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The Parker Transport Equation: 

Where the drift velocity due to the large scale curvature and gradient of the 
average magnetic field is: 

)  Diffusion 

)  Convection w. plasma 

)  Grad & Curvature Drift 

) Energy change 

) Source 

It is difficult to overstate the importance of this equation. It is the basis of 95% or more 
analyses of energetic particles and cosmic rays – Sun, Heliosphere,  galaxy, intergalactic, 
etc. 



Applying Parker’s equation to the heliosphere for a simple spherically  
symmetric approximation. 



Stochastic Integration 
• A numerical technique which has recently 

become popular. 
• Basic idea: Diffusion is equivalent to the long-

time limit of a random walk (t>> τc).  
• Write  

 
 
 

• This is a Fokker-Planck equation with  
   <∆ x2> = 2κ∆ t and <∆ x> = (∂κ /∂x)∆t   . 
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• we may then follow ‘pseudo particles’ by 
incrementing their positions by 

 
 

   where ± denotes a random number with zero 
mean. 

• If we have advection with velocity U in the x-
direction, we add U dt to the righ of the x 
equation.   We may also add energy change.   

• The average over a large number of particles 
gives the solution for f.  This is stochastic 
integration of a SDE. 
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Some Early Papers. 



Compression Acceleration Has 
Recently Received Attention 

• Solve Parker’s equation in 1 spatial dimension, x, – 
periodic with scale L. 

• The velocity U(x) is taken to be sinusoidal with period 2 
¼.  Momentum change dp/dt = -(p/3) dU/dx. 

• The diffusion coefficient is constant in space and is large 
(κ >> LU )for the tail and small (κ << LU) for the thermal 
core. 

• Advance pseudoparticle by the rule (± denotes a random 
number with unit variance and zero mean) 
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Fisk and Gloeckler (2010) considered this 
picture to discuss an analytical formulation.  
This is controvertial. Jokipii and Lee (2010) 
showed that their equation did not 
conserve particles.   
 
This can be checked easily using stochastic 
integration. 



The momentum (velocity) spectrum for a constant spatial diffusion coefficient ·,  
velocity amplitude  A = .4 in units of · / L. Varying A over factors of 2 made little 
difference.   The v-3 power-law slope is what Lee-Jokipii quasilinear analysis (2010) 
would give. But this solution is for very large amplitude. 



Recently, this has been applied in 
many papers concerning cosmic rays in 

the heliosphere. 
Strauss etal 2011 Miyake etal 2011 



Application to Discontinuities: 
 
We often wish to deal with discontinuities in cosmic-ray 
transport: shocks or current sheets are commonly found. 

Diffusive shock 
acceleration has 
many desirable 
properties. 
 
How do we treat 
discontinuities? 
 
As in finite 
difference 
methods, one 
must use care. 



If one just blindly proceeds and ignores the fact that the 
shock changes the spatial transport, but increment p at the 
shock crossing one obtains a poor approximation. 



This problem is often circumvented by smoothing the 
shock as below, and using small-enough time steps to 
resolve the shock.  This is expensive. 



Discontinuities and Stochastic Integration. 

• In its simplest form, one-dimensional diffusion 
from one boundary to another exhibits the 
problem quite well. 
 

• Consider this first. 





--------------------|--------------------- 

source absorber 

·1 ·2 



Consider a skewed step at crossing  if · changes. 
 
Based on the fact that if · varies, there is an advecting  
term ∂· /∂x. 
 
Let ® = ·20.5/(·10.5 + ·20.5) 
 
If the discontinuity is crossed, compute a uniform random 
number on (0,1).  If it is less than ®, go to region 1, else go to 
region 2. 
 
Really only works properly if the particle exactly lands on the 
discontinuity.  But implementing this is difficult. 
 
Alternatively, one can use a gaussian distribution. This is better. 
 



--------------------|--------------------- 

·1 ·2 

source absorber 

Exact, uniform steps Gaussian 



How to do better? 
 
Try to estimate, statisticlly, when the discontinuity was crossed. 
 
 
 
Use conditional statistics. Given the first estimate, obtain the 
best estimate of the actual position.  Use this. 
 
This can be done using Bayesian statistics – quite non-intuitive to 
most people. 



Which simplifies to: 

  Normally Distributed with mean            an variance 

Using Bayesian Statistics. 



Distribution of First Passage Times 



Suppose that the shock at x=0 is crossed, so that xi xi+1 < 0.  How to 
estimate the real xi+1. 
 
Compute the time T1 = »/(1+») where » = IG(¸2/(· dt). 
 
Compute Tf = Ti + (dt-T1)¯ where ¯ is sampled from the arcsin 
distribution. 
 
The estimated position is found from the following: 
 
Sample R from the Rayleigh Distribution.  Sample U from the 
uniform distribution over 0,1.   
 
If  U < ·20.5 /(·10.5 + ·20.5)   ² = ·20.5  else ² = ·1.5. 
 
Final Xi+1 = 0 + ² R (dt-Tf)0.5 
 



 
  if (sign(1,x1/x).lt.0)  then   ! crossed shock 
 
c        do erica's approach to handle crossing of shock 
 
           deltalp1 = (v1-v2)/(3.*vstoch1) 
           deltalp2 = (v1-v2)/(3.*vstoch2) 
           alp = alp + (deltalp1 + deltalp1)/2. 
        
 amu = abs(x/x1)    ! set up gaussian dist 
 if (x1.gt.0) alam = x**2/(akap1*2.) 
 if (x1.le.0) alam = x**2/(akap2*2.) 
 xx = rand(0) 
 yy = rand(0) 
 ann = sqrt(-2.0*alog(xx))*cos(tpi*yy)  !gaussian nn 
        z = amu*ann**2  
 s1 = amu+(amu*x)/(2.*alam)-(amu/(2.*alam))*sqrt(4.*alam*z+z**2) 
 uu = rand(0) 
 cond = amu/(amu+s1) 
         if (uu.le.cond) xsi = s1 
         if (uu.gt.cond) xsi = amu**2/s1 
 t1 = xsi*dt/(1.+xsi) 
 u2 = rand(0) 
 beta = (sin(pi*u2/2.))**2 
 tf = t1+(dt-t1)*beta 
 uuu = rand(0) 
 rr = sqrt(-2.*alog(uuu)) 
 yyy = rand(0) 
   if(yyy.lt.alpha) eps = sqrt(akap2) 
    if(yyy.ge.alpha) eps = -sqrt(akap1) 
        x1 = 0.0 + eps*rr*sqrt(dt-tf) 
 
 



Non-Bayes 



With full bayes 



Summary 

• Using skewed steps with Baysian statistics seems to 
provide a usable algorithm for treating discontinuies 
in stochastic integration. 
 

• Applying this to a simple planar shock gives good 
results. 
 

• Further refinement is underway. 
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