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Particle Transport and Turbulence

Particle transport in heliospheric and interstellar medium

Test particle simulations

Turbulent fields play important role.



Simulated Turbulence

Getting turbulence right is difficult.

Self-consistent turbulence simulations quite limited in
scales (kinetic⇔ heliospheric)

Often, effect of turbulence approximated through
diffusion.

Alternatively, ad-hoc model of scattering is used.

We'd rather have a way to construct quasi-turbulent fields.
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Quasi-Turbulent Fields

Simply taking random numbers gives wrong spectrum.

Creating correct spectrum in Fourier space works.

Again bound to a grid.

Time evolution?

We would like to have deterministic randomness with the
correct spectrum without having to look at all space.
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Idea from computer graphics

Developed by Ken Perlin for the
movie ''Tron'' (Disney, 1982)

Originally a cloud-texture generator.

Structures of fixed scale.
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Perlin Noise - internals

Pick deterministic gradients on grid, interpolate using Hermite
polynomial.

Original Perlin Noise (1982): Simplex Noise (2001):
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Implementation Details

Advantage:

Interpolation is completely local
within one grid cell.

Grid values are not stored, but
calculated on-demand by a (cheap)
hash function.

Completely independent evaluation,
trivially parallel.

Not just suitable for GPUs - GPUs
were designed for this.

Spatial size is not inherently limited,
except by floating point accuracy.



Noise Octaves

One evaluation

Multiple octaves, stacked
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From Noise to Turbulent Fields

But these are still scalar noise functions! How do we get
B-Fields from it?

Dumb approach:

3 independent evaluations for 3 components

Not divergence free

Smarter:

3 independent evaluations for A
~B = ∇× ~A

⇒ ∇ ·~B = ∇ · (∇× ~A) = 0
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From Noise to Turbulent Fields

Weak Turbulence

3D noise advected along the background field.

Or: One resting, one moving at +vA, one moving at −vA

Strong Turbulence

4D noise, with 4th coordinate increasing with time.



Field Autocorrelation
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Pitch Angle Scattering
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Application

BUBD

--

Shock

width

Test particle simulations of
particle accel. at shocks

Kinetic scale structures

Perlin Noise based turbulence
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Preliminary results

ΘBn = 30°
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Conclusion

Perlin Noise

Perlin Noise is a suitable way to create something like
turbulence.

Versatile and computationally inexpensive.

Outlook

Further quantitative comparison to actual turbulence.

Application to test-particle simulations of different
scenarios.


