Modeling Mars-Solar wind interaction

R. Modolo, F. Leblanc, S. Hess, JY Chaufray, M. Yagi, G. Chanteur, F. Forget, F. Galindo-Gonzales, C. Mazelle, S. Grimald, L. Lorenzato et al LATMOS, LMD, LPP, IRAP France

Outline

- Introduction
- Brief presentation of the hybrid model
- A 3D thermosphere-exosphere-(ionosphere)magnetopshere coupling
- Effect of Crustal Fields on the Martian environment

HELIOSARES project (2009-2014)

A generic 3D multi-species parallel hybrid model dedicated to plasma interaction with solar system objects

<u>Simulation model :</u> Hybrid formalism – kinetic description for ions and fluid description for electrons

Parallel computation : MPI standards

General information and model performances

	Low Resolution	Medium Resolution	High Resolution
Spatial step	160 km	80 km	50 km
Grid	127x202x202	187x354x356	450x730x730
# of particles	$40x10^{6}$	260x10 ⁶	9x10 ⁹
# time steps	12000	12000	20000
CPU time	509h	4600h	43000h (~5 years)
Memory	11.3Gb	52Gb	420Gb
#CPU, #nodes	32 / 1	48 / 2	128 / 2
Restitution time	16h	96h	336h (2weeks)

100

Description of the model

- Larmor radii of planetary ions ≥ radius of the obstacle
- \Rightarrow Kinetic description of ions is more appropriate at higher altitude
- Hybrid formalism :
 - Ions are described by macro-particles
 - Electrons are treated as a neutralizing inertialess fluid
 - Maxwell's equations reduce to divB=0, Ampere's and Faraday's equations
 - Specific features for planetary environments
 - ➤ Weigthed macro-particles ⇒ description of a large range of density (10⁻³ →10⁴ cm⁻³)

Diversity of neutral environment description :

- •Analytical density profiles
- •Load 3D from thermosphere GCM model :

LMD, Paris, F. Forget, JY. Chaufray Univ. Michigan, S. Bougher

Load 3D exosphere:

LATMOS Monte Carlo model, F. Leblanc, JY Chaufray

Many charged species are represented :

Mars : H⁺_{sw}, He⁺⁺, H⁺_{pl}, O⁺, O₂⁺,CO₂⁺

2 electronic fluids (solar wind / ionospheric)

- Plasma/neutral coupling taken into account self-consistently, distinction between ionisation processes
 - Photoionisation \Rightarrow $hv + X \rightarrow X^+ + e^-$
 - Electronic impacts \Rightarrow X + e⁻ \rightarrow X⁺ + 2e⁻
 - Charge exchange reactions \implies M⁺ + X \rightarrow M + X⁺

Ionization rates are computed locally from neutral densities and ionisation frequencies or cross sections

- Simplified ionospheric chemistry
- Crustal fields

1- Coupling magnetospheric + exospheric + GCM models : 1st attempt

□ 3D thermosphere + exosphere (Yagi et al, 2012)

-Thermal CO2

-Thermal + Non-thermal O

-Ls 0°-30° (Spring)

-Solar mean

□ 3D Hybrid with ionospheric description

 n_{sw} =2.7 cm-3 B_{IMF} =(0,0,3)nT Δx =60 km (0.45 c/w_p V_{sw} = 450 km/s (11 V F10.7cm = 120 no Crustal fields

n_3		Reactions	Rate coefficients	Column rate
1-2	1	$\mathrm{CO}_2 + h\nu \longrightarrow \mathrm{CO}_2^+ + e$	$\lambda < 902$ Å	$1.24e^{+10}$
3)nT	2	$CO_2 + h\nu \longrightarrow O^+ + CO + e$	$\lambda < 650$ Å	$1.09e^{+9}$
(0 A E a / w)	3	$O + h\nu \longrightarrow O^+ + e$	$\lambda < 911 \ { m \AA}$	$1.20e^{+8}$
(0.45 C/W _{pi})	4	$\mathrm{H} + h\nu \longrightarrow \mathrm{H}^+ + e$	$\lambda < 911 ~{ m \AA}$	$1.00e^{+5}$
$m/s (11 V_{A})$	5	$\mathrm{CO}_2^+ + \mathrm{O} \longrightarrow \mathrm{O}_2^+ + \mathrm{CO}$	$1.64 e^{-10}$	$8.07 e^{+9}$
120	6	$\mathrm{CO}_2^+ + \mathrm{O} \longrightarrow \mathrm{O}^+ + \mathrm{CO}_2$	$9.6e^{-11}$	$4.72e^{+9}$
120	$\overline{7}$	$O^+ + CO_2 \longrightarrow O_2^+ + CO$	$1.1e^{-9}$	$6.28e^{+9}$
fields	8	$O_2^+ + e \longrightarrow O + \tilde{O}$	$7.38e^{-8}$	$1.36e^{+10}$
	9	$\overline{\mathrm{CO}}_2^+ + e \longrightarrow \mathrm{CO} + \mathrm{O}$	$3.88 \mathrm{e}^{-7} (300/T_e)^{0.5}$	$7.52e^{+9}$

Numerical solution presented after 500 sw proton gyroperiods (corresponds to about 40 transit time of SW ions in the box)

Thermal+Non-thermal O (Input)

Dn O log[cm-3] time:t00600

Dn O log[cm-3] time:t00600

0

1

35

30

25

20

15

10

5

Bow shock and Induced Magnetospheric Boundary position in good agreement with Phobos-2, MGS and MeX oservations

Global structures well reproduced

iteraction, Astronum 2013, Biarritz

- A cavity void of SW ions is clearly seen and in agreement with MeX observations.
- This region is populated by heavy planetary ions which does not mix with the SW plasma.
- Strong asymetry of the planetary plasma maps (opposite to Econv direction)

Toward a thermospheric-exospheric-ionosphericmagnetospheric coupling

Goal: to get accurate ion escaping flux and investigate seasonal effect on planetary plasma we need an accurate ionospheric description

Procedure : coupling with ionospheric and thermospheric model to get a a 3D ionosphere + exospheric model (3D exosphere)

2-CF effects on the Martian environment

- Ma et al, 2002 (MHD)
 - CF did not cause major distorsion on the BS.
 - affect locally the altitude of the ionopause and magnetosheath
 - presence of CF slightly decreases escape rates
- Brecht and Ledvina, 2012 (hybrid)
 - presence of CF changes global BS shape and location
 - decreases by 20 the O+ escape rate and by 30 the O2+
- Comparison of 3 simulations (same inputs, $\Delta x=80$ km) : 1/ without CF, 2/ position of main CF 0°, 3/ position of main CF 90°

- BS position seems not affected by crustal fields presence and orientation
- MPB is locally affected
- Crustal fields change the magnetic topology of the induced magnetosphere

- Planetary plasma dynamic sensitive to the presence of curstal fields and their locations
- plasma sheet density and structure modified by CF.
- « ionopause » higher in dayside close field lines region

Escape rates

• Ma et al (2007) results

	Solar Wind Density, cm ⁻³	Solar Wind Velocity, km/sec	Solar Condition	"Position" of Crustal Field
Case 1	2	300	solar minimum	0°
Case 2	2	300	solar minimum	90°
Case 3	2	300	solar minimum	180°
Case 4	4	400	solar minimum	0°
Case 5 ^a	2	300	solar minimum	0°
Case 6	4	400	solar maximum	0°
Case 7°	20	1000	solar maximum	0°

Table 1. Input Parameters Used for the Different Calculations

^aCase 5 is the same as case 1 except that charge exchange and impact ionization of the corona were not included.

^bThe magnetic field was set to $B_y = 20 \text{ nT}$ for case 7.

Table 2. Calculated Escape Rate^a

	O ⁺	O_2^+	CO_2^+	Total
Case 1	3.3×10^{23}	1.00×10^{23}	5.7×10^{22}	4.9×10^{23}
Case 2	4.7×10^{23}	2.8×10^{23}	1.1×10^{23}	8.6×10^{23}
Case 3	4.4×10^{23}	2.5×10^{23}	1.2×10^{23}	8.1×10^{23}
Case 4	7.2×10^{23}	1.9×10^{23}	1.3×10^{23}	1.0×10^{24}
Case 5	1.3×10^{23}	9.3×10^{22}	4.9×10^{22}	2.7×10^{23}
Case 6	1.8×10^{24}	4.1×10^{23}	1.8×10^{23}	2.4×10^{24}
Case 7	2.3×10^{25}	3.3×10^{24}	4.1×10^{24}	3.0×10^{25}

^aEscape rates in sec⁻¹.

Estimate for this study (escape rate in s-1)

CF location	0+	02+	CO2+	Total
N/A	1.0x10 ²⁵	6.4x10 ²³	1.8x10 ²³	1.0x10 ²⁵
0° Lon	7.2x10 ²⁴	1.9x10 ²⁴	3.8x10 ²³	9.4x10 ²⁴
90° Lon	6.9x10 ²⁴	1.2x10 ²⁴	1.0x10 ²³	8.1x10 ²⁴

- Up to 30% decrease in escape rates due to CF presence
- Globally in agreement with Ma et al (2007), disagreement with Brecht and Ledvina (2012)

Summary

• 3D parallel multi-species hybrid model developped for planetary environments :

-Mars -Ganymede -Mercury -Titan

- Best spatial resolution achieved for kinetic models (Mars : 50-60 km uniform grid)
- Coupling with GCM (LMD GCM or MTGCM, Bougher's model) and exospheric models => consistent and realistic description of neutral coronae
- 'Full' coupling thermosphere-exosphere-ionosphere-magnetosphere in progress
- Presence of **crustal fields** :
 - CF did not cause major distorsion on the BS.
 - affect locally the altitude of the ionopause and magnetosheath
 - presence of CF slightly affect escape rates

- in agreement with Ma et al (2007) MHD model and Nadjib et al (2011) multi-fluid MHD

Many applications

UNIVERSITÉ DE VERSAILLES