
The Astrophysical Journal, 701:1300–1322, 2009 August 20 doi:10.1088/0004-637X/701/2/1300
C© 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

THREE-DIMENSIONAL NONLINEAR EVOLUTION OF A MAGNETIC FLUX TUBE IN A SPHERICAL SHELL:
INFLUENCE OF TURBULENT CONVECTION AND ASSOCIATED MEAN FLOWS

Laurène Jouve
1

and Allan Sacha Brun
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ABSTRACT

We present the first three-dimensional magnetohydrodynamics study in spherical geometry of the nonlinear
dynamical evolution of magnetic flux tubes in a turbulent rotating convection zone (CZ). These numerical
simulations use the anelastic spherical harmonic code. We seek to understand the mechanism of emergence of
strong toroidal fields through a turbulent layer from the base of the solar CZ to the surface as active regions.
To do so, we study numerically the rise of magnetic toroidal flux ropes from the base of a modeled CZ up to
the top of our computational domain where bipolar patches are formed. We compare the dynamical behavior
of flux tubes in a fully convective shell possessing self-consistently generated mean flows such as meridional
circulation (MC) and differential rotation, with reference calculations done in a quiet isentropic zone. We find
that two parameters influence the tubes during their rise through the CZ: the initial field strength and amount
of twist, thus confirming previous findings in Cartesian geometry. Further, when the tube is sufficiently strong
with respect to the equipartition field, it rises almost radially independently of the initial latitude (either low or
high). By contrast, weaker field cases indicate that downflows and upflows control the rising velocity of particular
regions of the rope and could in principle favor the emergence of flux through Ω-loop structures. For these latter
cases, we focus on the orientation of bipolar patches and find that sufficiently arched structures are able to create
bipolar regions with a predominantly east–west orientation. Meridional flow seems to determine the trajectory of
the magnetic rope when the field strength has been significantly reduced near the top of the domain. Appearance of
local magnetic field also feeds back on the horizontal flows thus perturbing the MC via Maxwell stresses. Finally
differential rotation makes it more difficult for tubes introduced at low latitudes to reach the top of the domain.
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1. INTRODUCTION

At the solar surface, strong magnetic fields emerge during
the whole cycle, creating huge active regions with well defined
morphological and dynamical characteristics revealed by high-
resolution observations such as the 1 m Swedish telescope in
La Palma (Scharmer et al. 2002) and the Hinode space telescope
(Kosugi et al. 2007). In particular, according to Joy’s law, most
bipolar structures statistically show an east–west orientation,
with a small tilt angle of a few degrees, increasing with the
latitude of emergence (thus decreasing with the sunspot cycle).
These active regions are believed to take part in the global
dynamo process operating in the Sun, and are the results of the
buoyant rise of the strong toroidal fields generated at the base
of the convection zone (CZ) in the tachocline of shear via the
so-called Ω-effect (Moffatt 1978, p.353; Parker 1993; Browning
et al. 2006).

Active regions are thus thought to be the results of magnetic
fields emerging at the photosphere during the whole sunspot
cycle. Observations indeed indicate that magnetic flux con-
tinuously emerges at the solar surface at all scales (see van
Driel-Gesztelyi 2002). Although the emergence rate at small
scale strongly dominates over the emergence rate at large scale
(which produces active regions), the timescale of these large
structures is much longer and they are thus likely to take part
in the process of a global reconfiguration of magnetic fields in
the chromosphere and the corona. Violent events like coronal
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mass ejections (CMEs) are a good example of the role of flux
emergence at large scale since in most models of solar ejections,
an emerging flux system is supposed to be the triggering mecha-
nism. Moreover, observations have shown that a certain amount
of helicity of the magnetic structure could almost always be
detected (Schmieder et al. 1996) even if it seems to be relatively
small (according to Chae & Moon 2005, a winding number of no
more than 0.75 is usually observed over a whole active region).
This particular ingredient is also thought to be responsible for
the onset of some violent events like CMEs through the kink
instability (e.g., Török & Kliem 2005; Fan & Gibson 2004).

Understanding the dynamical properties of these magnetic
structures requires to investigate the rising mechanisms of strong
toroidal fields through the turbulent solar CZ (see review of
Fan 2004). Many models carried out since the 1980s relied
on the assumption that toroidal flux is organized in the form
of discrete flux tubes which will rise cohesively from the
base of the CZ up to the solar surface (see Cattaneo et al.
2006, however, for a less idealized view of the topology of
buoyant flux structures). The first emergence models used the
“thin flux tube approximation” (Spruit 1981) in which the flux
tube was treated as a one-dimensional magnetic object moving
in an idealized solar convective envelope under the influence of
magnetic buoyancy, tension, aerodynamic drag, and the Coriolis
force. These models enabled to demonstrate that the initial
strength of magnetic field was an important parameter in the
evolution of the tube and that the active regions tilts could be
explained by the action of the Coriolis force on the magnetic
structure (D’Silva & Choudhuri 1993; Fan et al. 1994; Caligari
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et al. 1995). In the framework of thin flux tube, Choudhuri &
Gilman (1987) studied the evolution of magnetic flux from the
base of the CZ in a rotating background and showed that the
trajectory of emergence was linked to the initial magnetic field
strength. Another parameter then appeared to be fundamental
for the dynamical evolution of a flux tube: the twist of the
field lines. In the absence of twist, the tube splits into two
counterrotating vortex tubes that move apart from one another
horizontally and eventually cease to rise. This behavior was
analyzed by Schüssler (1979) and Longcope et al. (1996) and
then Emonet & Moreno-Insertis (1998) showed that a threshold
for the amount of twist could be derived, that would ensure
the coherence of the tube during its rise. Three-dimensional
simulations of Ω-loops, however, showed that this threshold
is reduced by a sufficiently arched magnetic structure. This
curvature is indeed also able to counteract vorticity generation
due to the gravitational torque applied to the flux tube (Wissink
et al. 2000; Abbett et al. 2000).

More sophisticated multidimensional models (Fan et al. 2003)
in Cartesian geometry were then developed and extended to the
upper part of the CZ and the transition to the solar atmosphere
(e.g., Cheung et al. 2007; Archontis et al. 2005; Magara 2004;
Martinez et al. 2008). However, very few computations (Cline
2003; Dorch et al. 2001; Fan et al. 2003) were performed to study
the influence of convective turbulent flows on the dynamical
evolution of flux ropes inside the CZ and none was done in
spherical geometry. The assumption that turbulent flows may
not have any influence on the flux rise is only valid if the field
strength is sufficiently in superequipartition compared to the
kinetic energy of the strongest downflows and this argument is
yet to be tested. Above all, no model has ever self-consistently
studied the effects of convection, rotation, mean flows, curvature
forces, and three dimensions in the full magnetohydrodynamics
(MHD) approach. We propose to do so in this paper, using the
anelastic spherical harmonic (ASH) code. Such computations
will allow us to assess for the first time the role of hoop stresses,
Coriolis force, convective plumes, turbulence, advection or
shear by mean flows, and sphericity on the tube evolution
and on the subsequent emerging regions, along with the usual
parameters such as field strength, twist of the field lines, or
magnetic diffusion.

The article is organized as follows. In Section 2, we present
the details of the simulation setup, including the equations
solved, the background hydrodynamical model, and the initial
magnetic conditions. In Section 3, we summarize the results
obtained in the isentropic case, which will represent our refer-
ence case to which the convective cases will be compared. In
Sections 4–7, the results of the computations in a fully convec-
tive zone are presented, with a particular focus on the structure
of emerging bipolar regions and the influence of mean flows on
the magnetic field and finally in Section 8, we discuss the results
and interpret them in terms of dynamics of active regions in the
Sun.

2. THE MODEL

2.1. Anelastic MHD Equations

The simulations described here were performed with the ASH
code. ASH solves the three-dimensional anelastic equations
of motion in a rotating spherical shell using a pseudospectral
semi-implicit approach (e.g., Clune et al. 1999; Miesch et al.
2000; Brun et al. 2004). It uses a Large-eddy Simulation (LES)
approach, with parameterization to account for subgrid-scale

(SGS) motions. These equations are fully nonlinear in velocity
and magnetic fields and linearized in thermodynamic variables
with respect to a spherically symmetric mean state to have
density ρ̄, pressure P̄ , temperature T̄ , and specific entropy S̄.
Perturbations are denoted as ρ, P, T, and S. The equations being
solved are

∇ · (ρ̄v) = 0, (1)

∇ · B = 0, (2)

ρ̄

[
∂v
∂t

+ (v · ∇)v + 2Ω0 × v
]

= −∇P + ρg (3)

+
1

4π
(∇ × B) × B − ∇ · D − [∇P̄ − ρ̄g],

ρ̄T̄
∂S

∂t
+ ρ̄T̄ v · ∇(S̄ + S) = ∇ · [κr ρ̄cp∇(T̄ + T ) (4)

+ κ0ρ̄T̄ ∇S̄ + κρ̄T̄ ∇S] +
4πη

c2
j2 + 2ρ̄ν

[
eij eij − 1

3
(∇ · v)2

]
,

∂B
∂t

= ∇×(v × B) − ∇×(η∇ × B), (5)

where v = (vr, vθ , vφ) is the local velocity in spherical
coordinates in the frame rotating at a constant angular velocity
Ω0, g is the gravitational acceleration, B = (Br, Bθ , Bφ) is
the magnetic field, j = (c/4π )(∇ × B) is the current density,
cp is the specific heat at constant pressure, κr is the radiative
diffusivity, η is the effective magnetic diffusivity, and D is
the viscous stress tensor. As stated above, the ASH code
uses a LES formulation where ν and κ are assumed to be an
effective eddy viscosity and eddy diffusivity, respectively, that
represent unresolved SGS processes, chosen to accommodate
the resolution. The thermal diffusion κ0 acting on the mean
entropy gradient occupies a narrow region in the upper CZ. Its
purpose is to transport heat through the outer surface where
radial convective motions vanish (Gilman & Glatzmaier 1981;
Wong & Lilly 1994). To complete the set of equations, we use
the linearized equation of state

ρ

ρ̄
= P

P̄
− T

T̄
= P

γ P̄
− S

cp

, (6)

where γ is the adiabatic exponent, and assume the ideal gas law

P̄ = Rρ̄T̄ , (7)

where R is the ideal gas constant, taking into account the
mean molecular weight μ corresponding to a mixture composed
roughly of 3/4 of hydrogen and 1/4 of helium per mass.
The reference or mean state (indicated by overbars) is derived
from a one-dimensional solar structure model and is regularly
updated with the spherically symmetric components of the
thermodynamic fluctuations as the simulation proceeds (Brun
et al. 2002). It begins in hydrostatic balance so the bracketed
term on the right-hand side (rhs) of Equation (4) initially
vanishes. However, as the simulation evolves, turbulent and
magnetic pressures drive the reference state slightly away from
strict hydrostatic balance.

Finally, the boundary conditions for the velocity are impen-
etrable and stress free at the top and bottom of the shell. We
impose a constant entropy gradient top and bottom for the isen-
tropic case and for the fully convective case, a latitudinal entropy
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gradient is imposed at the bottom, as in Miesch et al. (2006).
In all cases, we match the magnetic field to an external potential
magnetic field at the top and the bottom of the shell (Brun et al.
2004).

2.2. Introduction of a Flux Tube

To compute our model, we introduce at the starting time a
torus of magnetic field in entropy and total pressure equilibrium
with the surrounding medium at the base of the computational
domain and we let the MHD simulation evolve. We can derive
an indication for the efficiency of the magnetic buoyancy in
this situation of entropy and pressure equilibrium in writing the
following relations, respectively, for the total pressure and the
entropy equilibrium:

P
g
in

P
g
ext

= P
g
ext − P mag

P
g
ext

= 1 − B2

8πP
g
ext

cv ln P g
in − cp ln ρin = cv ln P

g
ext − cp ln ρext.

These two equalities lead to the following relation between
pressure and density inside and outside the flux tube:

P
g
in

P
g
ext

=
(

ρin

ρext

)γ

with cp the specific heat at constant pressure, cv the specific heat
at constant volume and γ = cp/cv > 1 the adiabatic index.

We can thus derive an expression for the density ratio between
the tube and its surroundings, as a function of the field strength

1 − B2

8πP
g
ext

=
(

ρin

ρext

)γ

ρin

ρext
=

(
1 − B2

8πP
g
ext

)1/γ

which gives a temperature ratio of

Tin

Text
=

(
1 − B2

8πP
g
ext

) γ−1
γ

.

We then note that under these conditions, the tube is intro-
duced at a slightly lower temperature than the surroundings,
making it slightly less buoyant than if it was introduced at
pressure and temperature equilibrium. For a tube introduced at
B = 3×105 G in a medium where P

g
ext = 5×1013 dynes cm−2

and Text = 2 × 106 K and with an adiabatic index of γ = 5/3,
which are typical values for our simulations, the temperature
difference between inside and outside the flux tube is about
40 K, thus significant with respect to the typical temperature
fluctuations in our convective flow.

In this paper, we will not address how such coherent idealized
magnetic flux tubes are created within the Sun (see Brummell
et al. 2002; Silvers et al. 2009, for details about magnetic buoy-
ancy simulations and the creation of buoyant arched structures).
This regular axisymmetric magnetic structure is embedded in a
magnetized stratified medium. In order to keep a divergenceless
magnetic field, we use a toroidal–poloidal decomposition,

B = ∇ × ∇×(Cer ) + ∇×(Aer ), (8)

Figure 1. Initial configuration of the magnetic flux tube introduced at 45◦ and
Rt = 5.2 × 1010 cm and with a twist parameter q = 15 (corresponding to a
pitch angle of 30◦). Purple indicates positive radial field and yellow indicates
negative radial field.

(A color version of this figure is available in the online journal.)

the expressions used for the potentials A and C for the flux tubes
are

A = −A0 r exp

[
−

(
r − Rt

a

)2
]

×
[

1 + tanh

(
2
θ − θt

a/Rt

)]
,

(9)

C = −A0
a2

2
q exp

[
−

(
r − Rt

a

)2
]
×

[
1 + tanh

(
2
θ − θt

a/Rt

)]
,

(10)
where A0 is a measure of the initial field strength, a is the tube
radius, (Rt, θt ) is the position of the tube center, and q is the
twist parameter. The initial configuration of magnetic field is
represented on Figure 1.

Let us take for simplicity θ = θt = 45◦. Given the relations
between the potentials A, C, and the three components of the
magnetic field Br, Bθ , and Bφ , we can find an expression of
the tangent of the pitch angle ψ (angle between the direction
of the vector magnetic field and the longitudinal direction) with
respect to the initial parameters.

Br (r, θt ) = A0aqRt

r2
exp

[
−

(
r − Rt

a

)2
]

,

Bθ (r, θt ) = 2A0qRt (r − Rt )

ar
exp

[
−

(
r − Rt

a

)2
]

,

Bφ(r, θt ) = 2A0Rt

a
exp

[
−

(
r − Rt

a

)2
]

.

Hence,

tan ψ =
√

B2
r + B2

θ

Bφ

= q

√
a4 + 4(r − Rt )2r2

2r2
.
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The pitch angle is then linked to the parameter q (appearing
in the expressions for the potentials A and C) via a function of
the tube radius and position. Thus, we note that the pitch angle
reaches its maximum at the tube periphery (at r = Rt + a) and
that it is close to 0 at the tube center (at r = Rt ). We shall note at
this point that when r = Rt +a (at the tube periphery), the term a4

(due to the contribution of Br) becomes very weak in comparison
to the other term 4(r − Rt )2r2 (due to the contribution of Bθ ).
The tangent of the maximal pitch angle is then approximately
determined by the ratio Bθ/Bφ and is in this case equal to
qa/(Rt + a).

We can now derive an expression for the winding degree of
the field lines (i.e., the number of turns that the field lines make
over the whole tube length 2πRt sin θt )

n = πRt sin θt

2a
tan ψ.

In all cases, except for Section 7.3, the tube radius is set to
a = 109 cm, about a twentieth of the depth of the modeled CZ
and is introduced at the base of the CZ at Rt = 5.2 × 1010 cm.
The initial field strength A0, the initial twist of the field lines q
as well as the colatitude of introduction θt will be varied in our
models to investigate the influence of these various parameters.

2.3. The Background Hydrodynamical Models

Our experiments consist in introducing the torus of magnetic
field at the base of the CZ in a spherical shell, as was presented
above, in a thermally equilibrated hydrodynamical model in
which the convection is or is not triggered. We then compute
two different hydrodynamical models, one which is isentropic
and one where we trigger the convection instability. The study of
the isentropic case is the topic of Jouve & Brun (2007) and will
be considered as the reference case to which the fully convective
cases will be compared to.

Our numerical models are intended to be a faithful if highly
simplified descriptions of the solar CZ. Solar values are taken
for the heat flux, rotation rate, mass, and radius and a perfect
gas is assumed since the upper boundary of the shell lies
below the H and He ionization zones. Contact is made with
a real solar structure model for the radial stratification. The
computational domain extends from about 0.72R to 0.96R.
The reference state was obtained through the one-dimensional
CESAM stellar evolution code (Morel 1997) which uses a
classical mixing-length treatment calibrated on solar models
to compute convection. We are dealing with the central portion
of the CZ but neglect for this work the penetrative convection
below that zone or a stable top atmosphere.

The effective viscosity and diffusivity ν and κ are here taken
to be functions of radius alone and are chosen to scale as the
inverse of ρ̄1/3. We use the values ν = 1.13 × 1012 cm2 s−1

and κ = 4.53 × 1012 cm2 s−1 at mid-CZ, leading to a Prandtl
number of Pr = 0.25. In all cases, the spherical shell is rotating
at the rate Ω0 = 2.6 × 10−6 rad s−1 (corresponding to a rotation
period of 28 days). In the convective cases, we trigger convection
by assuming a Rayleigh number Ra = 1.85 × 105 > Rac

and setting a small and negative dS/dr = −10−7. In these
cases, we have Re = vconv(rtop − rbot)/νmid-CZ = 120, where
the characteristic length scale is chosen to be the depth of
the CZ and vconv = 80 m s−1. In the simulations, the Taylor
number is Ta = 1.8 × 106 and the convective Rossby number
is then Roc = Ra/(TaPr ) = 0.63 < 1, thus ensuring a prograde
differential rotation (Brun & Toomre 2002). The density contrast

Figure 2. Radial dependences of the main fluxes involved in the isentropic
(upper) and the fully convective (lower) cases.

in this convective case is about 24 whereas it reaches a value of
40 in the isentropic case between the top and the bottom of the
domain.

Figure 2 illustrates the contribution of various physical
processes to the total energy flux through the shell, converted to
luminosity and normalized to the solar luminosity, in both the
isentropic and the convective model. The net luminosity, L(r),
and its components are defined as

Fe + Fk + Fr + Fu + Fν = Ft = L(r)

4πr2
, (11)

where
Fe = ρ̄cpvrT , (12)

Fk = 1

2
ρ̄v2vr, (13)

Fr = −κr ρ̄cp

∂T̄

∂r
, (14)

Fu = −κ0ρ̄T̄
∂S̄

∂r
, (15)

Fν = −v � D|r , (16)

where Fe is the enthalpy flux, Fk is the kinetic energy flux, Fr
is the radiative flux, Fu is the unresolved eddy flux, and Fν is
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Eq

Meridional Flow

Figure 3. Convective motions and mean flows created in the fully convective cases. The first panel shows the radial velocity profile near the top of the shell, the second
shows the differential rotation profile, and the right panel shows the meridional circulation, the last two panels having been averaged over longitude and time (272
days). For the meridional flow, dashed (plain) lines represent counterclokwise (clockwise) circulation and the intensity varies approximately between about −20 and
20 m s−1.

(A color version of this figure is available in the online journal.)

the viscous flux. The thermal diffusivity κr is derived from a
one-dimensional-calibrated solar structure model (Brun et al.
2002) computed with the CESAM stellar evolution code (Morel
1997). We adjusted it so that the radiative flux is equal to the
total flux in the whole layer in the isentropic case and is equal
to the total flux at the base of the CZ for the convective case. In
the latter case, the adjustment compared to the value obtained
from the one-dimensional model is small. The unresolved eddy
flux Fu is the heat flux due to SGS motions, which in our
LES approach, takes the form of a thermal diffusion operating
on the mean entropy gradient (Gilman & Glatzmaier 1981;
Wong & Lilly 1994). Its main purpose is to transport energy
outward through the impenetrable upper boundary where the
convective fluxes Fe and Fk vanish and the remaining fluxes are
small.

On Figure 2, the flux balance is represented at the time the
system has reached a statistical steady state. In the isentropic
case, as we do not have convection, we note that the energy is
exclusively transported by radiation, explaining why the total
flux is equal to the radiative flux in this case.

Contrary to the isentropic case, we note that several fluxes
play a role in the fully convective model. The convective flux has
developed to reach an equivalent luminosity of almost 110% of
the solar luminosity in the middle of the shell and the radiative
and unresolved eddy fluxes carry the energy at, respectively,
the bottom and the top of the domain where the enthalpy flux
vanishes. The viscous flux Fν is relatively small and slightly
negative in most of the domain and the kinetic energy flux Fk
is, in contrast, clearly negative in the whole CZ. The asymmetry
between the fast downflows and the broad slower upflows is
responsible for the fact that the kinetic energy flux is negative.
The very low value of Fν confirms that the Reynolds number of
these simulations is much greater than unity.

In the convective case, where different physical processes
play a significant role to transport the energy, large-scale flows
such as differential rotation and meridional circulation (MC) are
being created due to the action of convective motions. In Brun
& Toomre (2002), it has been shown that convection under the

influence of rotation leads to an efficient redistribution of angular
momentum, energy, and heat. It is found that Reynolds stresses
are at the origin of the equatorial acceleration of the solar CZ,
opposed by both the MC and viscous transport, the latter being
negligible in the latest solar simulations (Miesch et al. 2008).
It was also found that the latitudinal enthalpy (convective) flux
is at the origin of the variation of entropy and temperature as
a function of latitude, leading to warm poles and cool equa-
torial regions (Brun & Toomre 2002; Brun & Rempel 2008).
These thermal variations yield baroclinic effects that break the
Taylor–Proudman constraint of invariance along the axis of
rotation.

Figure 3 illustrates the convective structure and the associated
differential rotation and meridional flow realized in our simula-
tions. The convective patterns are complex, time dependent and
asymmetric owing to the density stratification, consisting of rel-
atively weak, broad upflows with narrow, fast downflows around
their periphery. By imposing in this model a weak entropy vari-
ation at the base of the CZ, which mimics the presence of the
tachocline, we were able to get an even more solar-like angular
velocity profile (see Miesch et al. 2006). The relative ampli-
tude of this imposed variation corresponds to a pole–equator
temperature difference of about 10 K. The second panel of
Figure 3 thus shows the differential rotation profile which is
in good agreement with the solar internal rotation profile in-
ferred from helioseismology (Thompson et al. 2003). In this
figure, the angular velocity of the rotating frame is 414 nHz,
corresponding to a rotation period of 28 days, the angular ve-
locity contours at midlatitudes are nearly radial and the rotation
rate decreases monotonically with increasing latitude as in the
Sun. The induced MC shown on the right panel of Figure 3
exhibits a complex profile, multicellular both in latitude and
in radius. Nevertheless, close to the equator, a poleward flow
of about 20 m s−1 strongly dominates at the surface, which is
in agreement with helioseismic inversions. The fully convec-
tive model is thus far more complex that the isentropic one.
Continuously the dynamics is maintained with turbulent con-
vection, heat and angular momentum redistribution, leading to
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time=9.27 days time=30.0 days

Figure 4. Rising trajectory of a flux tube introduced with B0 = 105 G. We note
that the tube tends to rise parallel to the rotation axis.

(A color version of this figure is available in the online journal.)

the presence of large-scale flows and asymmetric upflows and
downflows whose various effects on a magnetic flux rope will
be studied.

3. EVOLUTION OF A FLUX TUBE IN AN ISENTROPIC
LAYER

In this section, we briefly summarize the results obtained
in the calculations of Jouve & Brun (2007) concerning the
influence of the twist of the field lines, of rigid rotation and
of the initial latitude of the flux rope on its dynamical evolution
in a stably stratified layer. That will ease the comparison with
the convective case and complete our study with new isentropic
models. Indeed, we have decided that the simulations would
be more realistic if the tube radius was reduced to 109 cm. In
Section 7.3, we will comment specifically on the effects of the
tube radius on its evolution.

Emonet & Moreno-Insertis (1998) showed that vorticity
generation in the flux tube was controlled by the competition
between the gravitational torque and the magnetic tension.
Consequently, by setting the gravitational torque to be equal
to the projection of the Lorentz force in the equation for
the azimuthal vorticity, we can determine the threshold above
which the twist of the field lines can counteract the creation
of two countervortices inside the tube. We derive the following
inequality for the pitch angle value:

sin ψ =
√

(B2
r + B2

θ )

B
�

√
a

Hp

×
√∣∣∣∣Δρ

ρ̄

∣∣∣∣ β

2
= sin ψmin, (17)

where Hp is the pressure scale height at the base of the CZ,
Δρ/ρ̄ is the density deficit inside the tube compared to the
background stratification divided by the background density at
the tube center, and β is the plasma-β associated with the tube.
In our case, the threshold value is equal to 0.3 (corresponding
to a pitch angle of 17.◦4). In most twisted cases, we use for sin ψ
a value of 0.5 (corresponding to a pitch angle of 30◦), i.e., well
above the threshold, so that the tube is able to rise cohesively
through the entire CZ.

Rotation has also an important dynamical effect on the
trajectory of the tube. Indeed, as shown in Jouve & Brun
(2007) in the nonrotating case, the latitudinal component of the
magnetic curvature acts to drag the tube poleward as it cannot
be compensated by any equatorward force (hoop stresses). In the
rotating case, a retrograde zonal flow is created inside the tube
which induces a Coriolis force directed toward the Sun’s rotation
axis which acts to deflect the trajectory of the tube poleward.
Thus, we note that the deviation to the radial trajectory in this
case is even more pronounced.

Figure 5. Intensity of the zonal flow in the axis of the flux tube with respect to
its position, for tubes introduced at various latitudes.

Moreover, we also showed in Jouve & Brun (2007) that the
rotation has an impact on the rise time of the tube. Indeed, the
radial component of the centrifugal force decreases the tube
velocity so that after 6 days of evolution, the rise velocity of
the tube in the nonrotating case is about 1.5 times that of the
tube in the rotating case. This can be explained by the fact
that the buoyancy term is modified by an extra term coming
from the rotation which has the effect of limiting the efficiency
of buoyancy. The flux tubes thus emerge more slowly in the
rotating case.

We also investigated how flux tubes react when they are
introduced at various latitudes. We find that the poleward drift
due both to the uncompensated magnetic curvature force (hoop
stresses) and the Coriolis force varies as a function of the latitude
of introduction of the tube. As Moreno-Insertis et al. (1992)
indicate, we can understand the poleward drift in writing the
equation for the θ -component of the velocity in the nonrotating
case, neglecting the advection terms

∂vθ

∂t
= − B2

φ

4πrρ̄
cot θ. (18)

This equation indicates that the acceleration in the θ -direction
is proportional to cot θ which is a decreasing function of θ
between 0 and π/2. As θ is here the colatitude, the acceleration
at higher latitudes is thus more rapidly active than at low latitudes
and as a consequence, the poleward drift is much more visible
for a flux tube originally located at high latitudes.

As Choudhuri & Gilman (1987) first demonstrated using the
thin flux tube approximation and as Fan (2008) and Jouve &
Brun (2007) confirm with three-dimensional MHD simulations,
the initial strength of the magnetic field introduced at the base
of the CZ has a strong influence on the rising trajectory of the
flux rope. We thus computed a new isentropic case where the
initial field strength is 105 G and found that in this case, as
illustrated on Figure 4, the tube is strongly deviated from the
radial trajectory and tends to follow a path which is parallel to
the rotation axis.

The deviation to the radial trajectory is due to the creation
inside the tube of a retrograde zonal flow vφ as soon as the
magnetic structure begins its rise through the isentropic layer,
as illustrated on Figure 5. The creation of this retrograde flow is
the result of the conservation of the total angular momentum
r sin θρ̄(r sin θΩ0 + vφ) inside the tube. Its main effect is
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Table 1
Key Parameters of the Various Convective Cases

Parameters CAnt CAtt CAt CBt CCt CAt45 CAt15 CAt60 CAt75

B0 5Beq 5Beq 5Beq 10Beq 2.5Beq 5Beq 5Beq 5Beq 5Beq

Φ0/1023 4.65 4.65 4.65 9.45 2.32 4.65 4.65 4.65 4.65

Latitude 60 60 60 60 60 45 75 30 15

sin ψ 0 0.33 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Ret = vrisea
νmid-CZ

16 16 16 68 4 16 15 16 17

to locally create a Coriolis force oriented toward the solar
rotation axis. This Coriolis force then partially compensates
the component of the buoyancy force, perpendicular to the
rotation axis whereas the component parallel to the rotation
axis remains the same. As soon as this compensation becomes
significant, the tube is strongly influenced by the component of
the buoyancy force parallel to the rotation axis and thus drifts
away from the radial trajectory. We note that vφ inside the tube
is more and more negative to compensate for the creation of
angular momentum due to the increase of r sin θ for most cases.
However, in the extremely high-latitude case (75◦), vφ inside
the tube first increases. This is due to the fact that for this case,
the curvature force is first acting to make the tube drift poleward
(since the curvature force acts faster at high latitudes), so that
sin θ decreases faster than r increases, leading to a decrease of
r sin θΩ0 which has to be compensated by a prograde zonal
flow. For this case, vφ in the tube increases until r sin θ becomes
constant and then begins to increase and only then do we recover
the same behavior as tubes introduced at lower latitudes.

Nevertheless, the initial magnetic field strength plays a role in
this force balance. If the tube is weak like in the case of Figure 4
where B0 = 105 G, the Coriolis force created by angular
momentum conservation is sufficiently strong to compensate
the weak buoyancy force and the main component which acts
on the tube will make it rise parallel to the rotation axis, which
is consistent with the results of Fan (2008).

For the rise to be radial, we need to introduce sufficiently
strong magnetic tubes. We found a threshold of 1.3 × 105 G for
the initial value of the magnetic field inside the tube. For the
following calculations, we thus impose an initial value above
this threshold so that active regions will emerge close to the
latitude where the tube was introduced.

4. DYNAMICAL EVOLUTION OF A FLUX TUBE IN A
FULLY CONVECTIVE SHELL

Our reference isentropic case has been defined and studied.
We now know that a sufficient twist of the field lines and
magnetic field intensity were necessary to enable the flux tube
to rise cohesively and radially through the isentropic layer.
We now turn to investigate the evolution of similar tubes in
a fully convective zone where mean flows are developed and
maintained.

4.1. Description of the Convective Cases

We compute a series of models where the tube is introduced
in the CZ after the convection and the mean large-scale flows
have self-consistently developed and we compare the results
with reference cases in which we do not have convection. We
thus compute an untwisted case (the initial field is exclusively

oriented in the direction of the tube, i.e., q = 0), a twisted case
(with a twist above the threshold of Equation (17)), cases with
tubes located at different latitudes and cases with various initial
field strengths. The various cases and the parameters used are
summarized in Table 1.

As we said, the tube radius is set to 109 cm, about 0.18 times
the pressure scale height at the base of the CZ. The magnetic
diffusivity at mid-CZ is set to the value of 1.13 × 1012 cm2 s−1,
leading to a magnetic Prandtl number of 1, η is made to vary
as 1/ρ̄1/3 like the other effective eddy diffusivities, leading
to a value of 7.95 × 1011 cm2 s−1 at the base of the CZ.
The magnetic diffusivity is kept the same for all runs (except
in Section 7.2, where we investigate the influence of this
parameter), we thus have the same value of the diffusive time
associated to the flux tube for all cases which is a2/ηbaseCZ =
14.5 days. In the convective cases, we express the initial
magnetic field strength in terms of the intensity of the magnetic
field which is in equipartition with the kinetic energy of
the strongest downflows, this Beq is approximately equal to
6.1 × 104 G. The twist of the field lines is expressed in terms of
the sine of the pitch angle and can be compared to the threshold
value calculated according to Equation (17) in the isentropic
case. Abbett et al. (2000) showed that this threshold may be
reduced if we introduce a sufficient curvature in the magnetic
structure we initially set at the base of the CZ. As we study
here the evolution of initially axisymmetric flux tubes and not
Ω-loops, the two-dimensional-threshold value for the twist will
be used. Nevertheless, since modulation in longitude is created
in certain cases by the convective motions, we may also obtain
a significant curvature of the rope in our simulations and thus a
lower amount of twist would likely be sufficient to maintain the
tube coherence during its rise.

4.2. Interaction with Convection in the Standard Case

In this section, we first focus on the influence of the convective
motions on the tube evolution in case CAt i.e., when it is
introduced at a latitude of 30◦, with a fixed initial twist of about
23 turns and an initial field strength of 3 × 105 G (i.e., 5 Beq).

Figure 6 represents the contours of Bφ and of the radial
velocity vr as the tube rises through the CZ. We first notice
that the tube expands during its 12 days of evolution, to get to
a radial extension of about three times the initial one when the
tube reaches the top of domain. This expansion is due both to
magnetic diffusion and to the pressure drop from the base to the
top of the domain. This figure clearly shows the deformation of
the shape of the tube section while it rises. The magnetic initial
conditions, as we saw in Section 2.2, imply a perfectly circular
shape of the tube section and after 12 days of evolution, the last
panel of Figure 6 shows that the tube has been squeezed at its
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Figure 6. Evolution of Bφ cut at a specific longitude and shown in a portion of the northern hemisphere, associated with the rising tube (contours) superimposed
to the evolution of the background convection represented by the colored contours of vr . Blue (yellow) colors represent down (up) flows, the velocities vary from
−300 m s−1 to 200 m s−1.

(A color version of this figure is available in the online journal.)

apex and thus develops an oblate shape during its rise. Moreover,
the periphery of the tube, where the magnetic field is much lower
than in the apex, has thus more difficulties to make its way
through the convective zone and consequently has the tendency
to be dragged downward, contrary to the rising apex. If we
look closely at the convective pattern, the downward advection
of the tube periphery can be easily related to the downflows
appearing at each side of the tube as it rises. We then clearly
see that the background convection is strongly affected by the
presence of the confined magnetic field. When the magnetic
structure begins its evolution, it creates its own local velocity
as we can see on the first panels of Figure 6, due to the back-
reaction of the Lorentz force on the velocity field. This velocity
field due to the Lorentz force consists in a strong upflow in the
central region (the apex) and two downflows at each side of
the tube. The study of the momentum equation shows that this
particular configuration of the velocity is a direct consequence
of the presence of the latitudinal gradient of Br in the equation
for vr , which changes sign twice across the tube section. In the
isentropic case, the same type of velocity field created by the
presence of the magnetic tube appeared during the evolution but
in this case, this configuration was much more symmetric with
respect to the apex of the tube since the only background velocity
was due to the tube. On the other hand, in the convective case,
the velocity field created by the tube is an additional velocity to
the background convection and thus a clear asymmetry is visible
in the velocity field with respect to the apex. Here, especially
if we focus on the three lower panels showing the last days of
evolution, we note that the two downflows at each side of the
tube are very different in extension and shape, leading to a very
distorted aspect of the tube by the time it reaches the top of the

domain. The effect of the Coriolis force consisting in deflecting
the tube poleward is thus less visible than in the isentropic case
since now the velocity field in the meridian plane also plays a
very significant role in the dynamical evolution of the flux tube,
as we will discuss more in Section 6.

Since the background convection has a strong non-
axisymmetric component, it is likely that the evolution of the
tube will depend on the longitude, contrary to the reference isen-
tropic case. Indeed, Figure 7 shows the evolution of the same
flux tube with the background convective motions, but projected
on the (r, φ) plane. This view enables to observe the longitudi-
nal deformation of the magnetic field due to convective up and
downflows. Since our aim is to understand how active regions
could be created at the solar surface, the study of the longitudinal
deformation of the tube while it rises is of major interest.

The cut of the magnetic energy and vr is made at 30◦ of
latitude, where we introduce the tube initially. We thus recover
on each panel of Figure 7 the strong upflow we could see on the
previous figure centered at the apex of the flux tube. Tracking a
particular upflow (red arrow on each panel) and a particular
downflow (black arrow) enables us to focus on the strong
correlation existing between the regions where the magnetic
structure is lifted (pinned down) and the convective upflows
(downflows). Indeed, at the location of the strong downflow, the
field lines are squeezed and thus retained in the solar interior,
even if the tube is still globally subject to magnetic buoyancy.
We thus have a competition between magnetic buoyancy and
convective downflows which controls the rising behavior of the
tube, as was seen in the Cartesian study of Fan et al. (2003).
In this region, even if the tube locally creates an upflow, it is
not sufficient to counteract the strong background downflow
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Figure 7. Evolution of the magnetic energy cut at the latitude of 30◦ (contours)
superimposed to the background convection shown by a color representation
of vr . Blue (yellow) colors represent down (up) flows, the velocities vary from
−300 m s−1 to 200 m s−1. A black arrow indicates the location of a particular
downflow a red arrow indicates the location of a particular upflow.

(A color version of this figure is available in the online journal.)

and this portion of the structure is thus clearly pinned down by
convection and will eventually rise significantly slower than the
surrounding regions. In contrast, the strong upflow which owes
its origin both to the background convection and to the presence
of the magnetic field clearly drags the field lines upward and
will most probably favor flux eruption at the photosphere.
We moreover see on Figure 7 that convective plumes drift
longitudinally in time due to the presence of rotation. This
constitutes a major difference with previous Cartesian study
where the convective structures were not influenced by rotation.
The same convective plume in our simulations will thus have

effects on the magnetic tube at different longitudes. A rough
calculation of the drifting time of convective plumes in the
middle of the convective zone at the latitude of 30◦ shows that
a convective plume could drift along 16◦ longitudinally during
this particular flux tube evolution (which lasts about 10 days).
We should, however, take into account that the presence of the
flux tube itself modifies the structure of the convective motions
and thus may influence the action of convective plumes on the
magnetic field, especially when it is introduced with higher
intensity, as we discuss in the following section.

4.3. Interaction with Convection When Varying the Field
Strength

We have just seen that a modulation in longitude appears as
the tube rises through the turbulent layer, this modulation is the
result of strong interactions between convective motions and the
magnetic structure. These interactions are likely to be sensitive
to variations of the initial magnetic intensity inside the flux
tube. We thus investigate the influence of the initial magnetic
field strength in these fully convective cases. Few authors (e.g.,
Fan et al. 2003; Murray et al. 2006) have already shown that this
parameter may have a strong influence on the rising behavior of
the flux tube and on its interaction with the convective motions.

Figure 8 shows the interaction between convective motions
and the rising behavior of flux ropes introduced in the same
hydrodynamical background but with three different initial
values for the field strength. On the first panel, we show the
result of the calculation where Binit is approximately equal to
the 2.5Beq. In this case, the correlation between the upflows
(downflows) and the portions of the tube which rise more rapidly
(slowly) is clearly visible. The background velocity dominates
over the velocity field created by the flux rope through the
Lorentz force. As a result, it is the background velocity which
controls the rising behavior of the tube. Since the initial field
strength is relatively weak in this case, the convective motions
first deform the tube in longitude, then the strong downdrafts
pin the tube down and finally the rope loses its buoyancy by
magnetic dissipation before it is able to rise through the entire
CZ. The rope is thus unable to rise to the top of the domain in
this case where B is 2.5 times the equipartition field. In contrast,
when the field is very strong compared to the equipartition
field (last panel of Figure 8), the background velocity field has
almost no effect on the behavior of the rope. Its self-created
velocity completely dominates the evolution and thus the tube
rises almost axisymmetrically as if it was embedded in a stably
stratified zone, even if a weak modulation in longitude is visible
on Figure 8. In the intermediate case, where the field strength
is close to five times the equipartition field, we note that the
flux rope is strongly modulated in longitude but the whole tube
emerges anyway in a relatively coherent manner. In this case,
the velocity created by the tube itself is of the same order as the
background velocity and the convective motions are thus able to
strongly influence the tube during its dynamical evolution inside
the CZ. This is an interesting behavior since even if the tube is
introduced axisymmetrically, some longitudes can be favored
and structures will be able to emerge only in few places at the
solar surface, thus creating localized active regions.

As we saw, while it rises, the flux tube creates its own
local velocity field which may strongly disturb the background
velocity field, especially when the initial magnetic field intensity
is strong compared to that of the equipartition field. This explains
why the tube is more or less influenced by the convective
motions as it evolves in the CZ. Indeed, if the magnetic energy of



No. 2, 2009 RISING FLUX TUBES 1309

Figure 8. Cut at the latitude of 30◦ of the radial velocity (colors) and of the
magnetic energy (line contours) for three different initial values of the magnetic
field strength (cases CCt, CAt, and CBt). Yellow colors indicate upflows and
bluish colors indicate downflows. The minimum velocity for all cases is about
−300 m s−1 and the maximal velocity (concentrated inside the tube for the
strong B cases) varies, its value is about 160 m s−1 for case CCt, 200 m s−1 for
case CAt, and 420 m s−1 for case CBt.

(A color version of this figure is available in the online journal.)

the tube is strong compared to the kinetic energy of the strongest
downdrafts, the tube creates a velocity through the action of the
Lorentz force which dominates against the background purely
hydrodynamically generated velocity. Since a strong upflow is
thus created near the tube axis, the rising mechanism is very
efficient and the tube reaches the top of the CZ in only 4
days. In the weaker cases, the velocity field created by the
magnetic structure is comparable to the background velocity
field and the latter is thus able to influence the behavior of
the flux rope as it rises, the rise time is in this case of about
12 days.

5. STRUCTURE OF THE EMERGING REGIONS

We now turn to discuss the characteristics of active regions
created by the buoyantly rising magnetic structures. We espe-
cially focus on the field strength, the orientation, and the later
evolution of the bipolar active regions. However, it has to be
clarified that since our upper boundary lies at about 28 Mm be-
low the actual solar surface, what we call “flux emergence” here
is the emergence through the top of the computational domain,
which is likely to be different from the emergence in the real
photosphere.

5.1. Creation of Bipolar Regions in the Standard Case

Figure 9 shows a zoom, seen from above, of an emerging
bipole near the top of the domain. On this figure, the radial field
Br is shown, superimposed to the background radial velocity.
We can here focus on the change in the convective patterns as the
flux tube emerges, on the influence of particular downflows on
the magnetic structure and on the late evolution of the magnetic
field after the emergence.

On this figure, we clearly note that the emerging phase
is characterized by the appearance of the bipolar patch in
a very localized portion of the (θ, φ) plane which in turn
locally modifies the convective patterns. We again recover
the strong upflow created by the tube and located at its
apex and the downflows which appear at each side of the
emerging tube. We then note that the convection organizes itself
very differently around the magnetic field. The strong central
upflow significantly influences the background velocity field:
for example, the strong downflow located on panel (a) (before
emergence) around the longitude of 75◦ and the latitude of 30◦ is
modified by the appearance of magnetic structures on panel (b),
the downflow is squeezed and becomes less intense in the area
where the tube emerges. However, this downflow is so strong
at the beginning that in spite of the influence of the magnetic
field, we recover its imprint during the whole evolution on all
the panels. On the other hand, the upflows which were already
present before the arrival at the top of the domain of the magnetic
structure are enhanced by the flux emergence and for example,
the patch of positive radial velocity located in the middle of the
first panel stays very strong during the whole evolution because
it is reinforced by the emergence of the bipolar structure. The
magnetic field has thus a strong influence on the modification
of the convective patterns at the top of the domain but we can
also focus on the influence of convection on the deformation of
the rope and on its late evolution. Indeed, the strong downflows
are clearly the areas where the magnetic structures have more
difficulties to emerge whereas strong upflows make it very easy
for the bipolar patches to appear from the beginning. On panels
(b) and (c) in particular, we clearly see the emergence of two
active regions separated by a strong downflow which causes the
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Figure 9. Evolution of the radial field (contour lines) superimposed to the radial velocity (color contours) at 0.96 R and zoomed in a particular portion of the northern
hemisphere where a bipolar region emerges. Green (red) corresponds to positive (negative) Br . The first panel shows the field-free region prior to the emergence and
the other panels show the evolution of the magnetic structure and the velocity field from the time of emergence (second panel) until approximately 7 days later (last
panel).

(A color version of this figure is available in the online journal.)
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(a) (b) (c)

Figure 10. Magnetic field line reconstruction below the emerging regions and above, where a potential extrapolation has been applied. Yellow (purple) lines indicate
negative (positive) radial field. The three snapshots correspond to approximately panels (b), (e), and (h) of Figure 9.

(A color version of this figure is available in the online journal.)

central area to stay deeper down in the interior. The tube thus
emerges in a particular shape, with two distinct bipolar patches
appearing and then evolving differently.

The late evolution of the flux tube after emergence also
presents some interesting properties. On the first panels ((b)–
(d)), the field which is brought to the surface by mag-
netic buoyancy dominates the evolution of the simulation
since it strongly perturbs the convective motions. At this
stage, we can note that the tube evolution will remain domi-
nated by the convective motions since the diffusive timescale
at the surface for regions occupying about 10◦ in longitude is
of the order of 45 days, much higher than the advection time
(of the order of a few days). As the simulation evolves, the
magnetic field begins to be advected horizontally by convec-
tion which tends to separate the two opposite polarities of the
bipolar patches (panels (e) and (f)). Panels (g) and (h) then
show the behavior of the magnetic field and the radial velocity
about 7 days after the first signs of emergence. On these panels,
the field lines become stretched by the convective motions and
advected toward the strong downdrafts. We then recover some
features of magnetoconvection when the magnetic field is less
organized than one well defined flux tube. Indeed, at this stage
of evolution, the structure is much less coherent, it begins to
occupy a very wide band in latitude because of the redistribu-
tion by convection.

Figure 10 enables to see the three-dimensional emergence
of the bipolar structures, in showing the magnetic field lines
reconstruction immediately below and above the top of our
computational domain, at different times in the emergence
process. Panel (a) corresponds to the first signs of emergence,
we clearly note (like panel (b) of Figure 9) the north–south
orientation of the bipolar patches, which becomes more and
more east–west as the emergence proceeds, as is shown on
panels (b) and (c). On these panels, the complicated structure
of the flux rope starts to be visible in the interior. Indeed, we
note the modulation both in latitude and in longitude of the
tube when it reaches the top of the domain. Panel (c) shows
that the magnetic field of the tube connects with the external
field during the emergence, even if some parts of the rope stay
hidden in the solar interior and are not able to rise anymore. In
particular, the fact that the tube axis dos not emerge and that only
the upper part of the rope is visible outside the computational
domain is probably responsible for the predominantly north–
south orientation of the emerging patches.

This remark thus leads us to analyze in more details the
evolution of the tilt angle and of other characteristics of the
emerging regions, in the same spirit of the observational studies
of Kosovichev & Stenflo (2008).

Figure 11. Magnetic fluxes, tilt angle, and footpoints separation for one of the
emerging regions.
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Figure 12. Cut at r = 0.93R of Br for case CBt (upper panel) and case CAt (lower panel). We clearly note the difference between the two computations in the way
the magnetic flux emerges.

(A color version of this figure is available in the online journal.)

Using a series of 96 minute cadence magnetograms form
SOHO/MDI, they analyzed 715 active regions in terms of the
evolution of the tilt angle, of the amount of emerging flux and of
the magnetic polarities separation during emergence. We thus
proceed to the same kind of analysis on our particular portion
of magnetic field emerging between the longitudes of 55◦ and
65◦ on panel (b) of Figure 9. We have to keep in mind that the
emergence through our upper boundary (which still lies well
inside the CZ) is difficult to compare directly to observed flux
emergence at the photosphere. However, this type of analysis
enables us to get a better insight into the processes playing
a role in the evolution of magnetic flux ropes well below the
photosphere, thus allowing to predict some characteristics of
the structures which will actually emerge through the upper
layers. The results of this analysis are shown on Figure 11. This
figure shows the evolution of the total unsigned flux (together
with the contribution of the positive and negative polarities), the
tilt angle, and the magnetic polarities separation. The amount of
flux first sharply increases during the first 3 or 4 days after the
first signs of emergence and then reaches a saturation and starts
to decrease as the opposite magnetic polarities stop separating.
After about 4 days after emergence, the separation between the
two opposite polarities is not modified by emergence anymore
and the concentrations of radial field start to be advected by
convection and by magnetic diffusion on a longer timescale
than the rise time of our flux rope, leading to a saturation of
the footpoints separation visible on the last panel of Figure 11.
Finally, we investigate the evolution of the tilt angle of our
emerging bipolar region and note that the orientation is mainly
north–south on the first days of emergence (the tilt angle is
then equal to about −90◦). Bipolar regions are thought to be the
imprints of the flux tube axis emerging, creating a positive radial
field at one foot of the emerging loop and a negative radial field at
the other foot. In these simulations, we do not clearly see the axis
of the tube emerging, the radial field which is observed is the one
existing at the apex of the tube because it is twisted. However,
as the emergence proceeds, we see that the orientation of the
bipolar structure changes because of the convective motions,
the two polarities are advected more and more independently
and the orientation becomes more east–west (a tilt angle of
−40◦ is reached when the active region begins its decay) both
because the structure is made sufficiently arched by the radial
velocity and because the horizontal velocity acts differently
on the two regions of opposite polarity. By applying the same
kind of analysis for particular active regions created by tubes

initially located at the latitudes of 45◦ (case CAt45) and 15◦
(case CAt15), we can assess how the tilt angle changes as a
function of the initial latitude. We do not see a clear difference
in the tilt angle for case CAt45 in comparison to case CAt
described above, mainly because their rise time, the amount
of flux emerging, and the arching of the magnetic structure
are similar. We thus do not clearly see different effects of the
physical processes involved to modify the tilt angle (Coriolis
force, advection by convection, twist of the field lines) between
these two cases. On the other hand, in case CAt15, where the
tube is introduced at the latitude of 15◦, the tilt angle reaches
a smaller value (about −20◦ when the active region starts to
decay). This can be explained mainly by the difference in the
rise time of this particular tube compared to the others, as we will
discuss in detail in Section 6.1. Since the rise time for this tube
is longer, the Coriolis force may have the time to significantly
affect the tube orientation when it reaches the surface. Moreover
as we will see in Section 7.2, magnetic diffusion plays the role
of untwisting the flux ropes. Since the rise time is longer in this
case, diffusion has acted more on this tube and the tube appears
less twisted when it emerges, which leads to a tilt angle reduced
in comparison to the cases at higher latitude. This particular
feature may be in agreement with Joy’s law which states that
bipolar structures emerging at lower latitudes have a smaller tilt
angle than regions emerging at higher latitudes at the beginning
of a new solar cycle.

5.2. Influence of the Field Strength on Emergence

The initial magnetic field strength has a strong influence on
the way the structure will emerge as it reaches the top of the
computational domain, thus creating active regions with various
morphological and dynamical characteristics.

Figure 12 shows the radial magnetic field close to the top
of the shell by the time the axis of the flux rope is situated
approximately at 0.93R, for cases CAt and CBt. When the tube
is strong, the tube emerges at all longitudes with very small
azimuthal modulation even if the strong downflows have been
able in some portions of the tube to keep it from emerging
as fast as in the upflow regions. We also notice that the flux
rope emerges at approximately the latitude of introduction, no
poleward slip is thus visible in this case. In contrast, in the
weak B case, some longitudes are clearly favored and some
“active regions” can be identified. We indicated on Figure 12
the intensity of the emerging Br, which is about a few kiloGauss
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in case CAt. On the other hand, when the tube is introduced with
a flux of about 1024 Mx, as in the strong B case, the emerging
radial field is of the order of a few tens of kiloGauss. In this case,
a strong flux loss would then have to be experienced by the tube
during its rise up to the photosphere to match the observations
of sunspot magnetic field at the solar surface.

We also note that in the weak B case, the latitude of emergence
is slightly higher than the latitude of introduction of the flux
tube at certain longitudes. Indeed, we see on the bottom panel
of Figure 12 that the emerging structures appear at latitudes
higher than the latitude of introduction (30◦). This drift could
be explained partly by the poleward slip instability and the
action of the Coriolis force which were already observed in the
isentropic case but may also be due to the action of the mean
meridional flow as we now discuss in Section 6.

6. INFLUENCE OF MEAN FLOWS

As stated in Section 2.3, convection in a spherical shell
establishes and continuously maintains mean flows. We wish
to take benefit of our self-consistent simulations to address the
question of how meridional flows and differential rotation may
influence the tube-like structure during its rise through the CZ.

6.1. Differential Rotation

The results coming from the study of flux tubes in a stably
stratified spherical layer in Jouve & Brun (2007) showed that
the dynamical evolution of flux tubes could be modified if they
were introduced at various latitudes. Indeed, for instance, we
saw that the poleward drift was more rapidly active for tubes
introduced at high latitudes, thus leading to a strong deviation
of these tubes to their radial trajectory. In the fully convective
cases, we saw that the convective patterns as well as the profile
of the large-scale flows strongly varied in latitude and longitude
(see Figure 3). It is thus likely that the differences between tubes
introduced at various latitudes will be even more pronounced in
these cases.

Figure 13 shows the temporal evolution of weak tubes initially
located at the latitude of 15◦, 30◦, 45◦, 60◦, and 75◦. The first
panel shows the position in radius of the maximum of Bφ

(corresponding to the location of the tube axis) as the tube rises
through the CZ, the second panel indicates the rise velocity of
each tube and finally the third panel represents the deviation
in latitude of the position of max(Bφ) compared to the latitude
of introduction. We confirm that tubes introduced at various
latitudes have different evolutions. Looking at panels (a) and (b),
we see that the tube initially located close to the equator (at 15◦)
can be clearly distinguished from the others, especially in the
convective case. This tube indeed reaches its maximal velocity
before the others and the decelerating phase is so significant
that it almost stops rising after it has reached the middle of the
CZ. After 8 days of evolution, its rise velocity indeed becomes
very weak (about 10 m s−1) and the radial position of the tube
axis reaches its maximum at about 5.95 × 1010 cm in the CZ.
On the other hand, the three tubes initially located in the upper
part of the northern hemisphere keep on rising until the tube
periphery reaches the top boundary condition where the radial
velocity vanishes. This difference between tubes introduced at
various latitudes is less significant in the isentropic case. For
example, after 9 days of evolution in an isentropic layer, the
distance traveled by a tube introduced at 15◦ is 5% less than
that of a tube introduced at 45◦. In the convective case, this
difference reaches 20%. This may be explained by the presence

(a)

(b)

(c)

Figure 13. Comparison of the evolution of flux tubes introduced at different
latitudes (cases CAt15, CAt, CAt45, CAt60, and CAt75) in red with their
isentropic counterparts in black. The first panel shows the position in radius of
the maximum of Bφ vs. time, the second panel is the velocity of the tube vs.
time, and the last panel shows the difference between the position in latitude of
the max of Bφ and the latitude of introduction.

(A color version of this figure is available in the online journal.)

of a differential rotation in the convective case. We showed in the
isentropic case that the buoyancy term appearing in the evolution
of the radial velocity was proportional to g − r sin2 θΩ2 with
θ the colatitude and Ω the rotation rate. We showed that at
constant Ω, an increase in the colatitude θ caused a decrease of
this term and thus of the efficiency of buoyancy, resulting in a
slower emergence at higher colatitude or lower latitude. In this
convective case here, a solar-like differential rotation is present
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in the bulk of the CZ. The profile of this differential rotation
is conical between 25◦ and 60◦ and cylindrical under 25◦. This
differential rotation may explain the major reduction of velocity
in the cases at low latitudes in comparison to the cases at high
latitudes as the strong rotation at low latitudes is very likely to
decrease the rise velocity of the tube to such a point that it is not
able to rise through the upper part of the CZ. However, the effect
of the centrifugal force which modifies the buoyancy may be
weak compared to the total gravitational acceleration and thus
the slowdown of tubes introduced in a convective background
could also be caused by the Coriolis force due to the retrograde
flow created along the tube.

Panel (b) shows that because of the convective downdrafts
acting to pin the flux tube down, the rising velocity is reduced
compared to the isentropic case. Indeed, when the tube was
introduced at 45◦, it reached a maximal velocity of about
230 m s−1 while the maximal velocity is only 180 m s−1 in
the convective case, i.e., 21% less. For a tube introduced at
the latitude of 15◦, the difference is even more pronounced and
reaches the value of 27%, which in turn leads the tube embedded
in the convective background to be stopped by the time it
reaches the middle of the CZ. The effects of intense downflows
again appear to be very significant in these weak B cases and
we thus show the dramatic changes that the introduction of
a convective environment implies on the simulations of rising
flux tube. It has to be noticed that the ratio between the rise
velocity of a section of the tube located in an upflow and another
located in a downflow is about 1.5. Thus, for example, in case
CAt45 where the average rise velocity is about 180 m s−1, the
region of the tube located in a particular upflow can reach a
velocity of 210 m s−1 whereas a part located in a downflow
will hardly reach 140 m s−1. We note that these values are still
lower than the rise velocity reached by a tube introduced in a
stable isentropic layer, possibly showing the influence of the
strong downflows over the whole tube which tries to keep its
coherent structure during its rise. Our study clearly shows the
effects of a nonuniform rotation on magnetic ropes, especially
the severe constraints on low-latitudes emergence it introduces.
Although the emergence through our upper boundary may have
little resemblance with emergence at the real solar surface, this
particular finding may still be interesting to consider when
analyzing the properties of the solar cycle which shows a
strong decrease in the number of sunspots appearing at low
latitudes in the declining phase. Only sufficiently strong flux
tubes would be able to rise at low latitudes, which is confirmed
by some observations of sunspot magnetic field during a cycle.
Indeed, sunspots emerging at higher latitudes seem to possess
brighter umbrae, thus indicating weaker magnetic fields (Norton
& Gilman 2004), although this tendency seems to be slight and
thus possibly due to an observational bias (Livingston et al.
2006) and has not been confirmed by other space-based studies
(Mathew et al. 2007). If we suppose that such effects happening
deep inside the CZ are visible during emergence at the surface,
a possible explanation would thus be that differential rotation
makes it more difficult for weak tubes to emerge at low latitudes
and not only that they are drifting away from the radial trajectory
as they rise, as they conclude in Norton & Gilman (2004).

Panel (c) confirms the results in the isentropic case that
showed that the poleward drift of the flux tubes due both to
the uncompensated magnetic curvature force and to the Coriolis
force acting on the tube is more active at high latitudes. Indeed,
it is clear that at 60◦ and 75◦, as soon as the tube has started
rising, it is strongly deviated from the radial trajectory. We

recover the particular behavior of the tube introduced at 75◦
which undergoes an equatorward drift because of the prograde
flow being created in its interior. However, this deviation to the
radial trajectory is less pronounced than in the isentropic cases,
where for instance after 6 days of evolution, a tube initially
located at 60◦ had deviated by 3.◦8. In the same case here,
the deviation angle hardly reaches 2.◦8 at the same time, i.e.,
26% less. This difference is mainly due to the longitudinal flow
appearing in the tube interior as soon as the tube begins to
rise, which is much stronger in the isentropic cases than in
the convective ones. This can be understood by considering
the nonaxisymmetric deformation of the tube in the convective
case. This leads to friction between the magnetic structure and
its surroundings which in turn transfers angular momentum
to the mass elements in the tube and therefore leads to less
retrograde motion. For instance, after 4 days of evolution, the
tube embedded in the isentropic layer has created a longitudinal
flow of about −30 m s−1 whereas the tube embedded in the
convective zone has not developed any significant zonal motion,
it is still rotating at the same velocity as its surroundings because
the nonuniform rotation in radius plays a role in the conservation
of the flux rope angular momentum. As a consequence, the
intensity of magnetic field needed for tubes to rise radially
may be overestimated in the isentropic case. W now move to
the study of the influence of the meridional flow, which may
also act to advect the magnetic structure away from the radial
trajectory.

6.2. Meridional Circulation

As we said in Section 2.3, meridional flows are maintained
by buoyancy forces, Reynolds stresses, pressure gradients,
Maxwell stresses, and Coriolis forces acting on the differen-
tial rotation. Since these relatively large forces nearly cancel
one another, this circulation can be thought of as a small de-
parture from (magneto)geostrophic balance, and the presence
of a localized magnetic field can clearly influence its subtle
maintenance.

Indeed, for two different initial magnetic intensity in the
flux rope, it is interesting to focus on the stream function of
the background meridional flow. Figure 14 shows the position
of the flux rope close to the end of its evolution through the
CZ, superimposed to the stream function of the meridional
velocity. We clearly see that the situation is different in the
two cases. In the strong B case, the contours of the MC stream
function are concentrated around the flux rope and are very
symmetric with respect to the tube apex. In this case, this
observed velocity field is created by the flux rope itself through
the back-reaction of the Lorentz force on the flow and it is
completely dominant compared to the background velocity.
This velocity field structure, characterized by a strong upflow
at the tube apex and two downdrafts at each side of the tube
drives the tube radially upward, without any latitudinal drift
since the magnetic structure is not sensitive to the background
MC. The situation is clearly different in the weak B case. In
this case, the velocity field created by the tube itself is of the
same order as the background meridional flow and thus the rope
is very likely to be advected in a particular direction whether
it is embedded in a poleward or in an equatorward flow. Here,
we note that by the time it reaches the top of the domain, the
tube is drifting northward partly because of the poleward drift
phenomenon we mentioned in the isentropic case. Thus, the tube
ends up in a poleward flow at this particular longitude, which
reinforces the poleward advection of the magnetic structure.
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Figure 14. Cut of Bφ at a particular longitude in the northern hemisphere for cases CAt (left panel) and CBt (right panel) superimposed to the background meridional
flow. For the meridional flow, dashed (plain) lines represent counterclockwise (clockwise) circulation. We note the strong meridional circulation created by the tube
itself when B is initially strong.

(A color version of this figure is available in the online journal.)

Several observational studies with MDI/SOHO data (Haber
et al. 2003, 2004; Hindman et al. 2004; Gizon 2004; Gizon
et al. 2001; Švanda et al. 2008) showed that emergence of
new magnetic flux could generate perturbations on the observed
surface horizontal flow. Consequently, we can focus our study
on the modification of this horizontal flow by the emergence
of our flux tube modulated by convection. Figure 15 shows the
superimposition of the emerging radial magnetic field and the
horizontal velocity field close to the upper limit of the domain
(0.96R) for case CAt during the emergence process, and until
the intensity of the emerging radial field has reached a value of
about 1500 G. On the first panel, the magnetic flux has hardly
emerged (the intensity of the radial field is below 10−2 G and
the horizontal velocity field thus presents a pattern which is
almost not modified by the magnetic tube). We then get the
emergence of the magnetic structure, which is showed by the
growing intensity of the radial field. As the structure emerges,
the changes in the horizontal velocity field due to the magnetic
forces are slight but visible. Indeed, the intensity of the flow
is growing because of the presence of magnetic field, which is
especially clear on panels (e) and (f) around the positive polarity
which is dominant for this particular bipolar patch. Moreover,
regions of converging flows become more confined between the
actives longitudes, as we can see, for example, on panels (d)–(f)
where the converging flows (associated with a strong downflow
lane around 70◦) are particularly concentrated between the
different emerging bipolar structures. Another striking point is
the acceleration of the retrograde zonal flow during emergence,
as a result of the azimuthal velocity created within the tube
because of angular momentum conservation.

Consequently, slight modifications can be seen on the struc-
ture of the horizontal flow as the magnetic structures emerge. To
be more quantitative, we focus on the creation of radial vorticity
due both to hydrodynamical terms and to magnetic terms just
before and after emergence and how the magnetic field plays
a role in this balance to locally modify the flow structure. In-
deed, following the evolution of the radial vorticity enables to

track the evolution of the horizontal flow profile since the radial
vorticity can be expressed as follows:

ωr = 1

r sin θ

[
∂(sin θvφ)

∂θ
− ∂vθ

∂φ

]
. (19)

The evolution equation for ωr can be decomposed on four
hydrodynamical terms (not depending on B or any of its
derivatives) and three magnetic terms, as follows:

∂ωr

∂t
=

[
(ωa · ∇)v − (v · ∇)ωa − (∇ · v)ωa − ∇ ×

(
1

ρ̄
∇ · D

)]
r︸ ︷︷ ︸

hydro terms

+

[
1

ρ̄c

(
(B · ∇)j − (j · ∇)B − j · ∇

(
1

ρ̄

))]
r︸ ︷︷ ︸

magnetic terms

(20)

with ωa the absolute vorticity defined by the relation ωa =
∇ × v + 2Ω0.

Figure 16 shows the value of the sum of only the hydrodynam-
ical terms and of only the magnetic terms in the radial vorticity
evolution Equation (20), just before emergence (corresponding
to panel (a) of Figure 15) and significantly after (corresponding
to panel (f) of Figure 15). We note that at the very beginning of
emergence, when a small bipolar patch begins to emerge with
the north–south orientation, the magnetic terms are more than
2 orders of magnitude smaller than the hydro terms. The latter
completely determine the behavior of the horizontal flow, espe-
cially the advection term (second in the rhs of Equation (20)),
which is dominant and peaks at about 10−9 s−2, whereas the
dominant magnetic term hardly reaches 10−11 s−2. On the other
hand, when the structure has sufficiently emerged (the structure
and strength of the radial field at this time are showed on the
last panel of Figure 15), the magnetic terms start to play a role
in the vorticity generation and thus on the horizontal flow struc-
ture. They have increased by about 2 orders of magnitude and
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Figure 15. Influence of the emerging magnetic flux on the surface flow structure. We superimpose the radial field (colored contours) and the surface velocity field
(arrows) on a particular portion of the longitude–latitude plane in case CAt.

(A color version of this figure is available in the online journal.)

since the norm of the hydrodynamical terms stays close to the
same values, all those terms begin to equally compete. We note
that the magnetic source terms for radial vorticity concentrate
everywhere the magnetic field gradients are sharp. This can
be seen especially around the strong positive polarity around
55◦ of longitude and 40◦ of latitude. In this region, the struc-
ture has emerged and thus a strong gradient in longitude of all
components of the field will act to produce currents which will
in turn play a role in the radial vorticity generation. We thus
conclude that the horizontal flow is modified by magnetic fields
preferentially where strong gradients of field exist, for instance,

at the edge of the emerging structure, in agreement with what
was concluded from the analysis of Figure 15.

7. DYNAMICAL EVOLUTION IN A FULLY CONVECTIVE
SHELL: INFLUENCE OF THE PARAMETERS

We now turn to investigate how the significant parameters
of the reference case influence the flux tube in its rise through
the CZ in the case where we have a fully turbulent convection
developed in the bulk of the computational domain. We will also
look for new key parameters which may constrain the behavior
of the magnetic rope during its dynamical evolution.
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Figure 16. Hydrodynamical and magnetic terms playing a role in the evolution equation of the radial vorticity, just before emergence and after emergence.

(A color version of this figure is available in the online journal.)
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Figure 17. Cut of Bφ at a specific radius after approximately 10 days of evolution in case CAt (upper panel) and in case CAnt (lower panel). We clearly note the
splitting of the flux tube in the untwisted case.

(A color version of this figure is available in the online journal.)

7.1. Role of Twist

We saw that the twist of the field lines plays a fundamental
role in the ability of the flux tube to rise cohesively in a

stratified layer. Moreover, observations of active regions show
that a certain amount of twist of the field lines is often detected
(Schmieder et al. 1996), especially in regions called sigmoids.
These sigmoids take the shape of a reversed S in the northern
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Figure 18. Zoom, seen from above at r = 0.93R of an emerging region in case CAnt (left panel) and a twisted case where the twist is just above the threshold (right
panel). These snapshots correspond to approximately the same time of evolution as panel (b) of Figure 9, we clearly note the difference in the orientation of the main
bipolar region.

(A color version of this figure is available in the online journal.)

hemisphere and of an S in the southern hemisphere, sign of the
hemispheric law for helicity (which is directly related to the
twist) which is found to be preferentially negative in the north
and positive in the south. These regions are of particular interest
because they are known to be favored places for the triggering
of CMEs or other violent events at the solar surface. Recent
numerical simulations (Török & Kliem 2005; Fan & Gibson
2004; Amari et al. 2000) show that a twisted flux rope is always
present at a certain point in the flux emergence (prior to the
emergence for Török and Kliem and built during the emergence
for Amari et al.) and that the twist is sometimes the determining
factor for the eruption to occur (via the kink instability, for
example).

Consequently, both simulations and observations show the
fundamental role of the twist of the field lines while flux
emerges and a further investigation of this parameter is then
particularly important. Figure 17 shows the behavior of a flux
tube embedded in a fully convective shell in an untwisted case
(lower panel) and a twisted case (upper panel). We recover the
fact that a sufficient twist of the field lines is needed for the tube
to maintain its integrity while it rises through the CZ. Indeed,
we note that in the untwisted case, the tube splits into two parts
while it rises because of the uncompensated vorticity generation
created inside the flux rope by the gravitational torque, as
was discussed in Section 3 and in Jouve & Brun (2007) in
the reference case. In contrast, the upper panel of Figure 17
illustrates the fact that the twisted magnetic structure has kept
its tube-like shape by the time it has almost reached the top of the
shell.

We also note that the deformation of the rope due to the con-
vective up- and downflows is more pronounced in the untwisted
case. Indeed, since the tube splits into two separate concentra-
tions of flux, the two resulting structures are magnetically less
strong and are thus more sensitive to the surrounding convective
motions. Moreover, when the tube is twisted, magnetic tension
acts to prevent convective downdrafts from penetrating into the
magnetic structure. The tube is thus more cohesive and thus less
distorted than in the untwisted case (even if the modulation in
longitude is already very significant) and is able to reach the top
of the computational domain and emerge.

Figure 18 shows that the twist of the field lines is of major
interest for the orientation of the emerging bipolar structures
as we already saw in the preceding section. In the nontwisted
case, when the tube is sufficiently strong to reach the top of the
CZ, the emerging radial field creates bipolar regions which have
the right east–west orientation. However, these active regions
have a very significant extension in latitude because of the two
countervortex rolls which drift apart horizontally and this is
not what is observed in the Sun where active regions are very
localized in latitude. If the twist of the field lines just reaches
the threshold, we see that the orientation of the patches becomes
east–west quite early in the emerging process. Indeed in this
case, we observe the radial field coming from the two feet of the
arched (because of convective downflows and upflows which
deform the tube) portion of the tube sooner than in the very
twisted case where the radial field due to the twist dominates.
As a consequence, if we follow the evolution of the tilt angle
for this case as we did for case CAt on Figure 11, we see that
it becomes east–west much more rapidly after emergence and
above all that the final tilt angle we get is about −15◦, i.e.,
closer to the observations at this particular latitude. Moreover,
this case has an initial number of turns of 14 (corresponding
to a pitch angle of about 20◦) and thus if we consider that the
emerging region occupies about 20◦ in longitude when it has
expanded at the surface, the number of turns in this particular
bipolar region would be of about 0.78, in agreement with the
typical value observed in most active regions. This case thus
seems to be able to reproduce several interesting features of
active regions such as their orientation (even if the tilt angle is
still high in comparison to observations but could be reduced
with more arched structures), their amount of twist, and the field
strength inside the regions of opposite polarities, which is of the
order of 1 kG, as in case CAt.

7.2. Influence of the Diffusivities

In this section, we investigate the effects of varying the
magnetic diffusivities in our models of flux tubes evolution,
keeping all the other parameters constant. We vary η from
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Figure 19. Longitudinal magnetic field after 5 days of evolution with Pm = 4, 1, and 1/4.

(A color version of this figure is available in the online journal.)

a value of 1.13 × 1012 cm2 s−1 in the middle of the CZ
(corresponding to a magnetic Prandtl number of unity) to a
value of 2.83 × 1011 cm2 s−1 (leading to Pm = 4) and to
a value of 4.54 × 1012 cm2 s−1 (leading to Pm = 1/4). It
has been shown in previous thin flux tube studies (Moreno-
Insertis et al. 1995) that a strong entropy gradient could be built
between the tube interior and its surroundings during its rise
through the CZ. As a consequence of higher entropy within
the tube, the external gas pressure decreases faster than the
internal pressure and may finally reach the same value, forcing
the magnetic pressure to approach zero. The tube apex then
experiences a so-called explosion which causes this part of the
tube to stop rising and leads to an amplification of the magnetic
field in the nonexploded parts (see Rempel & Schüssler 2001,
for a full MHD treatment of this process). In our simulations
where the high diffusion of entropy may wash out the gradients
responsible for such effects, our tubes do not undergo any
explosion and stay magnetically buoyant from the base of the
CZ to the top of our computational domain. However, for this
section, we wanted to keep the same convective background
and at the same time keep the value of Pr = 0.25 unchanged
since it has proved to be favorable to a solar-like differential
rotation (Brun & Toomre 2002; Miesch et al. 2006). This has
dictated our choice of ν and κ and thus we did not consider
those parameters as free anymore. At the present time, the ASH
code uses effective eddy diffusivities to represent momentum,
heat, and magnetic field transport by motions which are not
resolved by the simulation. They are allowed to vary in radius
but are independent of latitude, longitude, and time. This type
of treatment for the unresolved motions thus affects all spatial
scales and it has to be stated that this may have a significant
influence on the evolution of spatially localized structures
such as the magnetic flux tubes introduced in our simulations
and the strong subsequent currents created. Nevertheless, we
note that the diffusion term as a whole preferentially acts where
the magnetic field gradients (or equivalently the currents) are
the strongest. An improved treatment of SGS motions in ASH
is currently being considered, which would take into account a
spatial dependence of the transport coefficients. The influence of
this new treatment on our results will have to be checked but for
this work, we focus on the major differences which can already
be pointed out between cases at various Pm, thus showing the
particular care with which diffusion has to be considered in this
type of simulations.

After 5 days in the CZ, the tubes introduced with various
magnetic diffusivities have evolved in a very different way,
as shown on Figure 19. We clearly see the difference in the
expansion of the magnetic field concentration as the tube rises,
each cut in the (r,θ ) having the same dimensions. Since the
diffusive time goes from a2/η = 58 days for Pm = 4–14.5 days
when Pm = 1–3.6 days when Pm = 1/4 (using the value of the
magnetic diffusivity at the base of the CZ), it is straightforward
to note that the intensity of the magnetic field retained in the
flux rope after the same time of evolution in the CZ is strongly
decreased (by a factor 4.5 between Pm = 4 and Pm = 1/4)
when the magnetic diffusivity is increased. Moreover, we see
that the two sharper and fainter structures at each side of the
tube visible on the first panel are completely lost because of
the action of diffusion in the two other cases. Finally, the major
consequence of increasing the magnetic diffusivity can be seen
on the last panel of the figure, in the Pm = 1/4 case. Not only
has the tube significantly expanded compared to the others but
it seems to have split apart because of an insufficient amount
of twist to maintain its coherence. We investigate the evolution
of the twist of the field lines in the three different cases to
understand how a high magnetic diffusivity has caused the tube
to lose its coherence during its rise.

Figure 20 shows the profile of the sine of the pitch angle and
of the longitudinal and transverse magnetic field at the location
of the flux tube at the starting time and after 5 hr of evolution
for the various cases. We note that the magnetic structures in the
Pm = 1 and Pm = 4 cases stiffen in comparison to the initial
configuration, a feature which is mainly due to the creation of
current sheets ahead of the flux tube when it begins its rise
through the CZ.

The main results that we deduce from this analysis is that
the transverse field gets a sharper structure than the longitudinal
field as soon as the tube begins its rise. This property leads
to a faster diffusion of transverse field than of longitudinal
field. Indeed, panel 2 shows that in the Pm = 1/4 case, the
maximum of Bφ is 69% of the maximum for the Pm = 4 case
whereas the maximum of the transverse field only reaches 42%
of the maximal transverse field for the less diffusive case. As a
consequence, the pitch angle is strongly reduced by this faster
diffusion of transverse fields, the tension force is not sufficient
anymore to counteract the vorticity generation inside the tube
and thus the pitch angle quickly goes under the threshold value
needed to maintain the tube coherence.
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Figure 20. Measure of the sine of the pitch angle (first panel), of the longitudinal
field (second panel), and of the transverse field (third panel) at the initial time
(plain line) and after only 5 hr of evolution for tubes with Pm = 4 (dotted line),
Pm = 1 (dashed line), and Pm = 1/4 (dash-dotted line).

7.3. Influence of the Tube Radius

We now turn to investigate the influence of the tube radius,
which is closely linked to the study of variations of the magnetic
diffusivity which we addressed in the preceding section. Indeed,
since the diffusive time is proportional to the square of the tube
radius, magnetic diffusion will act faster on smaller tubes and

Figure 21. Cut of Bφ in the northern hemisphere at a specific longitude for
tubes with an initial radius of 5 × 108 cm (top panel), 109 cm (mid-panel), and
2 × 109 cm (bottom panel) after about 6.6 days of evolution in a convective
model with Pm = 4.

(A color version of this figure is available in the online journal.)

we must thus take into account its potential effects on our tubes.
Consequently, we choose to compute models with Pm = 4,
which will limit the effects of diffusion, and we modify the tube
radius from 109 cm to 2×109 cm and to 5×108 cm. The initial
magnetic field is chosen to be equal to 5Beq and the sine of the
pitch angle equal to 0.5, as in our standard case CAt. To compute
these models, a very high resolution is needed, in particular,
in the smallest tube case (5 × 108 cm), we use 1024 points
in latitude, 2048 in longitude, and 450 in radius, leading to
a number of points to describe the tube section of 26 points
in radius and 10 points in latitude. In the 109 cm case with
Pm = 4, we also increase the resolution in latitude compared
to our previous cases (1024 points instead of 512, although the
results are qualitatively similar) but keep 256 points in radius,
we thus end up with Nr = 32 × Nθ = 20 points to resolve



No. 2, 2009 RISING FLUX TUBES 1321

the tube section. Finally, for the 2 × 109 cm tube, the number
of points in the tube is also Nr = 32 × Nθ = 20 (as the total
resolution in latitude is now 512). In all cases, the number of
points is thus significant enough to have a good description of
the magnetic field profile inside the rope.

Figure 21 shows the result of the study of the influence of the
tube radius on its evolution in the CZ. We focus on the structure
of the longitudinal field Bφ at two different longitudes and at a
specific time, close to the end of the evolution (after 6.6 days).
Not surprisingly, the concentration of magnetic flux in the tube
interior is broader when the tube is larger and the amount of flux
retained in the tube is smaller in the 5×108 cm radius tube since
the magnetic diffusion has started to play a significant role, even
if choosing Pm to be equal to 4 made the diffusive time to be
about 14 days in the smallest tube case. As a consequence, we
note on the first panel that the convection has acted to modulate
the tube in longitude since the left structure has evolved very
differently from the right one. This asymmetry is also visible on
the second panel (where the tube radius was originally 109 cm)
but is less clear on the largest tube calculation, for which the
competition with convective motions is in favor of the magnetic
structure. The main differences in the evolution of these tubes
with various radii reside in the wake that they create during
their rise. We can focus on these differences by zooming on
the section of the tube at a particular longitude, as shown on
Figure 21. In the smallest tube cases, we clearly see two sharp
structures being created at both sides of the magnetic rope and
one central tail (especially visible on the two last panels) which
enables to approximately follow the trajectory of the tube axis
as it rose through the CZ. These structures and their properties
were studied in great detail in Emonet & Moreno-Insertis (1998)
and their analysis apply to what we obtain in our simulations. We
can add to this study that a modification of the tube extension
in radius leads to a different evolution of the wake and thus
of the vorticity distribution inside the tube. Indeed, the wake
extends further behind the tube apex when the tube is smaller,
the two sidelobes where the vorticity is concentrated are located
significantly behind the apex whereas in the bigger radius case,
the two sidelobes appear to stay very close to the main flux
concentration, as was seen in previous calculations in Cartesian
geometry.

8. CONCLUSION

One of the main goals of this work was to investigate what
type of emerging structures we obtain in the upper part of the
CZ when we introduce an axisymmetric flux tube at its base. We
saw that all the various flows existing in the CZ could strongly
influence the behavior of the tube while it rises. If the tube is
sufficiently weak to be sensitive to the presence of mean flows
and turbulent convection close to the surface, we saw that an
azimuthal modulation was created by convective motions. This
modulation in longitude on the magnetic structure produces
arched regions, the center of which will emerge before the
“sides” (or the “feet”). As a consequence, in the first phases
of emergence, only a portion of the tube is visible at the surface
and emerges as a bipolar region. The orientation of such a
bipolar structure will first be north–south but as the emergence
proceeds, different processes will act to produce the tilt angle
corresponding to the statistical Joy’s law. As was pointed out
before, both the Coriolis force acting differently on the two legs
of the loop and the twist of the field lines are able to produce
an angle compared to the east–west direction before and during
emergence (e.g., Fan 2008). We here showed an example of a

flux tube possessing an amount of twist just above the threshold.
This simulation can reproduce several characteristics of active
regions, namely, the amount of twist in the bipolar structure,
the magnetic field strength in each polarity, and the orientation
of the two polarities. We moreover emphasize that convective
motions advecting separately the two opposite polarities of the
patch of magnetic field can also be a source of the tilting
of active regions, which could not have been investigated in
previous Cartesian or nonconvective studies. To disentangle
between those various physical processes acting to produce the
tilt angle necessary for some kind of dynamos to work such
as Babcock–Leighton dynamos (see Dikpati & Charbonneau
1999), we now need to concentrate on an individual active region
emerging at the solar surface and its particular morphological
and dynamical properties. To do so, we plan to investigate the
rise of nonuniformly buoyant flux tubes from the solar interior to
the surface in a fully convective environment possessing mean
flows, as in the present work.

Indeed, we showed in this study the particular effect of
differential rotation on tubes introduced at different latitudes.
As rotation has the property to slow tubes down during their
rise and that rotation is stronger at lower latitudes, it would
imply that tubes emerging at lower latitudes would have to be
more intense to make their way up to the surface. The mean
meridional flow proves to have smaller effects on the flux tube
rise but may well modify the trajectory of structures slightly in
superequipartition with the strongest downflows at the base of
the CZ. Moreover, our simulations show that the magnetic terms
can play a significant role in the horizontal flow maintenance
close to the surface and thus that the appearance of magnetic
patches at the top of our domain locally modifies the surface
flow structure. Mean flows should thus be taken into account
in future simulations of rising magnetic structures, since their
interactions with flux ropes are far from being negligible.

We now need to consider the introduction of such flux tubes in
a magnetized environment where different scales would interact
and the dynamo field would probably modify the results of the
present study. In particular, reconnection in the interior of our
computational domain between our well defined flux tube and a
more turbulent chaotic small-scale field is likely to modify the
amount of twist of the field lines contained in the rope. Indeed,
how twist is created in the solar interior and how it is modified
during the rise of magnetic structures are still questions to be
addressed. Several observational studies of helicity in active
regions (Schmieder et al. 1996) tend to show that a systematic
twist of the field lines can be observed but the intensity of which
would be small compared to what is needed in simulations for
tubes to rise coherently from the base of the CZ to the surface.
We thus need to reconcile the theoretical and observational
approaches in studying the evolution of the twist of the field
lines of a flux tube embedded in a realistic magnetized CZ. We
plan to do so in a future work. Moreover, to allow some direct
comparison to observations, the implementation of a stable
layer in the ASH code in which a full MHD treatment of the
emergence will be applied is currently worked on. The results
of this more realistic upper boundary and the emergence at the
top of this new domain will be the topic of a following paper.
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