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Turbulence in Mean Magnetic Fields

Presumably different turbulent regimes → constraints on

- timescales τ ac
‖ , τ ac

⊥ (nonlinear time τNL = (k⊥b⊥)−1, Alfvén time τA = (k‖B0)−1)

- Fourier space structure of turbulent excitations/driving

Established phenomenologies

I Strong regime (τNL ∼ τA): Goldreich-Sridhar (3D, k
−5/3
⊥ ), Boldyrev (3D, k

−3/2
⊥ , ?)

I Weak regime (τNL � τA, k⊥ � k‖): e.g. Galtier, Ng & Bhattacharjee (3D, k−2
⊥ )

I Iroshnikov-Kraichnan (2D, k−3/2), weak turbulence variant, dwells only in 2D



Universality

E3(k, θ) = A(θ)k−m−2 = A0(k/kd)−m−2, A(θ) ' kd(θ)m+2



Fourier Energy Distribution (k‖-k⊥ plane)

Left: Critical balance cone (local frame): k‖ ∼ k
2/3
⊥

Middle: CB cone subject to fluctuations around mean direction ∼ b⊥
B0
' 1

5
Right: DNS with isotropic large-scale driving

Extent along k‖-axis apparently not explicable by reference-frame mapping



A Different Regime of MHD turbulence

I No standard weak Alfvén turbulence (no nonlinear transfer in parallel direction)

I No standard critically balanced turbulence (geometrically too restricted)

I Suspected reason: isotropic large-scale driving

I Possibility of extension of IK picture to three-dimensionality



General Nonlinear Triad Interaction
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Convolution constraint on three-mode interactions: k = p + q

Example: finite q‖ allows nonlinear field-parallel transfer



Resonant Nonlinear Triad Interaction
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Convolution constraint on three-mode interactions: k = p + q

Weak turbulence
Resonance condition: ω(k) = ω(p) + ω(q)
Alfvén waves: ω(k) = k ·B0 = k‖B0

Resonance condition implies q‖ = 0, i.e. no field-parallel cascade

Phase-mixing along B0 prevents structure formation perpendicular to B0



Causality

Generalization of GS-critical balance: τ ac
⊥ ∼ τ ac

‖ ∼ τA

Incompressible MHD (B0 . 2− 3): τNL⊥ ∼ τA

If transfer in planes perpendicular to B0 governed by IK cascade:

I τ ac
⊥ ∼ τA⊥ = (k⊥brms⊥)−1

I τA < τA⊥ < τNL

Relaxation of weak turbulence constraint (τA � τNL)
→ possibility of quasi-resonant cascade, allows small q‖ ∼ q⊥

brms⊥
B0



Ricochet Process

Realizes energy flow along directions oblique w.r.t. B0
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Process based on two basic triads to transfer prolongations along two directions in
Fourier space within region allowed by the quasi-resonance criterion.

Dependent on dominant perpendicular cascade process populating excitations wi-
thin the CB region.

Start near Fourier origin requires externally excited fluctuations (e.g. isotropic large-
scale forcing)



Nonlinear Energy Flux

Isotropic K41 flux:
FK41 ∼ kv3

k (k−5/3)

Iroshnikov-Kraichnan flux:

FIK ∼ kb2
kb

2
q/B0 (k−3/2)

FIK approximately reduced by factor bq

B0

comparison with quasi-resonant flux (triad counting)
Ensemble of triads reduced through quasi-resonance constraint by factor brms

B0



Dissipative Regions

Estimating end of inertial range:

τdiss ∼ τflux

τ−1
diss ∼ νk2, τflux‖ ∼

ku2
k

brms
, τflux⊥ ∼

ku2
k

B0
(IK)

kd‖

kd⊥
∼ brms

B0

Found in numerical simulations (Grappin & Müller 2010)



Summary

I DNS of MHD turbulence with strong mean magnetic field, large-scale isotropic
driving incompatible with standard theory

I Proposition of new cascade mechanism based on weak IK cascade if turbulent
excitations outside critical balance region

I Ricochet mechanism allows for parallel and oblique nonlinear transport

I Three-dimensional extension of Iroshnikov-Kraichnan regime


