2-parameter (γ, σ) family of light, hot jets with $\rho_j / \rho_e = 10^{-6}; M_s = 1.7;$

$$v_{z}(R) = \sqrt{1 - \frac{1}{\gamma_{j}^{2}}} \psi\left(\frac{R^{8}}{R_{j}^{8}}\right) \qquad B_{\phi}(R) = \begin{cases} B_{m}\frac{R}{a} & \text{for } R \leq a, \\ B_{m}\frac{a}{R}\psi\left(\frac{R^{6}}{R_{j}^{6}}\right) & \text{for } R > a, \end{cases}$$

with ($B_m^2 \propto \sigma$).

Radial momentum balance holds across the beam

$$\left(\frac{\partial p}{\partial r} - \frac{w\gamma^2 v_{\phi}^2}{r}\right)\hat{\boldsymbol{r}} = (\nabla \cdot \boldsymbol{E})\boldsymbol{E} + \boldsymbol{J} \times \boldsymbol{B}$$

Equations and Numerical Method

> We solve the equations of a relativistic perfectly conducting fluid describing energy/momentum and particle conservation (relativistic MHD equations)

$$\begin{split} \frac{\partial(\rho\gamma)}{\partial t} + \nabla \cdot (\rho\gamma\mathbf{v}) &= 0, \\ \frac{\partial\mathbf{m}}{\partial t} + \nabla \cdot [w\gamma^{2}\mathbf{v}\mathbf{v} - \mathbf{B}\mathbf{B} - \mathbf{E}\mathbf{E}] + \nabla p_{t} &= 0, \\ \frac{\partial\mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) &= 0, \\ \frac{\partial\mathcal{E}}{\partial t} + \nabla \cdot (\mathbf{m} - \rho\gamma\mathbf{v}) &= 0, \end{split} \qquad \begin{aligned} \mathbf{m} &= w\gamma^{2}\mathbf{v} + \mathbf{E} \times \mathbf{B} \\ \mathcal{E} &= w\gamma^{2} - p + \frac{\mathbf{B}^{2} + \mathbf{E}^{2}}{2} - \rho\gamma \\ w &= \rho + \frac{\Gamma p}{\Gamma - 1} \end{aligned}$$

- We use the PLUTO^{1,2} code for astrophysical fluid dynamics (<u>http://plutocode.ph.unito.it</u>);
- Linear reconstruction + HLLD Riemann solver;
- > Numerical resolution 320 x 320 x 768 zones (\approx 20 zones on the jet).

¹Mignone et al, *ApJS* (2007) 170, 228; ²Mignone et al, *ApJS* (2012) 198, 7

Instabilities in Periodic Jets

- These jet configurations are unstable to a variety of modes, mainly KH and CD;
- For non-zero velocities KH and CD modes mix up¹.
- At large magnetizations, the m=1 CD mode (kink) prevails.

At large velocities KH modes prevails.

A More Realistic 3D Scenario

- We consider a 3D Cartesian domain with x,y ∈ [-0.8, 0.8] (ly), z ∈ [0, 2.5] (ly).
- Freely expanding supernova ejecta
 (3 M_{sun}, E = 10⁵¹ erg) for 0.2 < r < 1 (ly)
- Pulsar wind structure not considered: jet already formed as the result of the collimation process;
- Supersonic injection nozzle at the lower z-boundary.

Simulation Cases

γ and σ are free parameters. We consider slow and and fast jets with weak, moderate and strong magnetic fields (6 cases)

	γ = 2	γ = 4	
σ = 0.1	A1	B1	
σ=1	A2	B2	
σ = 10	A3	B 3	
	5		

Results: Case A2

р

www.videomach.com

Case A2, t=0.00 (yrs)

σ

General Features: low speed jets

- ➢ Low speed jets advance slowly (v_{head} < 0.02) ← large density contrast;</p>
- Evolve entirely inside the remnant;
- Larger σ drive magnetically supported jets and show the largest deflections;

General Features: high speed jets

- High-speed jets propagete faster (v_{head} < 0.05);</p>
- > Reach the outer supernova remnant after \approx 50 years;
- For large σ deflections are present but smaller than low speed jets → Lorentz factor has a stabilizing effect.

Propagation Speed

> Jets with γ =4 "drill out" of the remnant in less than 50 years...

Jet Structure

Back-end regions: quasi-periodic stationary pinch (m=0) shocks;
 Front-end regions: jet fragmentation at deflection sites forming short-lived unstable structures;

Jet Structure

Jet Deflections

- ➤ Center of mass → amount of deflection;
- > Low-speed ($\gamma \approx 2$), magnetized ($\sigma \gtrsim 1$) jets show the largest bending ($\gtrsim 20 \text{ R}_i$);
- ➤ Larger Lorentz factors (γ ≈ 4) have a stabilizing effect¹;
- Weakly magnetized jets less affected by the growth of instability;

Flow Direction

$$\bar{\theta}_{\pm} = \operatorname{acos}\left\langle \frac{v_{z,\pm}}{|v|}, \chi_j \right\rangle$$

- ➤ Change in trajectory → variation of the average propagation velocity.
- Low-speed jets → large-scale curved structure with θ gradually changing from 0° (base) to 90° (head);
- High-speed jets stabilized by the larger inertia, build large kicks at the head.

Magnetic Fields

- Magnetic field remains mainly toroidal or helical during the propagation;
- Azimuthal field "shields" the core preventing interaction with the surrounding¹.
- Poynting flux efficiently diverted at the termination shock and scattered via the backflow to feed the cocoon.
- ➤ Magnetic field dissipates and becomes turbulent in the cocoon (→ randomization²)

Current Sheets

- Current sheets localized in two regions:
 - at conical pinch shocks
 - \rightarrow quasi-steady, periodic
 - at jet "kinks" \rightarrow short-lived episodes Case A3, t=64.73 (yrs)

Summary

- > 3D models of azimuthally confined relativistic jets are very different from 2D axisymmetric models:
 - Kink-unstable non-axisymmetric structures with large time-variability;
 - Large σ (\gtrsim 1) leads to considerable jet deflections, one-sided propagation;
 - Jet wiggling progressively more pronounced towards the jet head
 - Larger Lorentz factors \rightarrow stabilizing effect;
 - Multiple shocks observed at pinching regions and deflection sites where flow changes direction;
- Low-speed (γ ≤ 2), moderately/highly magnetized jets (σ ≃ 1-10) are promising candidates for explaining the morphology of the Crab jet.
- Future models will consider the jet-torus connection in 3D

Thank you