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1.1. Poynting Dominated Plasma of Astrophysical Phenomena

Gamma ray burst

Pulsar Wind Nebula

Relativistic Jet
ref ) M.V.Barkov & A.N.Baushev 2011
       New Astronomy 16, 46-56

Fast Dissipation
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A New Method
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ref ) MT & S, Inutsuka., (2011), JCP, 230, 7002
       MT & T, Inoue., (2011), ApJ, 735, 113
       Y. Akamatsu, S. Inutsuka, C. Nonaka, MT,
         arXiv1302.1665



2.1. Difficulty of relativistic resistive MHD

in non-relativistic MHD, 
resistivity can be considered as follows:

evolution of electric field E is neglected !
 => covariance of Maxwell equation 
         is broken !!
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Dispersion relation of the parabolic energy equations is

Lorentz transformation into Lab frame: 

Solutions Γ± must satisfy the following conditions

2.2. Unphysical Mathematical Divergence

One solution  is 
always unstable !!
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2.3.  A Solution　ーTelegrapher Eq.ー

Considering correction terms including time derivatives

The above equations reduce to

Telegrapher Equation ⇒ Causal !!
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:Evolution of fluid

:Evolution of dissipation



2.4.  Basic equations of resistive RMHD

To satisfy causality, 
evolution of electric field has to be considered !!

basic equations are:

+

Maxwell equations
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2.5.  Another Difficult Point

evolution equations of electric field

highly stiff equations !!
difficult to solve ...
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2.6.  Piecewise Exact Solution Method

Point:

stiff part of equations 
for electric field

First terms of right-hand side are independent of time
since they are split from fluid equations.

⇒ Solvable using the formal solution
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splits the fluid part and the electromagnetic part, the sound velocity cs can be set

equal to zero. Then, the characteristic equation Eq. (63) reduces to

ρhγ2(vx − vfm)2 = (1 − v2
fm)|b|2. (64)

By using the quadratic formula, one can obtain solutions of above equation:

vfm =
ρhγ2vx ± |b|

√
|b|2 + (1 − (vx)2)ρhγ2

ρhγ2 + |b|2 . (65)

To sum up, we only have to substitute the appropriate characteristic velocities vAL, vAc,

and vfm into cch in Eq. (54), and calculate the electromagnetic field E, B at half time step.

Then, the numerical fluxes of electromagnetic hydrodynamics equations are given by

F ix
m,EM = −Ei

AcE
x
Ac − Bi

AcB
x
Ac +

[
1

2
(E2

fm + B2
fm)

]
gix, (66)

F x
e,EM = (Efm × Bfm)x, (67)

where EAc, BAc means that they are calculated by using the Alfvén velocity in comoving

frame, and Efm, Bfm by using the fast magnetosonic wave velocity in laboratory frame. For

the numerical flux of the Maxwell equation, one has to use the Alfvén velocity in laboratory

frame vAL for the calculation.

3.3. Stiff part

As explained Sec. 3.1, Eq. (44) contains stiff terms. Following the previous work K07,

we split the equation into components normal and parallel to the velocity vector.

∂tE‖ + σγ
[
E‖ − (E · v)v

]
= 0, (68)

∂tE⊥ + σγ [E⊥ + v × B)] = 0, (69)

Since we use the Strang splitting method, the right-hand side of the above equations can

be considered constant other than the electric field E. As a result, these equations can be
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solved analytically

E‖ = E0
‖ exp

[
−σ

γ
t

]
, (70)

E⊥ = E∗
⊥ + (E0

⊥ − E∗
⊥) exp [−σγt] , (71)

where E∗
⊥ = −v × B and suffix 0 indicates the initial component. If we use the explicit

integrator, the stiff equation has to be solved in very small time steps ∆t. However, since

Eqs. (70) and (71) are formal solutions, we can avoid the stability constraints of the time

step. In the context of ambipolar diffusion in partially ionized plasma, a similar numerical

technique using the piecewise formal solution of stiff part is known to be useful scheme

(Inoue et al. 2007; Inoue & Inutsuka 2008; Inoue & Inutsuka 2009).

3.4. Constraint Equations

It is well known that Eqs. (9) and (10) are constraints on the Cauchy surface. Though

Maxwell equations ensure that these constraints are preserved at all times, straightforward

numerical integration of Maxwell equations does not preserve these properties because of

the accumulated numerical error. This causes corruption of numerical results, and results

in a crash in the end. For this reason, there are a number of numerical techniques for

avoiding this problem, and we adopt constrained transport (CT) for the magnetic field

and hyperbolic divergence cleaning for the electric field. The main idea of the hyperbolic

divergence cleaning is that one defines new variable Ψ as the deviation from constraint

equations, and arranges a system of equations to decay or carry the deviation Ψ out

of the computational domain by high speed waves. The detailed explanation of CT is

presented in Sec. 3.7.2 (see also references (Stone & Norman 1992; Stone & Norman 1992;

Stone et al. 1992; Hawley & Stone 1995)).

:Formal
solutions
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ref ) Komissarov, (2007), MNRAS, 382, 995
       T.Inoue & Inutsuka, (2008), ApJ, 687, 303
       MT & T. Inoue., (2011), ApJ, 735, 113



Split basic equations as follows:

 Electromagnetohydrodynamics equations

fluid part   +  electromagnetic part
・fluid part        = Riemann solver

・electromagnetic part 

                         = method of characteristics
                         + Piecewise Exact Solution
                            (PES)

2.7.  Numerical Scheme
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ref ) MT & S, Inutsuka., (2011), JCP, 230, 7002
       MT & T, Inoue., (2011), ApJ, 735, 113



Applications
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3.1. Fast Reconnection by Plasmoid-Chain

If S reaches a critical value: 

δn

   Ln

   Ln+1δn+1

ref ) Shibata & Tanuma, 2001,  EPS, 53, 473
       Uzdensky et al, 2010, PRL, 105, 235002

 global reconnection rate becomes independent of S:
          vin / cA ~ 10-2   (non-relativistic cases)

 S > Sc ~ 104 
     (very long sheet)

Sweet-Parker Reconnection
   = very slow ... (τR ∝ √S )
           (S = L cA /η)

(Plasmoid-Chain)

Current sheet will be filled by a lot of plasmoids...
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3.2. Relativistic Plasmoid-Chain

log
10

[k
B
T / mc2]

Fig. 1.— The snapshots of the temperature profile kBT/mc2 of runs B1-B4 just before the largest plasmoid
run away from the numerical domain where tA = δ/cA is the light crossing time across the current sheet.

domain and its value increases up to ∼ 0.05cA;
after the escaping of the plasmoid, the plasmoid-
chain reaches a statistical steady state and the av-
eraged reconnection rate is about 0.03cA, which is
approximately twice larger than that of the rel-
ativistic tearing instability without a plasmoid-
chain (Takahashi et al. 2011). We will discuss this
value later. Note that the reconnection rate of
run B1 takes less value comparing with other runs.
This is because in this case the plasmoid instability
does not grow sufficiently as can be seen in the Fig.
2 and this reduces its reconnection rate comparing
with other runs including the plasmoid-chain. We
discuss later the reason why the plasmoid insta-
bility does not grow in this case.

Figs. 3 are the plot of the time averaged
reconnection rate 〈vR/cA〉 with respect to the
Lundquist number SL. The top panel is the rel-
ativistically strong magnetic field case, σ = 14,
and the bottom panel is the non-relativistic mag-
netic field case, σ = 0.14. We calculate the time
average between the initial time and a saturation
time when the plasmoid-chain reaches a statistical
equilibrium state and the averaged reconnection
rate saturates. As indicated in the non-relativistic
work, we find that the reconnection rate is inde-
pendent of the Lundquist number when it is larger
than a critical value Sc. In the small Lundquist
number region, SL < Sc, we find the ordinal S−1/2

L

dependence of the reconnection rate predicted in
Eq. (A11) and other references (Lyutikov & Uz-
densky 2003; Lyubarsky 2005). In our calcula-
tions, the critical value of the weakly magnetized
case is Sc ∼ 104, which is the same value as in-
dicated in the non-relativistic work; on the other
hand, in the strongly magnetized case the critical
value is Sc ∼ 2−5×103, which is a little less than
that of the weak magnetic field case. This can
be explained as follows. After generating plas-
moids, the current sheet between the plasmoids
will become the Sweet-Parker current sheet. In
this case, the sheet thickness can be obtain by Eq.
(A4). If we assume the reconnection jet velocity
is the Alfvén velocity, the sheet thickness can be
written as, δ = L/

√
2σinSL, where we used Eq.

(A22) to estimate vin. This means the sheet thick-
ness decreases with increasing the magnetic field
strength. On the other hand, the growth time of
the tearing instability is, ∼

√
δ3/ηcA. Using these

2 equations, the growth time of the tearing insta-
bility of the secondary current sheet is

τtearing,2nd ∼ τA,L

(2σin)3/4S1/4
L

∝ σ−3/4
in c−5/4

A . (8)

This means as the magnetic field strength be-
comes strong, the secondary tearing instability
grows faster and the plasmoid instability occurs
much easier, especially along the reconnection jet

5

Pressure profiles

Weakly Magnetized:
σ < 1

Poynting-Dominated:
σ > 1

ref )  MT & T, Inoue., (2011), ApJ, 735, 11
         MT, (2013), submitting to ApJ
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3.3. Lundquist Number Dependence
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Fig. 3.— The plot of the time averaged reconnec-
tion rate 〈vR/cA〉 with respect to the Lundquist
number SL. Top: The strongly magnetized case:
σ = 14. Bottom: The weakly magnetized case:
σ = 0.14

resulted by the initially triggered plasmoid. Sim-
ilarly, Using the characteristic wavelength of the
tearing instability, λtearing ∼ δ[δcA/η]1/4, the
characteristic wavelength of the secondary tearing
instability can be obtained as:

λtearing,2nd ∼ L/[(2σin)5/8S3/8
L ] ∝ σ−5/8

in c−3/8
A .

(9)
This also indicates that the plasmoid instability
evolves more easily as the background magnetiza-
tion parameter becomes larger. Note that Eq. (9)
means background plasma with larger magnetiza-
tion parameter demands smaller Lundquist num-
ber with respect to the sheet length for the plas-
moid instability due to the smaller characteristic
wavelength of the instability. This also supports
our numerical results, Figs. 3, which indicates
the critical Lundquist number becomes smaller as
the magnetization parameter of the background
plasma becomes larger.

As is pointed out in (Uzdensky et al. 2010),
the reconnection rate of the plasmoid-chain can
be written as, vR/cA = 1/

√
Sc, using the relation

of the Sweet-Parker sheet. If we use the above

critical values, Sc = 3 × 103, in the strongly mag-
netized case, the reconnection rate is ∼ 0.02cA,
which agrees with the indicated values in the top
panel of Figs. 2.

4.3. Evolution of Plasmoid Structure

Fig. 4.— Snapshots of the density profile of the
initially triggered plasmoid in the case of σ = 1.4.
The left panel is at t = 340tA and the right panel
is at t = 390tA.

Figs. 1 show that the aspect ratio of plas-
moids takes different value depending on the mag-
netization parameter σ; the aspect ratio seems to
be shorter as the magnetization parameter σ in-
creases. This can be explained as follows. The left
panel of Figs. 4 is the density profile of a plasmoid
at t = 340tA. This figure shows its aspect ratio is
about 14 : 1. The right panel of Figs. 4 is the den-
sity profile of the same plasmoid at t = 390tA We
find that the plasmoid size in z-direction shrinks
by slow shocks. These slow shocks are generated
by the steepening of slow waves which are induced
by collisions to another plasmoids. In the case of
Figs. 4, these slow waves are generated by the
collision to the plasmoid at y ∼ 48δ in the left
panel. As these slow shocks propagate across the
plasmoid, the upstream plasma in the plasmoid
is compressed and the plasmoid size shrinks in z-
direction. Figs. 5 are the density configuration of
the plasmoid triggered by the initial perturbation
of runs B1, B2 at the time just before escaping

6

 0.001

 0.01

 0.1

 1000  10000  100000  1e+06

re
c
o

n
n

e
c
ti
o

n
 r

a
te

 〈
 v

R
 /
 c

 〉

SL

SL
-1/2

 0.001

 0.01

 0.1

 1000  10000  100000  1e+06

re
c
o

n
n

e
c
ti
o

n
 r

a
te

 〈
 v

R
 /
 c

 〉

SL

SL
-1/2

Fig. 3.— The plot of the time averaged reconnec-
tion rate 〈vR/cA〉 with respect to the Lundquist
number SL. Top: The strongly magnetized case:
σ = 14. Bottom: The weakly magnetized case:
σ = 0.14

resulted by the initially triggered plasmoid. Sim-
ilarly, Using the characteristic wavelength of the
tearing instability, λtearing ∼ δ[δcA/η]1/4, the
characteristic wavelength of the secondary tearing
instability can be obtained as:

λtearing,2nd ∼ L/[(2σin)5/8S3/8
L ] ∝ σ−5/8

in c−3/8
A .

(9)
This also indicates that the plasmoid instability
evolves more easily as the background magnetiza-
tion parameter becomes larger. Note that Eq. (9)
means background plasma with larger magnetiza-
tion parameter demands smaller Lundquist num-
ber with respect to the sheet length for the plas-
moid instability due to the smaller characteristic
wavelength of the instability. This also supports
our numerical results, Figs. 3, which indicates
the critical Lundquist number becomes smaller as
the magnetization parameter of the background
plasma becomes larger.

As is pointed out in (Uzdensky et al. 2010),
the reconnection rate of the plasmoid-chain can
be written as, vR/cA = 1/

√
Sc, using the relation

of the Sweet-Parker sheet. If we use the above

critical values, Sc = 3 × 103, in the strongly mag-
netized case, the reconnection rate is ∼ 0.02cA,
which agrees with the indicated values in the top
panel of Figs. 2.

4.3. Evolution of Plasmoid Structure

Fig. 4.— Snapshots of the density profile of the
initially triggered plasmoid in the case of σ = 1.4.
The left panel is at t = 340tA and the right panel
is at t = 390tA.

Figs. 1 show that the aspect ratio of plas-
moids takes different value depending on the mag-
netization parameter σ; the aspect ratio seems to
be shorter as the magnetization parameter σ in-
creases. This can be explained as follows. The left
panel of Figs. 4 is the density profile of a plasmoid
at t = 340tA. This figure shows its aspect ratio is
about 14 : 1. The right panel of Figs. 4 is the den-
sity profile of the same plasmoid at t = 390tA We
find that the plasmoid size in z-direction shrinks
by slow shocks. These slow shocks are generated
by the steepening of slow waves which are induced
by collisions to another plasmoids. In the case of
Figs. 4, these slow waves are generated by the
collision to the plasmoid at y ∼ 48δ in the left
panel. As these slow shocks propagate across the
plasmoid, the upstream plasma in the plasmoid
is compressed and the plasmoid size shrinks in z-
direction. Figs. 5 are the density configuration of
the plasmoid triggered by the initial perturbation
of runs B1, B2 at the time just before escaping
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Reconnection Rate becomes 
independent of Lundquist number SL

σ=15 σ=0.1

Sc~4×103
Sc~104

when SL > SL,C: critical value
   at which Plasmoid instability occurs

SL SL

ref )  MT, (2013), submitting to ApJ
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• Heavy ion collision -> Generation of Quark-Gluon Plasma 
thermalization hydro hadronization freezeoutcollisions

3.4. Application to Quark-Gluon Plasma (QGP)

Hydrodynamic model with density fluctuation

New Scheme:

•   ideal        : full-Godunov 
                  (Exact Solution using QCD EoS)
• Dissipation: Piecewise-Exact Solution Method

 (COGNAC)  

ref ) MT & S, Inutsuka., (2011), JCP, 230, 7002
       Y. Akamatsu, S. Inutsuka, C. Nonaka, MT, arXiv1302.1665



C. NONAKA

Viscous Effect
initial Pressure distribution

Ideal t~5 fm t~10 fm t~15 fm

Viscosity

9 1.2 0.25

0.31.29

20

fm-4

fm-4



Summary

• In the relativistic hydrodynamics case, 
 it is very difficult to take into account the dissipation effects
 due to the covariance and existence of stiff-equations. 

• We developed new numerical scheme of RMHD with dissipations.

• Using Piecewise Exact Solution, 
we can calculate the stiff relaxation equations very efficiently. 

• Using this new scheme, we investigated the relativistic plasmoid-chain
 and found the magnetic reconnection rate becomes independent of 
 the Lundquist number.

• We have recently developed a new dissipative RHD scheme 
using a QCD EoS and applied to QGP plasma. 
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Perturbations grow unphysically in dissipative RHD   
because energy comes from acausal region unphysically!!

e.g.) energy equation (if relativistic extended heat flux is used)

characteristic velocity is infinite

：parabolic partial differential equation

t = 0 + εt = 0

2.2.  Acausality in dissipation theory

T ≠ 0 even at infinity!
⇔ Heat flows faster than light !!
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Israel-Stewart theory = stable and causal relativistic dissipation theory

・equations are hyperbolic and characteristic velocities are 
    smaller than velocity of light                        (causal ⇒ stable)

・appearance of extremely short timescale (mean flight timescale) 
                        ⇒ difficult to resolve in time!!

Features

4. Causal and stable theory (Israel-Stewart theory)
ref ) Israel & Stewart, 1979, Annals of Physics, 118, 341

19



3.4. Telegrapher Equation and Causality

Consider the following form of telegrapher equation

Green function of the above equation is

Characteristics are always within the causal cone of ±a t20



Initial condition:
   •Harris current sheet
   •cold upstream flow 
        (T ~ 0.1mc2)
   •hot current sheet
        (Tsheet ~ mc2)
   • mesh size: Δ~0.02δ - 0.04δ
   • uniform resistivity
   • Large Lundquist number: 
                  S ~ 103-5

   • Poynting dominated 
      upstream plasma: 
       σ = 0.1, 1, 15, 30
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6. Numerical Setup

2 δ

640 δ

cold background

hot current sheet

B0

-B0

σ ≡ [E × Bc/4π]
ρhc2γ2v

(1)

1


