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The Parker Transport Equation:

@ — i K(S)ﬂ = Diffusion
ot Ox; |""1j Ox;
—U . Vf = Convection w. plasma
—Vd . Vf => Grad & Curvature Drift
—I— 3 V U [86?’{}9} = Energy change

_I_Q = Source

Where the drift velocity due to the large scale curvature and gradient of the
average magnetic field is:

pcw B Te

Vd——Vx 5 | |Vd|:O —W
3q B L

It is difficult to overstate the importance of this equation. It is the basis of 95% or more

analyses of energetic particles and cosmic rays — Sun, Heliosphere, galaxy, intergalactic,
etc.



Applying Parker’s equation to the heliosphere for a simple spherically
symmetric approximation.

Intensity of ACR and GCR vs Heliocentric Radius
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Stochastic Integration

A numerical technique which has recently

become popular.

Basic idea: Diffusion is equivalent to the long-

time limit of a random walk (t>> 7).
Write 9f _ Q( 8_f)
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This is a Fokker-Planck equation with

<A X2> = 2kA t and <A x> = (Ox /Ox)At .
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e we may then follow ‘pseudo particles’ by
incrementing their positions by
tha1l = tn+dt
Tp41 = Tnt V2kdt + %dt

where + denotes a random number with zero
mean.

e |f we have advection with velocity U in the x-
direction, we add U dt to the righ of the x
equation. We may also add energy change.

 The average over a large number of particles
gives the solution for f. This is stochastic
integration of a SDE.



Some Early Papers.
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Implications of Observed Charge States ol Low-Energy Solar Cosmic Rays

1. R. Joxteit
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Recent measurements of the charge states of low-energy {100 keV./ucloon)

ar cosmis raysat 1 AL

are discussed. The measurements are consistent with models invulving charge equilibrium with newtral
matter at the sun anly if the pariicles Inse ~90% of theit enevgy owing 1o adiabatic deceleration a the
colar wind, Such an energy 1o is shown 1a be passible only if the diffusion cocficient for 1-MeY /nuclenn
particles is smaller than 107" em? 574, The implicutions of these resulls for models of solar cosmic ray

sepeleration are discussed.

Recent observations of the nuclear compositian of selar
fare particles have established that the fraction of heavier
nuclei is cthaneed at lower encrgy (Price et ai., 1971; Lanzerot-
i et al,, 1972 Mogro-Campara and Simpsan, 1572; Gioeckter et
al., 1973, Teegarden er al., 1973]. The models uscd to explain
this enrichment af heavy nuclei usually inveke aceleration in
regions of a large encugh ncutral hydrogen density for charge

ilibri i 1 i, 1971, Cartwright

to be

and Mogro-Campare, 1972].

Recently, Gloeckier ei al. [1973] have reported observations
of the charge states of low-cnergy solar fare particles. Their
measurements at 100 keV/nucleon indicated average chucges
of 54 for cacbon and 7.4 for oxygen, while the equilibrium
charge states [Bloom and Sauter. 1971] for 100-keV/nuclzan
particles in newtral matter would be approximately 2.5 and 2.9,
respectively. However, the observed charge states are in-
dicative of the equilibrium charge states of 1- to 2
MeV/nucleon particles, Observations of iren reported by
Suifivan amd Price [1971] similarly indicate 2 much higher
charge state than the cquilibrium ene. As Gloeckler et al
suggest, a possible explanation ef the observalicas is that the
particles detected at 100 keV/nucleon near earth are thuse that
had an energy of | MeV/nucleen in the accelerating region
near the sun. The observations ace in accord with the
equilibrium charge state in neutral matier being established
during aceeleration near the sun if the typical 1-MeV /nucleon
particle loses about 80% of its éncrgy during s propagation
from the sun to the earth. In the next section we investipats
this possibility and go on to discuss further the implications of
the observations for madcls of the aceeleration and propaga-
tion of solar flare particles.

MONTE CARLO SIMULATION OF SoLAR Cosyic
Rav DIFFUSION

In order 1o investigate the propagation of solar cosmic rays
we consider the simplcst possible model that should give a
reasonable estimate of the energy change. Assume that the
casmic ray omnidirectional intensity U(r, T, N isa spherically
symmerric function of heliocentric rudius r, particle kinetic
energy per nuclkon T, and tme £, Then the cosmic ray diffu-

Copyright © 1975 by the American Creaphysical Union.

sion cquation for 2 consiant-velocity solar wind and 8 << lis
|Parker, 1965; Gieesan and Axford. 1967; Jokipii, 1971]

w_1al. w_, v o
{’(n ar VU}+ 37 aT(T’IJTI 1y

a  Far

where ¥ = 150 km/s is the (radial) velocity of the solar wind
and &, is the radial cosmic ray diffusion coefficient. For
simplicity take w.r to be independent of both r and 7. the
generalization to arbitrary ., is siraightforward. Define the
new function

=il [b)
From (L) one obtains

U e o_i [(V+ 2“7)1] +2 [(‘;T)f] @

The number of particles in a spherical shell of thickness dr is
then sirply fdr.

Equatien () is in the form of a simple diffusion equation
and is identical 10 the equation oblzined from one-
dimensional random walk in radius with the randem step size
given by

(APlgrscaasen = (o A0 [O)
the radial convection given by
(BPcnvrten = [V~ 260/r180 (5

and energy-space 'conveetion’ given by

AT = —[¥T/4] At G
[e.¢. Chandrasekhar, 1943]. The cosmic ray diffusion can
therefore be simulaied by & Monte Carlo pracess in which a

particle's position and encrgy at a time f,,, are related to the
parameters at iy by

Taor = (8 arsuemn T (Af)eanuction [y

and
Fop = Ta + AT Lt
Here 5 is a random sign, s = | er =1, and the step sizes fora

rime intcrval At are given by (H-(6).

Gur model for cosmic ray prapagation from a solur flare is
obtaincd as follaws. A particle is releascd ncar the sun (at r =
R.) with kinetiz energy Tyat time s = 0 and is allowed 1o evolve
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EFFECTS OF PARTICLE DRIFTS ON THE SOLAR MODULATION OF GALACTIC COSMIC RAYS

J. R. Joxreir* anp E. H. LEvyt
partment of Planetary Sciences, University of Arizona
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ABSTRACT

. Gradient and curvature drifts in an Archimedean-spiral magnetic field are shown to produce a
sngr_uﬁcant_ effect on the modulation of galactic cosmic rays by the solar wind. The net modulation
heliocentric radial gradient, and average energy change of particles which reach the inner solar
system are significantly reduced. The effects of drifts are due to the fact that cosmic rays for which
the drift velocity is comparable to the wind velocity or larger, have more rapid access to the inner
solar system than in the absence of drifts.

Subject headings: cosmic rays: general — Sun: solar wind

D

1. INTRODUCTION

It has recently been suggested that inclusion of gradient and curvature drifts in the interplanetary magnetic field
may result in considerable modification of present models of cosmic-ray transport in the solar wind (Jokipii, Levy.
and Hubbard 1976). Those authors pointed out that although drifts are explicitly contained in standard tra’.nspnrt’
theories (e.g., Parker 1965; Axford 1965; Jokipii and Parker 1970) they have been neglected in all models of galactic
cosmic-ray modulation or solar-flare particle events.!

S:mple magnetic-field models based on the Archimedean spiral of Parker were shown by Jokipii, Levy, and Hubbard
(1976) to produce drift velocities which, for particles with rigidities greater than 0.3 GV, are g’reale;‘ 'than the solar
ynnd velocity over much of the inner solar system. Furthermore, the magnitude of the radial component of the drift
is comparable to or greater than the wind velocity. This, coupled with the fact that the divergence of the drift velocity
is zero (Levy 1976a), indicates that cosmic rays are brought in from and out to the boundary of the modu!atiné
region much more rapidly than previously believed, and that the drifts therefore can considerably reduce the net
motjl{l;tmn. Some indication that drifts can in fact reduce the heliocentric cosmic-ray gradient Was reported by
Jokipii, Levy, and Hubbard (1976), although they considered only extremely idealized cases. l

This Letter reports the initial results of Monte Carlo simulations of cosmic-ray modulation by a spherically sym-
metric solpr wind, which carries an Archimedean-spiral average magnetic field. The associated particle drifts are
explicitly included. The simulations demonstrate that, in a reasonably realistic model, inclusion of particle drifts can
substantially reduce the modulation, heliocentric gradient, and energy change of ~1 GV rigidity particles in the
inner solar system. i )

IL. THE METHOD OF CALCULATION

We use the gepera} formulation (_Jf cu;:mir—ray transport written down by Jokipii and Parker (1970). Decompose
the cosmic-ray diffusion tensor ,; into its symmetric and antisymmetric parts x;;® and &, Then, as noted by
Jokipii, Levy, and Hubbard (1976), the average particle drifts may be written .

U= +ai:t’l(Kg/‘A)), m

Noting that V+(vp) = 0, one may write the equation for the cosmic-ray density U as a function of position r, time
t, and energy T as ’ '

14 a [ U ] 13V 0

o = o L gy, ~ Ves Hw U] + 375 % o (oT1) (2)

wherea = (Zmec” + T)/(moc* + T). For simplicity assume that the modulating region is symmetric about the Sun’s
rotation axis. To cast the equation into a form suitable for Monte Carlo solution, assume that x,,, ks are independent?

* Also Department of Astronomy.
t Also Lunar and Planetary Laboratory.

1 Jokipii (1970), Levy (1975, 19764, b), and Barnden and Bercovitch (1975) pointed out some consequences of drifts, but did not construct

:ﬁr:plcte models. Herein we will use the term “drift” to refer to gradient and curvature drifts, and not to the convection with the solar

2 Generalization to arbitrary ke, ks is a i ward but li

Vo at this stage.
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Compression Acceleration Has

Recently Received Attention
Solve Parker’s equation in 1 spatial dimension, x, —

periodic with scale L.

The velocity U(x) is taken to be sinusoidal with period 2
7. Momentum change dp/dt = -(p/3) dU/dx.

The diffusion coefficient is constant in space and is large
(k >> LU )for the tail and small (k << LU) for the thermal
core.

Advance pseudoparticle by the rule (£ denotes a random
number with unit variance and zero mean)

Tp41 = Tn L \/Edet) + Udt




4>

Tail Particles

Fisk and Gloeckler (2010) considered this % < > Q < >
picture to discuss an analytical formulation. Ble &2 22 e 8 S
This is controvertial. Jokipii and Lee (2010) . | A |

showed that their equation did not
conserve particles.

Position r
1 1 1 1 Figure 1. Schematic description of the basic principles behind the acceleration
Th IS Can b ec h ec kEd easl |y usin g Stoc h d St IC mechanism of Fisk & Gloeckler. Particle speed is plotted on the vertical axis
. . and position on the horizontal axis. There is a core distribution of particles
| nteg rat 10N. with speeds greater than the thermal speed of the bulk plasma and less than

an upper threshold speed, v <5 vym. The bulk thermal plasma contains random
compressions and ex pansions, which randomly and adiabatically compress and
expand the particles as shown. Particles with speeds above the threshold speed
vy, are the tail particles. The distinction between the core and the tail particles
is that the tail particles can diffuse spatially.



The momentum (velocity) spectrum for a constant spatial diffusion coefficient &,
velocity amplitude A = .4 in units of x / L. Varying A over factors of 2 made little
difference. The v-3 power-law slope is what Lee-Jokipii quasilinear analysis (2010)
would give. But this solution is for very large amplitude.
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ICuiLlilly, titio 11ido oLl apypiliictu 1

many papers concerning cosmic rays in
the heliosphere.

Strauss etal 2011 Miyake etal 2011
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Figure 3: (a) Sample trajectory of protons with energy of 1
GeV at Earth in a Parker HMF; (b) the same for a Fisk-type
HMEF.



Application to Discontinuities:

We often wish to deal with discontinuities in cosmic-ray
transport: shocks or current sheets are commonly found.

Diffusive shock

. f
acceleration has

many desirable
properties.

How do we treat

discontinuities?

As in finite
difference
methods, one
must use care.

Ul =L,

4+—>r

_/

Shoc

X

k

LU

Inf

—3r/(r—1)

Inp

Solution

Flow Velocity

Shoc



If one just blindly proceeds and ignores the fact that the
shock changes the spatial transport, but increment p at the
shock crossing one obtains a poor approximation.
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This problem is often circumvented by smoothing the
shock as below, and using small-enough time steps to
resolve the shock. This is expensive.




Discontinuities and Stochastic Integration.

In its simplest form, one-dimensional diffusion
from one boundary to another exhibits the
problem quite well.

Consider this first.
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CALCULATION OF DIFFUSIVE SHOCK ACCELERATION OF CHARGED PARTICLES
BY SKEW BROWNIAN MOTION

MinG ZranG
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ABSTRACT

In the sindy of diffusive shock acceleration of charged particles, Fokker-Planck diffusion equations
can be replaced by stochastic difterential equations that describe the trajectory of the guiding center and
the momentum of randomly walking individual particles. Numerical solution of stochastic differential
equations is much easier to achieve, and very complicated shock acceleration cases can be simulated.
However, the divergence of plasma velocity is a d-function at the shock, resulting in a singularity for the
momentum gain rate. The straightforward way of calculating shock aceeleration is very slow because it
requires that the shock be treated with finite thickness and the particles diffuse many steps inside the
velocity gradient region. To overcome this difficulty, we suggest the use of skew Drownian motion, a
diffusion process that has asymmetric reflection probability on both sides of the shock. The skew Brown-
ian motion can be solved by a scaling method that ¢liminates the é-function in the stochastic differential
equation, The particle momentum gain is proportional 1o the loca! time spent by the dilfusion process at
the shock. ln this way, the shock can be treated as infinitely thin, and thus the speed of numerical simu-
lation is greatly improved. This method has been applied to a few cases of shock aceeleration models,
and results from the stochastic process simulation completely agree with analytical calculation. In addi-
tion, we¢ have outlined a method using time backward stochastic processes to solve general diffusive
shock acceleration problems wilh an cxtended source of parlicle injection.

Subject headings: acceleration of particles — cosmic rays — diffusion — shock waves

1. INTRODUCTION

Shock acceleration of charged particles is often considered in the framework of diffusion approximation when there 1s
sufficient scattering by magnetic irregularities in the media on both sides of the shock and the phase-space distribution of
particles is nearly isotropic, In this approach, particles are accelerated in part by the convergence motion of magnetic
scattering centers in the upstream region relative to downstream low and vice versa (Drury 1983 or in part by drift along the
shock front if the magnetic fleld has a component perpendicular to shock normal (Decker 1988). Upon each passage of the
shock, parlicles gain a small amount of cnergy. By multiple scallering across the shock back and forth, particles may
eventually achieve substantially high energy. This mechanism can account for many high-energy phenomena in astrophysics,
such as cosmic rays in the Galaxy, anomalous ¢osmic rays accelerated by the solar wind termination shock, large gradual
solar energelic particle evenls, and so on.

A typical way of caleulating diffusive shock acceleration involves the use of IFokker-Planck diffusion equation for the
particle distribution function, A large number of papers reporting analytical and numerical solutions 1o the Fokker-Planck
equation have been published in the literature (see, e.g., review by Blandford & Eichler 1987). The Fokker-Planck equation is
a second-order partial differential equation; a few analytical solutions are possible only when paramelers in the equation {i.c.,
difusion coefficients, convection speed profile) are given by trivial dependency on spatial coordinates and particle momen-
tum, When these parameters arg not trivial and second-order Fermi acceleration or other energy loss mechanisms have to be
considered, only numerical solutions arc fcasible ways, but they arc usually computationally expensive.

Stochastic differential equations (SDEs) are known to be equivalent to the Fokker-Planck equations (Gardiner 1983).
Applications of SDEs have been made to study heliospheric cosmic-ray modulation (Zhang 1999) and to study shock
acceleration (Krulls & Achterberg 1994). These papers have shown that results rom Monte Carlo simulations of stochastic
processes complelely agree with those by calculation with the Fokker-Planck cquation. An SDFE s much easier 1o solve than
the Fokker-Planck equation because an SDE is like a first-order ordinary differential equation, and the parameters and the
geometry in the diffusion problem can be given very complicated form almost without extra computational burden, The SDE
approach is particularly advantageous if the problems have Lo be treated in high dimensions,

However, there is a difficulty with the SDE approach when shock acceleration is concerned. At the shock the convection
speed and in some cases the diffusion coefficient ¢change abruptly, To high-energy particles with mean free path much larger
than the size of shocked speed gradient, the divergence of the convection speed becomes very large in a very thin region. The
time step of stochastic process simulation has 1o be chosen very small near the shock so that the simulated particles do not
miss the sharp gradient at the shock. This significantly slows down the entire simulation, which is a big limitation in the
Monte Clarlo simulation of shock acceleration by Krulls & Achterberg (1994),

TIn this paper, we introduce the use of stochastic processes with skew rellection at shock, We will derive the momentum
equation in terms of these stochastic processes. This eliminates the necessity to treat the shock as being of finite thickness. For
simplicity we will demonstrate the calculation in one dimegnsion with a planar shock set at x = 0, Acceleration by shocks with
other types of geometry can be worked out in similar manner.

428
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Consider a skewed step at crossing if x changes.

Based on the fact that if x varies, there is an advecting
term Ok /OX.

Let o = kK29°/(k 10 + K20)
If the discontinuity is crossed, compute a uniform random
number on (0,1). If it is less than «, go to region 1, else go to

region 2.

Really only works properly if the particle exactly lands on the
discontinuity. But implementing this is difficult.

Alternatively, one can use a gaussian distribution. This is better.



source absorber

Exact, uniform steps Gaussian

2.5%10°T ——— —— ] 2 0x107 [—




How to do better?

Try to estimate, statisticlly, when the discontinuity was crossed.

Use conditional statistics. Given the first estimate, obtain the
best estimate of the actual position. Use this.

This can be done using Bayesian statistics — quite non-intuitive to
most people.



Using Bayesian Statistics.

p(mﬂ'r b)
p(earlp) = PEL0)
p(b)
( b) 1 @y —0)—uzT)> 1 _':':b_I;Tg_U':;;E:'TJE
p T — e 2rzT W e 2r(l—=
} V2rkzT V2rk(1 = 2)T
1 _((b—0)—uT)?
p(E}) — e 2T

- Normally Distributed with mean Eb variance f'{.z(l — E)T



Distribution of First Passage Times
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Suppose that the shock at x=0is crossed, so that x. x,,; <0. How to
estimate the real x.,,.

Compute the time T, = £/(1+&) where £ = 1G(\2/(k dt).

Compute T, =T, + (dt-T,) 3 where 3is sampled from the arcsin
distribution.

The estimated position is found from the following:

Sample R from the Rayleigh Distribution. Sample U from the
uniform distribution over 0, 1.

If U< k2% /(k19°+ k292) €=k20> elsee=k1>.

Final X.,; =0+ € R (dt-T{)0.5



if (sign(1,x1/x).1t.0) then !crossed shock
C do erica's approach to handle crossing of shock

deltalpl = (v1-v2)/(3.*vstoch1l)
deltalp2 = (v1-v2)/(3.*vstoch2)
alp = alp + (deltalpl + deltalp1)/2.

amu = abs(x/x1) !set up gaussian dist
if (x1.gt.0) alam = x**2/(akap1*2.)
if (x1.le.0) alam = x**2/(akap2*2.)
xx = rand(0)
yy = rand(0)
ann = sqgrt(-2.0*alog(xx))*cos(tpi*yy) !gaussian nn
z=amu*ann**2
sl = amu+(amu*x)/(2.*alam)-(amu/(2.*alam))*sqrt(4.*alam*z+z**2)
uu =rand(0)
cond = amu/(amu+s1)
if (uu.le.cond) xsi = s1
if (uu.gt.cond) xsi = amu**2/s1
t1 = xsi*dt/(1.+xsi)
u2 =rand(0)
beta = (sin(pi*u2/2.))**2
tf = t1+(dt-t1)*beta
uuu = rand(0)
rr = sqrt(-2.*alog(uuu))
yyy = rand(0)
if(yyy.lt.alpha) eps = sqrt(akap2)
if(yyy.ge.alpha) eps = -sqrt(akapl)
x1 = 0.0 + eps*rr*sqrt(dt-tf)
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Summary

e Using skewed steps with Baysian statistics seems to
provide a usable algorithm for treating discontinuies
in stochastic integration.

* Applying this to a simple planar shock gives good
results.

e Further refinement is underway.
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