

A three-dimensional Iroshnikov-Kraichnan phenomenology for MHD turbulence in a strong mean magnetic field

Wolf-Christian Müller

Zentrum für Astronomie und Astrophysik, TU Berlin

Roland Grappin

LUTH, Observatoire de Paris and LPP, Ecole Polytechnique

Özgür Gürcan LPP, Ecole Polytechnique

Turbulence in Mean Magnetic Fields

Presumably different turbulent regimes \rightarrow constraints on

- timescales $\tau_{\parallel}^{ac}, \tau_{\perp}^{ac}$ (nonlinear time $\tau_{NL} = (k_{\perp}b_{\perp})^{-1}$, Alfvén time $\tau_{A} = (k_{\parallel}B_{0})^{-1}$)

- Fourier space structure of turbulent excitations/driving

Established phenomenologies

- ► Strong regime ($\tau_{NL} \sim \tau_A$): Goldreich-Sridhar (3D, $k_{\perp}^{-5/3}$), Boldyrev (3D, $k_{\perp}^{-3/2}$, ?)
- ► Weak regime ($\tau_{NL} \gg \tau_A$, $k_\perp \gg k_\parallel$): e.g. Galtier, Ng & Bhattacharjee (3D, k_\perp^{-2})
- ► Iroshnikov-Kraichnan (2D, $k^{-3/2}$), weak turbulence variant, dwells only in 2D

Universality

 $E_3(k,\theta) = A(\theta)k^{-m-2} = A_0(k/k_d)^{-m-2}, \qquad A(\theta) \simeq k_d(\theta)^{m+2}$

Fourier Energy Distribution ($k_{||}$ - k_{\perp} plane)

Left: Critical balance cone (local frame): $k_{\parallel} \sim k_{\perp}^{2/3}$ Middle: CB cone subject to fluctuations around mean direction $\sim \frac{b_{\perp}}{B_0} \simeq \frac{1}{5}$ Right: DNS with isotropic large-scale driving

Extent along k_{\parallel} -axis apparently not explicable by reference-frame mapping

A Different Regime of MHD turbulence

- ► No standard weak Alfvén turbulence (no nonlinear transfer in parallel direction)
- ► No standard critically balanced turbulence (geometrically too restricted)
- ► Suspected reason: isotropic large-scale driving
- Possibility of extension of IK picture to three-dimensionality

General Nonlinear Triad Interaction

Convolution constraint on three-mode interactions: $\mathbf{k} = \mathbf{p} + \mathbf{q}$ Example: finite $q_{||}$ allows nonlinear field-parallel transfer

Resonant Nonlinear Triad Interaction

Convolution constraint on three-mode interactions: $\mathbf{k} = \mathbf{p} + \mathbf{q}$

Weak turbulence

Resonance condition: $\omega(\mathbf{k}) = \omega(\mathbf{p}) + \omega(\mathbf{q})$ Alfvén waves: $\omega(\mathbf{k}) = \mathbf{k} \cdot \mathbf{B_0} = k_{\parallel}B_0$

Resonance condition implies $q_{\parallel} = 0$, i.e. no field-parallel cascade

Phase-mixing along \mathbf{B}_0 prevents structure formation perpendicular to \mathbf{B}_0

Causality

Generalization of GS-critical balance: $au_{\perp}^{\rm ac} \sim au_{\parallel}^{\rm ac} \sim au_{\parallel}$

Incompressible MHD ($B_0 \lesssim 2-3$): $\tau_{\rm NL_{\perp}} \sim \tau_{\rm A}$

If transfer in planes perpendicular to \mathbf{B}_0 governed by IK cascade:

$$\blacktriangleright \ \tau_{\perp}^{\rm ac} \sim \tau_{\rm A_{\perp}} = (k_{\perp} b_{\rm rms_{\perp}})^{-1}$$

 $\blacktriangleright \ \tau_{\rm A} < \tau_{\rm A_{\perp}} < \tau_{\rm NL}$

Relaxation of weak turbulence constraint ($\tau_A \ll \tau_{NL}$) \rightarrow possibility of **quasi-resonant cascade**, allows small $q_{\parallel} \sim q_{\perp} \frac{b_{\text{rms}_{\perp}}}{B_0}$

Ricochet Process

Realizes energy flow along directions oblique w.r.t. \mathbf{B}_0

Process based on two basic triads to transfer prolongations along two directions in Fourier space within region allowed by the quasi-resonance criterion.

Dependent on dominant perpendicular cascade process populating excitations within the CB region.

Start near Fourier origin requires externally excited fluctuations (e.g. isotropic large-scale forcing)

Nonlinear Energy Flux

Isotropic K41 flux:

$$F_{\rm K41} \sim k v_k^3 \qquad (k^{-5/3})$$

Iroshnikov-Kraichnan flux:

$$F_{\rm IK} \sim k b_k^2 b_q^2 / B_0 \qquad (k^{-3/2})$$

 $F_{\rm IK}$ approximately reduced by factor $\frac{b_q}{B_0}$

comparison with quasi-resonant flux (triad counting) Ensemble of triads reduced through quasi-resonance constraint by factor $\frac{b_{\rm rms}}{B_0}$

Dissipative Regions

Estimating end of inertial range:

 $au_{
m diss} \sim au_{
m flux}$

$$\begin{split} \tau_{\rm diss}^{-1} &\sim \nu k^2 \text{, } \tau_{flux_{\parallel}} \sim \frac{k u_k^2}{b_{\rm rms}} \text{, } \tau_{flux_{\perp}} \sim \frac{k u_k^2}{B_0} \text{ (IK)} \\ & \frac{k_{\rm d\parallel}}{k_{\rm d\perp}} \sim \frac{b_{\rm rms}}{B_0} \end{split}$$

Found in numerical simulations (Grappin & Müller 2010)

Summary

- DNS of MHD turbulence with strong mean magnetic field, large-scale isotropic driving incompatible with standard theory
- Proposition of new cascade mechanism based on weak IK cascade if turbulent excitations outside critical balance region
- ► Ricochet mechanism allows for parallel and oblique nonlinear transport
- ► Three-dimensional extension of Iroshnikov-Kraichnan regime