
HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI

Perlin Noise as a Turbulence
Model for Particle Transport

Urs Ganse1, Rami Vainio1, Alex
Ivascenko2, Felix Spanier2

1 University of Helsinki
2 North-West University Potchefstroom

Particle Transport and Turbulence

Particle transport in heliospheric and interstellar medium

Test particle simulations

Turbulent fields play important role.

Simulated Turbulence

Getting turbulence right is difficult.

Self-consistent turbulence simulations quite limited in
scales (kinetic⇔ heliospheric)

Often, effect of turbulence approximated through
diffusion.

Alternatively, ad-hoc model of scattering is used.

We'd rather have a way to construct quasi-turbulent fields.

Simulated Turbulence

Getting turbulence right is difficult.

Self-consistent turbulence simulations quite limited in
scales (kinetic⇔ heliospheric)

Often, effect of turbulence approximated through
diffusion.

Alternatively, ad-hoc model of scattering is used.

We'd rather have a way to construct quasi-turbulent fields.

Simulated Turbulence

Getting turbulence right is difficult.

Self-consistent turbulence simulations quite limited in
scales (kinetic⇔ heliospheric)

Often, effect of turbulence approximated through
diffusion.

Alternatively, ad-hoc model of scattering is used.

We'd rather have a way to construct quasi-turbulent fields.

Quasi-Turbulent Fields

Simply taking random numbers gives wrong spectrum.

Creating correct spectrum in Fourier space works.

Again bound to a grid.

Time evolution?

We would like to have deterministic randomness with the
correct spectrum without having to look at all space.

Quasi-Turbulent Fields

Simply taking random numbers gives wrong spectrum.

Creating correct spectrum in Fourier space works.

Again bound to a grid.

Time evolution?

We would like to have deterministic randomness with the
correct spectrum without having to look at all space.

Quasi-Turbulent Fields

Simply taking random numbers gives wrong spectrum.

Creating correct spectrum in Fourier space works.

Again bound to a grid.

Time evolution?

We would like to have deterministic randomness with the
correct spectrum without having to look at all space.

Perlin Noise

Idea from computer graphics

Developed by Ken Perlin for the
movie ''Tron'' (Disney, 1982)

Originally a cloud-texture generator.

Structures of fixed scale.

Perlin Noise

Idea from computer graphics

Developed by Ken Perlin for the
movie ''Tron'' (Disney, 1982)

Originally a cloud-texture generator.

Structures of fixed scale.

Perlin Noise

Idea from computer graphics

Developed by Ken Perlin for the
movie ''Tron'' (Disney, 1982)

Originally a cloud-texture generator.

Structures of fixed scale.

Perlin Noise

Idea from computer graphics

Developed by Ken Perlin for the
movie ''Tron'' (Disney, 1982)

Originally a cloud-texture generator.

Structures of fixed scale.

Perlin Noise - internals

Pick deterministic gradients on grid, interpolate using Hermite
polynomial.

Original Perlin Noise (1982): Simplex Noise (2001):

Perlin Noise - internals

Pick deterministic gradients on grid, interpolate using Hermite
polynomial.

Original Perlin Noise (1982): Simplex Noise (2001):

Perlin Noise - internals

Pick deterministic gradients on grid, interpolate using Hermite
polynomial.

Original Perlin Noise (1982): Simplex Noise (2001):

Perlin Noise - internals

Pick deterministic gradients on grid, interpolate using Hermite
polynomial.

Original Perlin Noise (1982):

Simplex Noise (2001):

Perlin Noise - internals

Pick deterministic gradients on grid, interpolate using Hermite
polynomial.

Original Perlin Noise (1982): Simplex Noise (2001):

Implementation Details

Advantage:

Interpolation is completely local
within one grid cell.

Grid values are not stored, but
calculated on-demand by a (cheap)
hash function.

Completely independent evaluation,
trivially parallel.

Not just suitable for GPUs - GPUs
were designed for this.

Spatial size is not inherently limited,
except by floating point accuracy.

Noise Octaves

One evaluation

Multiple octaves, stacked

Noise Octaves

One evaluation Multiple octaves, stacked

Spectrum

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

B
 (

a
rb

.
u

n
it

s)

Lengthscale (arb. units)

1 Octave

Spectrum

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

B
 (

a
rb

.
u

n
it

s)

Lengthscale (arb. units)

1 Octave
2 Octaves

Spectrum

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

B
 (

a
rb

.
u

n
it

s)

Lengthscale (arb. units)

1 Octave
2 Octaves
3 Octaves

Spectrum

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

B
 (

a
rb

.
u

n
it

s)

Lengthscale (arb. units)

1 Octave
2 Octaves
3 Octaves
5 Octaves

Spectrum

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

B
 (

a
rb

.
u

n
it

s)

Lengthscale (arb. units)

1 Octave
2 Octaves
3 Octaves
5 Octaves

10 Octaves

Spectrum

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

B
 (

a
rb

.
u

n
it

s)

Lengthscale (arb. units)

1 Octave
2 Octaves
3 Octaves
5 Octaves

10 Octaves
-5/3

-4

From Noise to Turbulent Fields

But these are still scalar noise functions! How do we get
B-Fields from it?

Dumb approach:

3 independent evaluations for 3 components

Not divergence free

Smarter:

3 independent evaluations for A
~B = ∇× ~A

⇒ ∇ ·~B = ∇ · (∇× ~A) = 0

From Noise to Turbulent Fields

But these are still scalar noise functions! How do we get
B-Fields from it?

Dumb approach:

3 independent evaluations for 3 components

Not divergence free

Smarter:

3 independent evaluations for A
~B = ∇× ~A

⇒ ∇ ·~B = ∇ · (∇× ~A) = 0

From Noise to Turbulent Fields

But these are still scalar noise functions! How do we get
B-Fields from it?

Dumb approach:

3 independent evaluations for 3 components

Not divergence free

Smarter:

3 independent evaluations for A
~B = ∇× ~A

⇒ ∇ ·~B = ∇ · (∇× ~A) = 0

From Noise to Turbulent Fields

~B(~x) = ∇× ~A(~x)

Isotropic in flat coordinate space.
Anisotropy can be obtained by distorting coordinates.

From Noise to Turbulent Fields

~B(~x) = ∇× ~A(~x)

Isotropic in flat coordinate space.
Anisotropy can be obtained by distorting coordinates.

From Noise to Turbulent Fields

Weak Turbulence

3D noise advected along the background field.

Or: One resting, one moving at +vA, one moving at −vA

Strong Turbulence

4D noise, with 4th coordinate increasing with time.

Field Autocorrelation

0⨯100

20⨯103

40⨯103

60⨯103

80⨯103

100⨯103

120⨯103

140⨯103

160⨯103

180⨯103

200⨯103

 0 5e-07 1e-06 1.5e-06 2e-06 2.5e-06

<
B

(t
),

B
(t

+
Δ

t)
>

 (
a
rb

.
u

n
it

s)

Δt (s)

Perlin Noise

Spectral MHD

Pitch Angle Scattering

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-1 -0.5 0 0.5 1

Δ
μ

μ

Pitch angle scattering, Perlin Noise

Application

BUBD

--

Shock

width

Test particle simulations of
particle accel. at shocks

Kinetic scale structures

Perlin Noise based turbulence

0.5

1

1.5

2

2.5

3

3.5

S
h
o
ck

 C
o
m

p
re

ss
io

n

tanh
tanh+noise

gibbs

Application

BUBD

--

Shock

width

Test particle simulations of
particle accel. at shocks

Kinetic scale structures

Perlin Noise based turbulence

0.5

1

1.5

2

2.5

3

3.5

S
h
o
ck

 C
o
m

p
re

ss
io

n

tanh
tanh+noise

gibbs

Preliminary results

ΘBn = 30°

-5.0k -4.0k -3.0k -2.0k -1.0k 0.0 1.0k

v∥ (km/s)

100

101

102

103

104

105

106

107

ΘBn = 30°

-5.0k -4.0k -3.0k -2.0k -1.0k 0.0 1.0k

v∥ (km/s)

Preliminary results

ΘBn = 30°

-5.0k -4.0k -3.0k -2.0k -1.0k 0.0 1.0k

v∥ (km/s)

100

101

102

103

104

105

106

107

ΘBn = 30°

-5.0k -4.0k -3.0k -2.0k -1.0k 0.0 1.0k

v∥ (km/s)

Conclusion

Perlin Noise

Perlin Noise is a suitable way to create something like
turbulence.

Versatile and computationally inexpensive.

Outlook

Further quantitative comparison to actual turbulence.

Application to test-particle simulations of different
scenarios.

