### Global Simulations of Accretion onto Magnetized Stars: Results of 3D MHD Simulations and 3D Radiative Transfer

M. Romanova (Cornell), Ryuichi Kurosawa (MPI, Bonn) A. Blinova, M. Long (Chicago), R. Lovelace (Cornell), A. Koldoba, G. Ustyugova (Moscow)

### Young, classical T Tauri Stars (CTTS)



- Young stars, like our Sun in the past, 1-10 Myr
- Magnetic field is 1000 times larger than the Sun's field
- The magnetic field opens a gap in the disk
- Matter falls to polar regions forming the hot spots
- Observational properties disk-magnetosphere interaction

# **Numerical Model**

- 3D, 2<sup>nd</sup> order Godunov-type (Koldoba et al. 2002)
- Cubed sphere grid, 61x61x140
- Disk  $\alpha$  disk ( $\alpha_{vis}$ =0.02)
- Initial equilibrium, disk and corona
- Dipole or more complex field



## **Ideal MHD Equations:**

Equations are written in the coordinate system rotating with a star Splitting of the field:  $B = B_0 + B_1$  (*Tanaka 1994*)



## **Stable and Unstable Regimes**



- Stable: accretion in two ordered funnel streams
- Unstable: matter accretes in chaotic tongues, Rayleigh-Taylor instability

Kulkarni & Romanova 2008; R., Kulkarni & Lovelace 2008; Arons & Lea (1976)

## **Stable and Unstable Regimes**



## An Example of Unstable Accretion



### What determines the regime?



Spruit et al. 1995; Lubow & Spruit 1993; Kaisig, Tajima, Lovelace 1992

### Observations: Variability of T Tauri stars

#### Periodic



#### **Non-Periodic**



**PERIODIC:** Spots + Stellar Rotation

APERIODIC: Origin ? Stars have strong B-field. Period ?

- CoRoT observations of 83 CTTSs in NGC 2264,
- Alencar, Bouvier et al. (2010)
- About 40% of CTTSs show irregular light curves!

# Testing the Magnetospheric Accretion



Project our MHD data to the *TORUS* grid (velocity, density) Adaptive Mesh refinement of *TORUS* code Spectrum in H and He lines and images in lines

Kurosawa, Romanova, Harries 2008, 2011; TORUS - Tim Harries

## Radiative Transfer Code TORUS

Non-LTE population of H and He atoms obtained by using the method described in Klein & Castor (1978) – originally developed for O star wind model.

#### Main assumptions:

- 1. Core-Halo approach: Continuum radiation is dominated by the "core", but not by accretion flows.
- 2. Sobolev approximation: assumes the velocity gradient is large in the wind/accretion.

– e.g. the mean intensity  $(J_{ij})$  is expressed in terms of "escape probabilities  $(\beta_{ij}, \beta_{c,ij})$  (e.g. Castor 1970)

$$\mathcal{J}_{ij} = (1 - \beta_{ij}) \frac{2h\nu_{ij}^3}{c^2} \left(\frac{g_j}{g_i} \frac{n_j}{n_i} - 1\right)^{-1} + \beta_{c,ij} I_{c,ij}$$

### **Mass-Accretion Rate**



Took 25 slices per rotation, 3 periods of rotation

- Use the density and velocity fields and compute the corresponding line profiles and continuum flux
- Model includes the effect of hot spot radiation (variable size and shapes)

## **Simulations: Light Curves**

 Unstable case: irregular light curves due to stochastic formations of "tongues" and hotspots.





# Lightcurve: CTTS TW Hya



- Left: MOST's observation lightcurve by Rucinski et al (2008)
- Model shows a similar number of random peaks per stellar rotation.
- The amplitudes of variations are also similar.
- Need more analysis - SPECTRUM !

Kurosawa & Romanova 2013

## Time-Evolution of H $\delta$ line profile



Kurosawa & Romanova 2013

## Time-Evolution of $H\delta$ line profile



### Unstable regime

Redshifted absorption is seen more frequently

Kurosawa & Romanova 2013

### **Persistent Redshifted Absorption**



Redshifted absorption component appears once per rotation.

Variable but persistent redshifted absorption component

## Comparison with Observations: Line Variability





Significant intrinsic variability (stochastic) as in our model.

Non-Periodic Line Variability:

• TW Hya (Donati et al. 2011), DR Tau (Alencar et al. 2001) etc.

**PREDICTION**: Variable spectra, redshifted absorption – signs of accretion through R-T INSTABILITY. There are candidates CTTSs.

### Magnetic Field in CTTSs is Complex

### SU Auriga

V 2129 Oph





### **Accretion onto Stars with Complex Fields**

 $B = B_{dip} + B_{quad} + B_{oct} + \dots$  ${
m B(r)}\sim rac{\mu_1}{r^3}+rac{\mu_2}{r^4}+rac{\mu_3}{r^5}$  ·







### Magnetic field of V2129 Oph & BP Tau



Dipole: 0.35 kG (0.9 kG) Octupole: 1.2 kG (2.1 kG) Dipole: 1.2 kG Octupole: 1.6 kG

Donati, Jardine, Gregory et al., 2007-2013

### Aligned Quadrupole and Dipole Fields



### Dipole + Quadrupole





### **Octupole Field**



Long, Romanova, Lamb, Kulkarni, Donati 2009

### Initial field of V2129 Oph in our Model



M=1.35 M\_Sun R=2.4 R\_Sun P=6.35 days Rcor=6.8 R\_star M\_dot=6.3 10<sup>10</sup> *Donati et al., 2007* 



### Application of model to T Tau star V2129 Oph



**3D** simulations

Romanova, Long, Lamb, Kulkarni, Donati 2009

### Application of model to T Tau star V2129 Oph



- Calculated 3D MHD flow
- Calculate spectrum in Hydrogen lines using 3D code TORUS
- Compared spectrum with observations

## Hβ Profiles and Images



### Model: Flux map in Hβ

Model: H8 Profiles

Observation: Alencar et al. (2011)

Good agreement between 3D MHD + 3D RT simulations and observations

This is a new tool for testing models and confronting them with observations

Page 27

## Conclusions

- Developed 3D MHD + 3D radiative transfer tool for analysis of young stars
- Can compare photometric and spectral variations in
   observed and modeled stars, can validate MHD models
- Can predict new phenomena such as accretion through instabilities – persistent redshifted absorption