A Godunov-Type Solver for the Numerical Approximation of Gravitational Flows

MAISON DE LA SIMULATION

Edouard Audit, Micolaj Szydlarski, Serge Van Criekingen and Jeaniffer Vides July 4, 2013

Outline

Introduction

2 Explicit

- Model
- Relaxation Scheme
- Numerical Results

Implicit

Onclusions

Gravitational flows

- Gravitational flows are ubiquitous in Astrophysics
- Sometime gravity is largely dominant over other forces likes pressure gradients (i.e. cosmology,...)
- In many other cases we have a balance between gravity and other forces and are close to steady state. (i.e. stellar physics,...)

Euler-Poisson Model

- Study the numerical approximation of Euler equations when gravitational effects are taken into account
- System of partial differential equations (PDEs):

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0\\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u} + \rho) = -\rho \nabla \phi\\ \partial_t (\rho E) + \nabla \cdot ((\rho E + \rho) \mathbf{u}) = -\rho \mathbf{u} \cdot \nabla \phi\\ \Delta \phi = 4\pi G \rho \end{cases}$$

- Gravitational potential ϕ
- Pressure p governed by an equation of state $p \coloneqq p(\rho, \epsilon)$
- Specific internal energy $\epsilon = E |\mathbf{u}|^2/2$
- Need of preserving the asymptotic regime of self-gravitational fluid flows in numerical simulations

(1)

Standard Fractional Step Splitting Method

Solve the Euler equations without source terms

$$(\partial_t \rho + \nabla \cdot (\rho \mathbf{u})) = 0$$

$$\begin{cases} \partial_t \rho &+ \nabla \cdot (\rho \mathbf{u}) &= 0\\ \partial_t (\rho \mathbf{u}) &+ \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u} + p) &= 0\\ \partial_t (\rho E) &+ \nabla \cdot ((\rho E + p) \mathbf{u}) &= 0 \end{cases}$$

Solve the ordinary differential equation (ODE) 2

$$\begin{cases} \partial_t \rho &= 0\\ \partial_t (\rho \mathbf{u}) &= -\rho \nabla \phi\\ \partial_t (\rho E) &= -\rho \mathbf{u} \cdot \nabla \phi \end{cases}$$

Solve the Poisson equation $\Delta \phi = 4\pi G \rho$

(2)

(3)

A fully conservative approach

4

 ${\ensuremath{\, \bullet }}$ Use a fully conservative reformulation of the Euler-Poisson system :

Balbus & Papaloizou 99, Chièze 98

$$\begin{cases} \partial_t(\rho) &+ \nabla \cdot (\rho \mathbf{u}) &= 0, \\ \partial_t(\rho \mathbf{u}) &+ \nabla \cdot \left(\rho \mathbf{u} \otimes \mathbf{u} + p + \frac{\nabla \phi \otimes \nabla \phi}{8\pi G}\right) &= 0, \\ \partial_t \left(\rho E_{\phi} + \frac{|\nabla \phi|^2}{8\pi G}\right) &+ \nabla \cdot \left(\rho E_{\phi} \mathbf{u} - \frac{\nabla \phi \partial_t \phi}{4\pi G}\right) &= 0. \end{cases}$$

A fully conservative approach

${\scriptstyle \bullet }$ Use a fully conservative reformulation of the Euler-Poisson system :

Balbus & Papaloizou 99, Chièze 98

$$\begin{cases} \partial_t(\rho) &+ \nabla \cdot (\rho \mathbf{u}) &= 0, \\ \partial_t(\rho \mathbf{u}) &+ \nabla \cdot \left(\rho \mathbf{u} \otimes \mathbf{u} + \rho + \frac{\nabla \phi \otimes \nabla \phi}{8\pi G}\right) &= 0, \\ \partial_t \left(\rho E_{\phi} + \frac{|\nabla \phi|^2}{8\pi G}\right) &+ \nabla \cdot \left(\rho E_{\phi} \mathbf{u} - \frac{\nabla \phi \partial_t \phi}{4\pi G}\right) &= 0. \end{cases}$$

New Finite-Volume Numerical Method ¹

- Derive a Godunov-type solver for the Euler-Poisson system and demonstrate its performace
 - Discretization of gravity introduced into the approximate Riemann solver used for the Euler equations
 - Solver based on a relaxation system
 - Implented in the software HERACLES
- Joint work with J. Vides, B. Braconnier, C. Berthon and B. Nkonga

¹ J. Vides, B. Braconnier, E. Audit, C. Berthon, and B. Nkonga. A Godunov-type solver for the numerical approximation of gravitational flows, *CiCP in press*

1-D Relaxation Model

- Relaxation
 - Thermodynamic pressure p $\partial_t p + u \partial_x p + \rho c^2 \partial_x u = 0 \rightarrow$

$$\partial_t \pi + u \partial_x \pi + \frac{a^2}{\rho} \partial_x u = \frac{1}{\delta} (p - \pi)$$

• Gravitational potential ϕ $\partial_t \psi = \frac{1}{\delta}(\phi - \psi)$

Model

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0\\ \partial_t (\rho u) + \partial_x (\rho u^2 + \pi) + \rho \partial_x \psi = 0\\ \partial_t (\rho E) + \partial_x ((\rho E + \pi) u) + \rho u \partial_x \psi = 0\\ \partial_t \pi + u \partial_x \pi + \frac{a^2}{\rho} \partial_x u = \frac{1}{\delta} (p - \pi)\\ \partial_t \psi = \frac{1}{\delta} (\phi - \psi) \end{cases}$$
(4)

Compact form

$$\partial_t \mathbf{W}_{\delta} + \partial_x \mathbf{F}_{\delta}(\mathbf{W}_{\delta}) + \mathbf{B}_{\delta}(\mathbf{W}_{\delta})\partial_x \psi = \frac{1}{\delta}\mathbf{R}_{\delta}(\mathbf{W}_{\delta})$$

1-D Relaxation Scheme

First-order operator splitting approach to decompose (1) into two parts:

• Euler equations with gravity source terms $\partial_t \mathbf{W} + \partial_x \mathbf{F}(\mathbf{W}) + \mathbf{B}(\mathbf{W}) \partial_x \phi = 0$

W is the unknown vector and ϕ is an *a priori* given function. We write the relaxation model (4) as $\partial_t \mathbf{W}_{\delta} + \partial_x \mathbf{F}_{\delta}(\mathbf{W}_{\delta}) + \mathbf{B}_{\delta}(\mathbf{W}_{\delta})\partial_x \psi = \frac{1}{\delta}\mathbf{R}_{\delta}(\mathbf{W}_{\delta})$.

a. Evolution in time ($\delta = \infty$, $\partial_t \mathbf{W}_{\delta} + \partial_x \mathbf{F}_{\delta}(\mathbf{W}_{\delta}) + \mathbf{B}_{\delta}(\mathbf{W}_{\delta})\partial_x \psi = 0$) $\mathbf{W}_i^n \to (\mathbf{W}_{\delta})_i^n \Rightarrow (\mathbf{W}_{\delta})_i^{n+1,-}$

b. Relaxation (
$$\delta = 0$$
, $\partial_t \mathbf{W}_{\delta} = \frac{1}{\delta} \mathbf{R}_{\delta}(\mathbf{W}_{\delta})$)
(\mathbf{W}_{δ})^{*n*+1,-}_{*i*} $\Rightarrow \mathbf{W}_i^{n+1}$

Poisson equation $\partial_{xx}\phi = 4\pi G\rho$ Use ρ_i^{n+1} , to solve the Poisson equation and obtain ϕ_i^{n+1} by means of a second-order finite difference approach which yields a tridiagonal matrix.

1-D Relaxation Scheme

② change of variables : $\mathbf{W}_{\delta} \rightarrow \mathbf{V}_{\delta} = (\rho, u, \epsilon, \pi, \psi)^{T}$.

Then, omitting the relaxation source term, the previous systeme can be writen as :

$$\partial_t \mathbf{V}_{\delta} + \mathbf{A}_{\delta}(\mathbf{V}_{\delta}) \partial_x \mathbf{V}_{\delta} = 0, \tag{5}$$

- Ompute the wave patern of A_δ and solve the Riemann problem
- Average over the solution
- O Apply the Scheme of the previous slide

$$\mathbf{W}_{i}^{n+1} = \mathbf{W}_{i}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{F}_{i+\frac{1}{2}}^{\mathbf{L},n} - \mathbf{F}_{i-\frac{1}{2}}^{\mathbf{R},n} \right), \tag{6}$$

where

$$\mathbf{F}_{i+\frac{1}{2}}^{L,n} = \mathbf{F}_{i+\frac{1}{2}}^{L,n}(\rho_{i}^{n}, \mathbf{u}_{i}^{n}, (\rho E)_{i}^{n}, \phi_{i}^{n}, \rho_{i+1}^{n}, \mathbf{u}_{i+1}^{n}, (\rho E)_{i+1}^{n}, \phi_{i+1}^{n}), (7)$$

$$\mathbf{F}_{i+\frac{1}{2}}^{R,n} = \mathbf{F}_{i+\frac{1}{2}}^{R,n}(\rho_{i}^{n}, \mathbf{u}_{i}^{n}, (\rho E)_{i}^{n}, \phi_{i}^{n}, \rho_{i+1}^{n}, \mathbf{u}_{i+1}^{n}, (\rho E)_{i+1}^{n}, \phi_{i+1}^{n}). (8)$$

1-D Equilibrium Flow : hydrostatic atmosphere

Hydrostatic atmosphere : $\rho_{eq}(x) = \rho(0)e^{-gx/c^2}$

Figure : Accuracy of the proposed relaxation method (left); L^2 norm of the velocity in logarithmic scale as a function of time *t* with 1000 grid points (right)

$$T_{ref} = \sqrt{L_{ref}/g} \simeq 0.5$$

Self-gravitating star - Lane-Emden Equation

Figure : Densities compared to the exact solution $\rho(r) = 10 * \sin(z)/z$ with z = A r (left); L^2 norm of the velocity in logarithmic scale as a function of time t with 100 grid points (right)

Rayleigh Taylor Instability

- Instability
 - Heavy fluid driven into lighter under the acceleration of a gravitational field
 - Initially, unstable interface separates the fluids with different densities
- Simulation
 - Positivity preserving limiter
 - 2000 × 4000 points
 - 256 processors

3-D Rayleigh Taylor Instability

First order

Implicit Formulation

1-D homogeneous case:

 $\partial_t \mathbf{W} + \nabla \cdot \mathbf{F}(\mathbf{W}) = 0$

Finite volumes (spatial grid index i) Explicit in time (time step index n)

$$\Rightarrow \qquad \mathbf{W}_{i}^{n+1} = \mathbf{W}_{i}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{F}_{i+\frac{1}{2}}^{L,n} - \mathbf{F}_{i-\frac{1}{2}}^{R,n} \right)$$

where the numerical flux $\mathbf{F}_{i\pm\frac{1}{2}}^{n}$ are obtained by Godunov's method, i.e., by solving Riemann problems: $\mathbf{F}_{i\pm\frac{1}{2}}^{n}(\mathbf{W}_{i}^{n},\mathbf{W}_{i\pm1}^{n})$.

Implicit Formulation

1-D homogeneous case:

 $\partial_t \mathbf{W} + \nabla \cdot \mathbf{F}(\mathbf{W}) = 0$

Finite volumes (spatial grid index i) Explicit in time (time step index n)

$$\Rightarrow \qquad \mathsf{W}_{i}^{n+1} = \mathsf{W}_{i}^{n} - \frac{\Delta t}{\Delta x} \left(\mathsf{F}_{i+\frac{1}{2}}^{L,n+1} - \mathsf{F}_{i-\frac{1}{2}}^{R,n+1} \right)$$

where the numerical flux $\mathbf{F}_{i\pm\frac{1}{2}}^{n}$ are obtained by Godunov's method, i.e., by solving Riemann problems: $\mathbf{F}_{i\pm\frac{1}{2}}^{n}(\mathbf{W}_{i}^{n},\mathbf{W}_{i\pm1}^{n})$.

To avoid restrictions on Δt from CFL condition : implicit method.

More on Implicit Solving of Euler Equations

$$\mathbf{W}_{i}^{n+1} = \mathbf{W}_{i}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{F}_{i+\frac{1}{2}}^{n+1} - \mathbf{F}_{i-\frac{1}{2}}^{n+1} \right)$$

Define

$$\mathcal{F}\left(\mathsf{W}_{i}^{n+1},\mathsf{W}_{i\pm1}^{n+1}\right) = \frac{1}{\Delta x} \left(\mathsf{F}_{i+\frac{1}{2}}^{n+1} - \mathsf{F}_{i-\frac{1}{2}}^{n+1}\right)$$

so that

$$\frac{\mathsf{W}_{i}^{n+1}-\mathsf{W}_{i}^{n}}{\Delta t}=-\mathcal{F}\left(\mathsf{W}_{i}^{n+1},\mathsf{W}_{i\pm1}^{n+1}\right)$$

More on Implicit Solving of Euler Equations

$$\mathbf{W}_{i}^{n+1} = \mathbf{W}_{i}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{F}_{i+\frac{1}{2}}^{n+1} - \mathbf{F}_{i-\frac{1}{2}}^{n+1} \right)$$

Define

$$\mathcal{F}\left(\mathsf{W}_{i}^{n+1},\mathsf{W}_{i\pm1}^{n+1}\right) = \frac{1}{\Delta x} \left(\mathsf{F}_{i+\frac{1}{2}}^{n+1} - \mathsf{F}_{i-\frac{1}{2}}^{n+1}\right)$$

so that

$$\frac{\mathsf{W}_{i}^{n+1}-\mathsf{W}_{i}^{n}}{\Delta t}=-\mathcal{F}\left(\mathsf{W}_{i}^{n+1},\mathsf{W}_{i\pm1}^{n+1}\right)$$

For the whole mesh:

$$\frac{\mathbf{W}^{n+1} - \mathbf{W}^{n}}{\Delta t} = -\mathcal{F}(\mathbf{W}^{n+1}) \approx -\mathcal{F}(\mathbf{W}^{n}) - \frac{\partial \mathcal{F}}{\partial \mathbf{W}}(\mathbf{W}^{n+1} - \mathbf{W}^{n})$$
$$\Rightarrow \underbrace{\left[\frac{\mathcal{I}}{\Delta t} + \frac{\partial \mathcal{F}}{\partial \mathbf{W}}\right]}_{\text{Jacobian}\mathcal{J}}(\mathbf{W}^{n+1} - \mathbf{W}^{n}) = -\mathcal{F}(\mathbf{W}^{n})$$

More on Implicit Solving of Euler Equations

At each time step, Jacobian system solved using PETSc:

$$\mathcal{J}\left(\mathbf{W}^{n+1}-\mathbf{W}^n\right)=-\mathcal{F}(\mathbf{W}^n)$$

Jacobian ${\mathcal J}$ not symmetric, but block symmetric.

The Jacobian is computed using Tapenade

tapenade.inria.fr

(nria	TAPENADE On-line Automatic Differentiation Engine
Given	
 a source program, the name of the top routine to be differentiated, the dependent output variables whose derivatives are required, the independent input variables with respect to which it must differentiate, 	
this tool returns the forward (tangent) or reverse (adjoint) differentiated program. If you want to be kept informed about new developments and releases of TAPENADE, subscribe to the tapenade-users mailing list.	
* Select the input language : ⊕ from the files extensions ○ Fortran 77 ○ Fortran 95 ○ C	
Upload source and include files, repeatedly or copy paste your fortran source program.	
Type the file path in, or browse : Crossifie fictien: Jacount ficher sell. and unlead it.	
as a source	as an include
* Name of the top routine :	
* Dependent output variables (separator: white space, default: all variables) :	
* Independent input variables (separator: white space, default: all variables) :	
* (optional) For our records, could you please give us your name and the application you have in mind (it can very well be only "test"):	
Differentiate in	
Tangent Mode Multidirectional Tangent Mode Adjoint Mode Multiobjective Adjoint Mode	
10/31	

MAISON DE LA SIMULATION

Tapenade example (1/3)

Input function:

subroutine ff(X,f)

implicit none

real :: x,f

f = x*cos(abs(x))

return

end subroutine ff

Tapenade example (2/3)

Input function re-written by Tapenade:

```
Generated by TAPENADE (INRIA, Tropics team)
 Tapenade 3.7 (r4888) - 28 May 2013 10:47
SUBROUTINE FF(x, f)
  IMPLICIT NONE
 REAL :: x, f
  INTRINSIC COS
  INTRINSIC ABS
 REAL :: abs0
 IF (x .GE. 0.) THEN
   abs0 = x
 ELSE
    abs0 = -x
 END IF
  f = x * COS(abs0)
  RETURN
END SUBROUTINE FF
```


Tapenade example (3/3)

Output function by Tapenade:

```
Generated by TAPENADE (INRIA, Tropics team)
  Tapenade 3.7 (r4888) - 28 May 2013 10:47
  Differentiation of ff in forward (tangent) mode:
  variations of useful results: f
  with respect to varying inputs: x
   RW status of diff variables: f:out x:in
SUBROUTINE FF D(x, xd, f, fd)
  IMPLICIT NONE
  REAL :: x, f
  REAL :: xd, fd
  INTRINSIC COS
  INTRINSIC ABS
  REAL :: abs0d
  REAL :: abs0
  IF (x .GE. 0.) THEN
    abs0d = xd
    abs0 = x
  ELSE
    abs0d = -xd
    abs0 = -x
  END IF
  fd = xd*COS(abs0) - x*abs0d*SIN(abs0)
  f = x * COS(abs0)
  RETURN
END SUBROUTINE FF D
                         22/31
```


Choice of Solver : BiCGstab vs GMRES

GI

Weak scaling (time) - $64^3 \times nCPU$

Weak scaling (iterations) - $64^3 \times nCPU$

Strong scaling (time) - (nx = ny = 256, nz = 512)

Strong scaling (iterations) - (nx = ny = 256, nz = 512)

Time evolution - (nx = ny = 256, nz = 512, nMPI = 128)

Iterations evolution - (nx = ny = 256, nz = 512, nMPI = 128)

Implicit : summary

- About 20 times slower than explicit
- Memory footprint is about 4 times larger
- Scaling is more difficult to achieve the "best" method probably depends on the number of cores
- Dependance on the test case....

- Relaxation solver to integrate the Euler-Poisson systeme
- Accurate resolution of steady-state flows
- Implicit formulation using "automated" jacobian

