

High order schemes in BATS-R-US: Is it OK to simplify them?

Gábor Tóth, Bart van der Holst, Lars Daldorff

Center for Space Environment Modeling University of Michigan

http://csem.engin.umich.edu

Outline

- **M** Requirements for the high order scheme
- **M** 4th order finite volume scheme
- м 5th order monotonicity preserving scheme
- **M** Some test results
- **M** Some space physics applications
- **M** Future work

BATS-R-US

Block Adaptive Tree Solar-wind Roe Upwind Scheme

M Physics

- Classical, semi-relativistic and Hall MHD
- Multi-species, multi-fluid, anisotropic pressure
- Radiation hydrodynamics multigroup diffusion
- Multi-material, non-ideal equation of state
- Solar wind turbulence, Alfven wave heating

M Numerics

- Conservative finite-volume discretization
- Parallel Block-Adaptive Tree Library (BATL)
- Cartesian and generalized coordinates
- Splitting the magnetic field into B₀ + B₁
- Divergence B control: 8-wave, CT, projection, parabolic/hyperbolic
- Numerical fluxes: Rusanov, AW, HLLE, HLLD, Roe
- Explicit, point-implicit, semi-implicit, fully implicit time stepping
- Up to 4th order accurate in time and 5th order in space

M Applications

- Heliosphere, sun, planets, moons, comets, HEDP experiments
- **M** 100,000+ lines of Fortran 90 code with MPI parallelization

Parallel scaling from 8 to 262,144 cores on Cray Jaguar. 40,960 grid cells per core.

Requirements for High Order Schemes

M We want a high order scheme that

- Is only moderately more expensive than the 2nd order TVD schemes.
 Factor of 10 or even slower would not be very useful...
- Can handle shock waves and other discontinuities.
 - Robust and does not generate spurious oscillations.
- Can work for a variety of equations.
 - Does not require generation of equations for higher moments.
- Can work in non-Cartesian coordinates.
- Can work reasonably well together with AMR.
 - We may not have fully high order AMR scheme right away.
- Does not require a complete rewrite of BATS-R-US.

M Selected schemes (influenced by Mignone et al 2010)

- 4th order finite volume (FIVOL4) scheme by McCorquodale and Colella
- 5th order monotonicity preserving (MP5) scheme by Suresh and Huynh

FIVOL4

M The algorithm (on uniform Cartesian grid) requiring 5 ghost cells

- ✓ Store cell averages of conservative variables <U>_i
- ✓ Convert to cell center values $U_i = \langle U \rangle_i \Delta x^2/24 U_{xx}$
- ✓ Convert to cell center primitive variables W_i
- ✓ Convert to cell averaged primitive variables $\langle W \rangle_i = W_i + \Delta x^2/24 W_{xx}$
- ✓ Use 4th order accurate (PPM-like) limiter to get <W>^{L,R}_{i+1/2}
- ✓ Convert to 4th order accurate face center values W^{L,R}_{i+1/2}
- \checkmark Apply some Riemann solver to get face center flux $F_{i+1/2}$

✓ Convert to face averaged flux <F>_{i+1/2}

✓ Update <U>_i

M RK4 in time

M The algorithm (on uniform Cartesian grid) requiring 5 ghost cells

- ✓ Store cell averages of conservative variables <U>_i
- ✓ Convert to cell center values $U_i = \langle U \rangle_i \Delta x^2/24 U_{xx}$
- ✓ Convert to cell center primitive variables W_i
- ✓ Convert to cell averaged primitive variables $\langle W \rangle_I = W_i + \Delta x^2/24 W_{xx}$
- ✓ Use 4th order accurate (PPM-like) limiter to get <W>^{L,R}_{i+1/2}
- ✓ Convert to 4th order accurate face center values W^{L,R}_{i+1/2}
- \checkmark Apply some Riemann solver to get face center flux $F_{i+1/2}$
- ✓ Convert to face averaged flux <F>_{i+1/2}
- ✓ Update <U>_i
- Source terms should also be based on point values and cell averaged
- ✓ Apply shock flattening for strong shocks
- Apply artificial viscosity to remove short wave length oscillations

There is less ...

M Simplified algorithm requiring **3 ghost cells**

- ✓ Store cell center values of conservative variables U_i
- ✓ Convert to cell center primitive variables W_i
- ✓ Use almost 4th order accurate (PPM-like) limiter to get W^{L,R}_{i+1/2}
- \checkmark Apply some Riemann solver to get face center flux $F_{i+1/2}$
- ✓ Update U_i
- ✓ Source terms are added point-wise
- ✓ Apply shock flattening for strong shocks
- Apply artificial viscosity to remove short wave length oscillations

M An almost 4th order finite difference scheme for linear equations

MP5

M The algorithm (on uniform Cartesian grid) requiring **3 ghost cells**

- ✓ Store cell center values of conservative variables U_i
- ► Convert to characteristic fluxes $\hat{F}_i = L_{i+1/2}^{Roe} F_i$
- ✓ Calculate cell centered Lax-Friedrichs split fluxes $\hat{F}_i^{\pm} = (\hat{F}_i \pm c_{\max} \hat{U}_i)/2$
- ✓ Interpolate to 5th order accurate limited characteristic face flux $\hat{F}_{i+1/2}^{\pm}$
- > Convert to conservative face flux $F_{i+1/2} = R_{i+1/2}^{Roe} (\hat{F}_{i+1/2}^+ + \hat{F}_{i+1/2}^-)$
- ✓ Update U_i

M RK3 in time

Simplified MP5

M The algorithm (on uniform Cartesian grid) requiring **3 ghost cells**

- ✓ Store cell center values of conservative variables U_i
- ✓ Interpolate to 5th order accurate limited face values $U_{i+1/2}^{L,R}$
- ✓ Calculate face flux (Rusanov, HLL)
- ✓ Update U_i

M This is only 5th order accurate for linear problems

- ... but it is really simple and easy to implement into our code ...
- ... no conversion to and from characteristic domain ...

- **M** Alfven waves in 1D and 2D: linear system of equations
- **M** Gaussian pressure pulse in 1D and 2D: non-linear system of equations
- **M** Advection of a tophat in 1D and 2D: non-compressive discontinuity
- **M** Shu-Osher shock tube problem in 1D: compressive discontinuity
- **M** Advection on AMR grid: effects of 2nd order scheme at res. change
- **M** Advection on cylindrical and spherical grids: non-Cartesian effects

Grid resolution / wave length

Gaussian pressure pulse in 1D

Gaussian pressure pulse in 1D

Magnetosphere Simulations

M Pure MHD with split magnetic field and an inner boundary

- Solution from 1/4 to 1/16 R_E within -10 R_E < x, y, z < 10 R_E
- The new high order schemes produce negative pressure and density
 Implemented floor values for pressure and density
 - Modified the MP5 limiter to avoid negative pressure and density
- Empty regions above poles
 - Tried outflow: no improvement
 - Tried non-uniform resistivity: not better
 - Added uniform resistivity: somewhat better

M Coupled runs with inner magnetosphere

- Large velocities in the closed magnetic field region
 - Our of the second se
- M Any good news?

Solar wind: n=5/cc, u_x =400km/s, B_z = -5nT Magnetic diffusion: 10¹¹ m²/s

Center for Space Environment Mor

Space Weather Modeling Framew

p 1.4 1.2 1.0 0.8 0.6 0.4 0.2

TVD 1/8 R_E

TVD 1/16 R_E

1.4

1.2

1.0 0.8

0.6

0.4

0.2

10 15

р

-15 -10

-5

0

Х

Heliospheric Simulations

■ Split magnetic field, Alfven wave turbulence, heat conduction, steady state solution in rotating frame, highly stretched spherical grid

- The new high order schemes produce negative pressure and density
 - Apply floor values for pressure and density
 - Switch to MP5 after 10,000 iterations with the TVD scheme
 - Still crashes, but only after many (~70,000) iterations
- M Any good news?

Line-of-Sight Integrated Images Stereo A, March 7 2011

Line-of-Sight Integrated Images Stereo B, March 7 2011

Summary

M BATS-R-US (BATL) now works with arbitrary number of ghost cells

M Various Runge-Kutta time stepping schemes (RK2, RK3, RK4)

M FIVOL4 is implemented for uniform Cartesian grids

- Simplified version requires 3 ghost cells only
- **MP5** is implemented for interpolating primitive variables or fluxes
- **M** Verification tests suggest that the simplifications have little impact
- **M** Magnetosphere simulations
 - Problems with positivity, unexpected features
 - Promising results for KH instability: similar as TVD on twice finer grid

M Heliosphere simulations

- Robustness issues
- Promising results for LOS images: better than TVD on twice finer grid

M Plan: CWENO5 with finite difference approach, AMR, non-Cartesian...₂₄