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ABSTRACT

Solar-type stars exhibit a rich variety of magnetic activity. Seeking to explore the convective origins of this activity,
we have carried out a series of global three-dimensional magnetohydrodynamic simulations with the anelastic
spherical harmonic code. Here we report on the dynamo mechanisms achieved as the effects of artificial diffusion
are systematically decreased. The simulations are carried out at a nominal rotation rate of three times the solar value
(3 Ω�), but similar dynamics may also apply to the Sun. Our previous simulations demonstrated that convective
dynamos can build persistent toroidal flux structures (magnetic wreaths) in the midst of a turbulent convection zone
and that high rotation rates promote the cyclic reversal of these wreaths. Here we demonstrate that magnetic cycles
can also be achieved by reducing the diffusion, thus increasing the Reynolds and magnetic Reynolds numbers. In
these more turbulent models, diffusive processes no longer play a significant role in the key dynamical balances
that establish and maintain the differential rotation and magnetic wreaths. Magnetic reversals are attributed to an
imbalance in the poloidal magnetic induction by convective motions that is stabilized at higher diffusion levels.
Additionally, the enhanced levels of turbulence lead to greater intermittency in the toroidal magnetic wreaths,
promoting the generation of buoyant magnetic loops that rise from the deep interior to the upper regions of
our simulated domain. The implications of such turbulence-induced magnetic buoyancy for solar and stellar flux
emergence are also discussed.
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1. MAGNETIC VARIABILITY IN THE SUN
AND IN SUN-LIKE STARS

Informed and motivated by advances in observations of the
Sun and solar analogs as well as the extensive theoretical
framework of convective dynamo theory, we have undertaken a
series of three-dimensional (3D) magnetohydrodynamic (MHD)
simulations of convection and dynamo action in solar-type
stars. These numerical experiments show that a rich variety
of temporal variability in the magnetic topology, polarity, and
field strength can be achieved without varying the rotation rate,
even over the portion of parameter space accessible to our
computational resources. We focus on models with rotation
rates faster than the current solar rate Ω�, which accentuates
the magnetic self-organization processes we are interested in
exploring and which taps into the abundant observations of
magnetic activity in young, rapidly rotating, solar-like stars.

Our work builds upon three previous groups of simulations
that show the same stellar configuration, namely, considering
dynamics within the deep convective envelope of our current
Sun, but having these nominally young stars rotate faster.
Brown et al. (2008) began with hydrodynamic simulations
involving a range of rotation rates up to 10 Ω�, finding that
strong differential rotation is realized, and that the columnar
convection at low latitudes can exhibit significant modulation
in amplitude with longitude, even appearing as nearly isolated
active nests. Brown et al. (2010) examined dynamo action
achieved in an MHD simulation carried out at 3 Ω�, finding that
the convection can build ordered global-scale magnetic fields
that appear as two wreaths of strong toroidal field positioned
above and below the equator. These striking structures can
persist for long intervals despite being embedded within a

turbulent convective layer. Turning to dynamo action proceeding
at a faster rotation rate of 5 Ω�, Brown et al. (2011) showed that
self-consistently generated magnetic wreaths at low latitudes
can undergo reversals in global magnetic polarity and even
quasi-cycles of magnetic activity. The complex steps involved
in the magnetic field reversals are accompanied by variations in
the differential rotation, including bands of relatively fast and
slow fluid propagating toward the poles.

As we decrease the dissipation in our simulations, we find
that reversals of global magnetic polarity and cycles of mag-
netic activity are achieved. Despite more vigorous small-scale
turbulence, these simulations still form global-scale magnetic
wreaths in the bulk of their convective layers. Yet, the dynam-
ical balances which maintain differential rotation and generate
the mean toroidal magnetic field change as resolved turbulent
transport assumes the dissipative role that was previously played
by unresolved subgrid-scale (SGS) turbulent diffusion. We at-
tribute the origin of magnetic cycles to a similar shift in the
dynamical balance in the mean poloidal induction equation that
had previously sustained steady wreaths. As the SGS dissipa-
tion is decreased, it is unable to offset the zonal component
of turbulent electromotive force (EMF), which generates op-
posing poloidal field near the equator and thereby brings about
the polarity reversal of the wreaths. A decrease in SGS dis-
sipation also makes the wreaths more localized as coherent
wreath segments over a limited range of longitudes as opposed to
axisymmetric bands. This tends to decrease the mean field com-
ponent while simultaneously increasing the field strength in the
core of the wreaths. We argue that this has important impli-
cations for flux emergence, since it is these localized wreath
cores that are most likely to trigger the magnetic buoyancy
instability.
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1.1. Inspiration from Observational Advances

As these simulations demonstrate, a rich variety of temporal
variability can be achieved in dynamo models with only modest
changes in their control parameters. Magnetic activity is a
ubiquitous characteristic of Sun-like stars and many stars exhibit
cycles of magnetic activity. The best example is perhaps the
Sun’s 22 year magnetic activity cycle. The interplay of turbulent
convection, rotation, and stratification in the solar convection
zone creates a cyclic dynamo which drives variations in the
interior, on the surface, and throughout the Sun’s extended
atmosphere (Pinto et al. 2011).

The Sun is not alone in its magnetic variability. Solar-type
stars generate magnetism almost without exception, particularly
at rotation rates greater than that of the current Sun. Young,
rapidly rotating suns appear to have much stronger magnetic
fields at their surfaces. Observations reveal a clear correla-
tion between rotation and magnetic activity, as inferred from
proxies such as X-ray and chromospheric emission (Saar &
Brandenburg 1999; Pizzolato et al. 2003; Wright et al. 2011);
however, superimposed on this trend is considerable variation
in the presence and period of magnetic activity cycles. There
have been a number of attempts to monitor the magnetic ac-
tivity cycles of other stars using solar-calibrated proxies for
magnetic activity (e.g., Baliunas et al. 1995; Hempelmann et al.
1996; Oláh et al. 2009). These programs require long, sustained
periods of consistent observations, and are therefore rare. To
date, the largest such project is the Mount Wilson HK survey,
which measured chromospheric calcium lines as a proxy for
magnetic activity for 111 solar-like stars over a 25 year period
ending in 1991. In that study almost half of the stars showed
cyclic behavior including 21 with regular periods between 7 and
25 years (Baliunas et al. 1995). The existence of Sun-like stars
without clear cycles of magnetic activity provides inspiration in
this work for the study of a family of dynamo models that lie
very closely together in parameter space but exhibit markedly
different degrees of temporal variability in their large-scale
magnetic features. Improved observational techniques includ-
ing spot-tracking from Kepler photometry (Meibom et al. 2011;
Llama et al. 2012) and Zeeman–Doppler imaging (Petit et al.
2008; Gaulme et al. 2010; Morgenthaler et al. 2012) may per-
mit measurements of the size, frequency, and magnetic flux of
starspots and the topology and spatial variability of photospheric
magnetic fields. These developments are likely to provide new
challenges to our existing theories of dynamo action and flux
emergence in Sun-like stars.

Whatever the future of solar and stellar observations holds,
one thing is clear: barring revolutionary advances in helio and
asteroseismology, the information we have about solar and
stellar magnetic activity is mainly limited to each star’s surface
and atmosphere. Furthermore, it is the magnetic flux and energy
that passes through the solar surface that shapes the structure
and evolution of the solar corona and heliosphere and regulates
space weather. Thus, understanding the link between dynamo
action in the interior and flux emergence at the surface is a vital
area of research for solar and stellar physics. While the solar
dynamo operates on a wide variety of scales in both size and
time, our simulations seek to make contact with elements of the
large-scale magnetic behavior on timescales of years to decades.

1.2. Building upon Theoretical Frameworks

Cyclic dynamos are fundamentally 3D, nonlinear, and
chaotic. In spite of this difficulty, much of the groundwork

for modern dynamo theory has been laid in analytic mean-
field models (e.g., Parker 1955; Moffatt 1978; Krause & Rädler
1980). The generation of toroidal field as differential rotation
acts on a poloidal field, for example, can be well described using
these models. The so-called Ω-effect relies on shear from differ-
ential rotation in the convection zone or the tachocline at its base
to stretch poloidal field into bands of toroidal field. The regen-
eration of poloidal field or the generation of opposite polarity
poloidal field is parameterized in mean-field theory through the
α-effect. A number of theoretical dynamo models have been
proposed, but as of yet no single numerical model has been able
to capture all of the physical mechanisms required (see review
by Charbonneau 2010).

To confront the complex nature of solar-like dynamo action,
numerical models have been developed to explore aspects of
various dynamo processes. Pioneering work by Gilman (1983)
and Glatzmaier (1985) produced the first 3D MHD simulations
of cyclic dynamo action in a rotating spherical shell. Miesch
et al. (2006, 2008) have explored the interplay of rotation,
stratification, and moderately turbulent convection to produce
strong differential rotation in a hydrodynamic setting. When
magnetism is added in this context the resulting dynamo
produces reversals of global polarity but is dominated by
non-axisymmetric fields with little global organization (Brun
et al. 2004). By adding an overshooting region of strong shear
which mimics the solar tachocline, global-scale organization
of the toroidal field was achieved, but without reversals in
global magnetic polarity over about 30 simulated years, by
Browning et al. (2006). Recent work by Ghizaru et al. (2010)
has shown large-scale organization of the toroidal field as well
as magnetic activity cycles in a solar-like simulation; regular
reversals of global magnetic polarity with a roughly 60 year
period for a complete cycle were achieved. Further work by
Racine et al. (2011) has interpreted these results in terms of
mean-field dynamo theory.

Additional insights into the solar dynamo have been realized
through local simulations that do not model the full spherical
geometry in order to achieve higher resolution in a local domain
(Cline et al. 2003; Vasil & Brummell 2009). The recent work
of Guerrero & Käpylä (2011) has shown that dynamo action in
a domain with convection and a forced shear layer can produce
strong dynamo action and yield buoyant magnetic structures.
Another approach using helical forcing in a Cartesian domain
has shown that large-scale magnetic structures which undergo
regular reversals in polarity can be achieved even without
convection or rotation, hinting at the key role of helicity (Mitra
et al. 2010).

Here we expand upon the work of Brown et al. (2010, 2011)
in exploring global 3D simulations of dynamo action in Sun-
like stars rotating faster than the current solar rotation rate.
We report on a suite of simulations at 3 Ω� which explore
the transition from dynamos with persistent toroidal fields to
cyclic dynamos by decreasing the level of explicit diffusion
in the simulations. Although the simulations reported here are
ostensibly at a rotation rate of 3 Ω�, it is important to realize that
the dynamics we describe may not be restricted to young stars.
With regard to the generation of magnetic wreaths, the most
salient non-dimensional parameter of the physical system is the
Rossby number, Ro = ω/(2Ω0), which is small in both the Sun
and these models. In this series of models, we begin to address
the feasibility of the wreath-building dynamo mechanisms at
higher levels of turbulence and study the global-scale reversals
and cycles of magnetic activity achieved, which will be the
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Table 1
Overview of Dynamo Cases

Case Nr, Nθ , Nφ Ra Ta Re Re′ Rm Rm′ Ro Roc ν η Pm TE

D3 97 × 256 × 512 3.28 × 105 1.22 × 107 173 104 86 52 0.374 0.315 13.2 26.4 0.5 61.6

D3a 97 × 256 × 512 5.84 × 105 2.41 × 107 244 154 122 77 0.447 0.295 9.40 18.8 0.5 67.1
D3b 145 × 512 × 1024 1.11 × 106 6.08 × 107 343 273 171 136 0.566 0.257 5.92 11.8 0.5 16.9

D3-pm1 145 × 256 × 512 2.98 × 105 1.22 × 107 149 102 149 102 0.372 0.300 13.2 13.2 1 18.8
D3-pm2 145 × 512 × 1024 3.08 × 105 1.22 × 107 145 101 291 202 0.370 0.306 13.2 6.60 2 13.6

S3 145 × 512 × 1024 7.68 × 108 4.46 × 1010 8050 5750 4030 2880 0.581 0.262 0.218 0.435 0.5 4.01

Notes. Dynamo simulations at three times the solar rotation rate. All simulations have inner radius rbot = 5.0×1010 cm and outer radius of rtop = 6.72×1010 cm, with
L = rtop − rbot = 1.72 × 1010 cm the thickness of the spherical shell. Evaluated at mid-depth are the Rayleigh number Ra = (−∂ρ/∂S)(dS̄/dr)gL4/ρνκ , the Taylor
number Ta = 4Ω2

0L
4/ν2, the rms Reynolds number Re = vrmsL/ν and fluctuating Reynolds number Re′ = v′

rmsL/ν, the magnetic Reynolds number Rm = vrmsL/η

and fluctuating magnetic Reynolds number Rm′ = v′
rmsL/η, the Rossby number Ro = ω/2Ω0, and the convective Rossby number Roc = (Ra/Ta Pr)1/2. Here the

fluctuating velocity v′ has the axisymmetric component removed: v′ = v − 〈v〉, with angle brackets denoting an average in longitude. For all simulations, the Prandtl
number Pr = ν/κ is 0.25 and the magnetic Prandtl number Pm = ν/η ranges between 0.5 and 4. The viscous and magnetic diffusivity, ν and η, are quoted at mid-depth
(in units of 1011 cm2 s−1). The total evolution time TE for each simulation is given in years. The values for case S3 with the dynamic Smagorinsky SGS model utilize
the mean viscosity at mid-convection zone averaged on horizontal surfaces as well as in time. For case S3 using the dynamic Smagorinsky SGS model, the values
quoted are based on the time-averaged rms viscosity, conductivity, and resistivity at mid-depth, noting that these diffusion coefficients have near hundred-fold spatial
variations.

focus of Sections 3–6. We also begin to explore the subtle but
crucial link between wreath-building convective dynamos and
flux emergence, which will be the focus of Section 7.

2. DYNAMOS AT 3 Ω�

We study convection and dynamo action in the deep interior
of solar-like stars using the anelastic spherical harmonic (ASH)
code (Clune et al. 1999; Brun et al. 2004). Our simulation
approach is briefly described here, but is more fully explained in
Brown et al. (2010). ASH solves the anelastic MHD equations in
a rotating spherical shell with a background stratification taken
from a 1D model of solar structure. We focus on simulating
the bulk of the solar convection zone from 0.72 R� to 0.97 R�
(R� is solar radius) with a density contrast of about 25. We do
not model the near-surface layers of the Sun, for we are limited
by the anelastic approximation to subsonic flows. Additionally,
we cannot resolve the small scales of motion needed to simulate
granular and supergranular scales. We also do not include
the stably stratified radiative zone or the tachocline in these
simulations, although simulations including those components
are an active area of research (see Brun et al. 2011). We
have done some preliminary work in adding a tachocline to
these simulations and found that it does not drastically change
the dynamo action in the bulk of the convective layer. The
effects of a tachocline will be explored further in a future
paper. Our results tend to support the recent studies with
mean-field dynamo models, which suggest that the differential
rotation of the convection zone may play a greater role in the
generation of toroidal magnetic field than the tachocline (e.g.,
Dikpati & Gilman 2006; Muñoz Jaramillo et al. 2009). We
use impenetrable and stress-free boundary conditions on both
the top and bottom of the domain. We impose the entropy
gradient at the top and bottom of the domain for the thermal
boundary conditions. For the magnetic fields we use a perfect
conductor condition on the bottom boundary and match to an
external potential field on the top boundary. These conditions
and our evolution equations are described in detail in Brown
et al. (2010).

ASH is a large-eddy simulation which employs an SGS model
to account for the effects of unresolved scales of motion. The
standard SGS model in ASH simulations uses enhanced values

of viscosity, thermal diffusivity, and magnetic resistivity relative
to those expected from atomic values in order to represent
additional mixing due to unresolved turbulent motions. In this
enhanced eddy SGS model, viscosity ν, thermal diffusivity κ ,
and magnetic resistivity η all scale as ρ̄−1/2, where ρ̄ is the
spherically symmetric background density of the simulation.
This prescription, along with constant Prandtl and magnetic
Prandtl numbers throughout the domain, follows that of Brown
et al. (2010, 2011). All cases presented in this paper use Pr =
ν/κ = 0.25, but variable Pm (see Table 1).

In addition, we have also implemented a more complex
SGS treatment, the dynamic Smagorinsky model developed
by Germano et al. (1991). By using the dynamic Smagorinsky
model in ASH simulations we are able to reduce the mean
diffusion at mid-convection zone by a factor of 50 without
an increase in resolution. Our implementation of the dynamic
Smagorinsky model is summarized in Appendix A. This SGS
treatment is only used in case S3, which was first presented in
Nelson et al. (2011).

Table 1 presents the computational resolution, relevant non-
dimensional parameters, diffusion coefficients, and total evolu-
tion time for each of the six cases we will discuss here. We have
explored two main branches in parameter space. The first branch
includes cases D3, D3a, and D3b, where viscosity ν, thermal
diffusivity κ , and magnetic resistivity η have all been dropped
together, thus keeping a constant magnetic Prandtl number. The
second branch includes cases D3, D3-pm1, and D3-pm2, where
ν and κ are held constant and only η is decreased, resulting
in increasing magnetic Prandtl numbers. We will refer to the
two branches as the constant Pm and increasing Pm branches,
respectively. The constant-Pm branch was found to be more
compelling, as cases D3a and D3b generally produced strong
magnetic wreaths that were antisymmetric about the equator,
whereas the high Pm branch produced a wider variety of sym-
metric and antisymmetric toroidal field states and was there-
fore less amenable to study. Such behavior is not unexpected
as dynamos with higher magnetic Prandtl number tend to pro-
mote small-scale dynamo action. We will generally focus on
the constant-Pm branch of simulations while referencing the
increasing Pm branch to provide additional insight.

Case D3 was initiated from a well-developed hydrodynamical
simulation that was seeded with a small random magnetic field.
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Figure 1. Magnetic wreaths. (a)–(c) Shown in global Mollweide view (equator at middle, poles at top and bottom) is the radial velocity of the convection at 0.95 R� in
cases D3, D3a, and D3b, respectively. (d)–(f) Also in Mollweide view, longitudinal magnetic field Bφ at mid-convection zone at times t1 indicated in Figure 3. (g)–(i)
Shown at the same times for each case is a 3D field line rendering of the magnetic wreaths near the equator. In both types of display for the magnetic field, color gives
the polarity and amplitude of the longitudinal field (red positive, blue negative). Times shown correspond to t1 for each case in Figure 3.

(A color version of this figure is available in the online journal.)

Each subsequent case along both branches was started from the
preceding case. Thus both cases D3a and D3-pm1 were started
using case D3 as initial conditions, case D3b was started using
case D3a, and so on. We have re-started case D3a from a random
seed field to verify that it settles into a similar region of solution
space as the version continued from case D3 and found no strong
differences in the time-averaged behavior over several thousand
days.

3. MAGNETIC WREATHS

The dominant magnetic structures built by each of these
simulations are the low-latitude bands of predominately toroidal
field, which we term wreaths. These wreaths are generally
antisymmetric about the equator, though symmetric states are
observed along with states where one hemisphere displays a
wreath while the other does not. These irregular states are most
common along the increasing Pm branch of our simulations.
The wreaths in case D3 are discussed extensively by Brown
et al. (2010) and additional wreaths are analyzed at somewhat
faster rotation rate (5 Ω�) by Brown et al. (2011).

3.1. Magnetic Topology

Figure 1 shows snapshots of the turbulent convection and the
wreaths for cases D3, D3a, and D3b at mid-convection zone
in global Mollweide view as well as at low latitudes in a 3D
volume rendering of magnetic field lines colored by Bφ . In all
three cases strong longitude-averaged fields are present at low
latitudes; however, the nature of the wreaths changes from case
D3 where axisymmetric fields dominate to case D3b where
a significant axisymmetric field component is present but not

dominant. In case D3b the morphology has changed such that
the wreaths are confined in longitudinal extent. Figure 1 shows
a typical field configuration, but the wreaths are observed at
various times to extend over as little at 45◦ and as much as 270◦ in
longitude. All three cases show extensive connectivity between
the wreaths and the surrounding domain where magnetic fields
are moderate in strength but far less coherent. The wreaths
are strongly modulated by the convective flows, producing a
ragged appearance that is particularly noticeable in case D3b
but present in all three cases. In the more turbulent cases there
are also significant small-scale magnetic fields at moderate to
high latitudes, and occasional locally generated wreath-like
structures near the poles which persist for less than about
100 days at a time.

The shift from structures dominated by axisymmetric fields
in case D3 to the patchy wreaths in case D3b is illustrated by
the changes in the time- and volume-averaged energy densities
shown in Table 2. Between cases D3 and D3b there is a
roughly 30% increase in the total magnetic energy of the
simulation, though both the axisymmetric toroidal magnetic
energy (TME) and poloidal magnetic energy (PME) decrease
by roughly a factor of three. The doubling of the energy in the
non-axisymmetric magnetic fields more than compensates for
the decrease in mean fields. When compared with the kinetic
energy densities, the changes in the magnetic energies become
even more striking. Viscous, thermal, and magnetic diffusion
in case D3b are all reduced by the same factor relative to case
D3. However the total kinetic energy in case D3b dropped by
19%. The non-axisymmetric fluctuating kinetic energy (FKE)
rose only moderately compared to the decrease in differential
rotation kinetic energy (DRKE). The high magnetic Prandtl
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Table 2
Volume-averaged Energy Densities and Differential Rotation Rates

Case Total ME TME PME FME Total KE DRKE MCKE FKE ΔΩr ΔΩθ

D3 0.68 (9%) 0.29 (43%) 0.029 (4%) 0.36 (53%) 6.67 (91%) 4.35 (65%) 0.010 (0.1%) 2.31 (35%) 112 192

D3a 0.88 (12%) 0.32 (36%) 0.030 (3%) 0.52 (59%) 6.41 (88%) 3.71 (58%) 0.011 (0.2%) 2.68 (42%) 101 163
D3b 0.82 (13%) 0.10 (12%) 0.011 (1%) 0.70 (85%) 5.42 (87%) 2.45 (45%) 0.012 (0.2%) 2.96 (55%) 95 131

D3-pm1 1.04 (18%) 0.26 (25%) 0.033 (3%) 0.75 (72%) 4.87 (82%) 2.63 (54%) 0.010 (0.2%) 2.23 (46%) 87 139
D3-pm2 1.17 (21%) 0.15 (13%) 0.028 (2%) 0.99 (85%) 4.34 (75%) 2.29 (53%) 0.009 (0.2%) 2.04 (47%) 74 121

S3 0.83 (13%) 0.072 (9%) 0.0060 (0.7%) 0.75 (91%) 5.50 (87%) 2.32 (42%) 0.013 (0.2%) 3.17 (58%) 95 133

Notes. Volume-averaged magnetic and kinetic energies for dynamo simulations at three times the solar rotation rate, as well as the magnitude of the differential
rotation contrast in radius at the equator ΔΩr and the average contrast at the top of the simulated domain between the equator and ±60◦ latitude ΔΩθ . Shown in units
of 106 erg cm−3 are the total magnetic energy (Total ME), axisymmetric toroidal magnetic energy (TME), axisymmetric poloidal magnetic energy (PME), fluctuating
magnetic energy (FME), total kinetic energy (Total KE), differential rotation kinetic energy (DRKE), meridional circulation kinetic energy (MCKE), and fluctuating
kinetic energy (FKE). The percentage of the total energy is shown for total magnetic energy (Total ME) and total kinetic energy (Total KE). The percentage of the
total magnetic or kinetic energy for each component is shown in parentheses. Values for differential rotation rates are in units of nHz (3 Ω� = 1240 nHz). Values are
averaged in time over long intervals.

number cases also show a tendency toward larger total and
fluctuating magnetic energies, as well as reduced axisymmetric
TME as the magnetic diffusion is reduced.

It is illustrative to compare cases D3b and D3-pm1, as they
have roughly equal levels of magnetic diffusion, with case D3b
having comparatively lower levels of viscosity and thermal
diffusion. The largest differences are in the axisymmetric
magnetic energies which are both about three times greater
in case D3-pm1 than in case D3b. This may be due to the
more laminar flow in case D3-pm1, which would tend to create
fewer sharp gradients in the large-scale magnetic structures and
thus lower the effective dissipation in case D3-pm1 compared
to case D3b, even though the diffusion coefficients in the
induction equation are nearly the same. Case D3-pm1 also shows
significantly less differential rotation contrast both in radius
and latitude compared to case D3b, pointing to the key role of
magnetic torques in decreasing differential rotation, which will
be discussed further in Section 5.

3.2. Non-axisymmetric Fields

Our discussion of the magnetic wreaths to this point has
focused on the axisymmetric fields, which are progressively
weaker in moving from case D3 to case D3b. While the
axisymmetric fields weaken with increased turbulence, very
strong fields become more common when measured by the frac-
tion of the domain they occupy. Figure 2 shows the probability
distribution function (pdf) for Bφ at mid-convection zone in
cases D3, D3a, D3b, and S3. While case D3b has a deficit of
fields around 10 kG compared to case D3a, there is a clear ex-
cess of fields above 20 kG. Interestingly the distribution for case
D3b is greater than that for case D3 for all but the smallest bin,
indicating that while case D3 may have stronger axisymmet-
ric fields in the low-latitude wreaths, case D3b compensates by
having higher amplitude fluctuating fields throughout the do-
main. The peak field strength at mid-convection zone is 32 kG
in case D3, 36 kG in case D3a, and 38 kG in case D3b. Near
the base of the convection zone case D3b exhibits even stronger
fields of up to 44 kG. Case S3 possesses magnetic fields of up
to 45 kG at mid-convection zone and 52 kG near the base of
the convective layer. For all four cases fields are seen well in
excess of equipartition energies with the maximum FKE of the
flows. This is a clear indication of turbulent intermittency in the
magnetic fields.

Figure 2. Probability distribution functions for unsigned Bφ at mid-convection
zone for cases D3 (purple), D3a (green), D3b (red), and S3 (blue) showing the
surface area covered by fields of a given magnitude. Distributions are averaged
over about 300 days when fields are strong and as steady as possible. Dashed
vertical lines show the field strength at which equipartition is achieved with the
maximum fluctuating kinetic energy (FKE) at mid-convection zone for each
case. Case D3b shows a deficit of field in the 10 kG range, but an excess of
surface area covered by extremely strong fields above 25 kG range, as well as
higher peak field strengths. Case S3 shows significantly greater regions of fields
in excess of 20 kG than all other cases.

(A color version of this figure is available in the online journal.)

A statistical measure of turbulent intermittency is the time-
averaged excess kurtosis given by

kurt{Bφ} =
∫ ∞
−∞(B ′

φ − B̄φ)4f (B ′
φ)dB ′

φ[∫ ∞
−∞(B ′

φ − B̄φ)2f (B ′
φ)dB ′

φ

]2 − 3, (1)

where f (B ′
φ) is the probability distribution function (see Pope

2000). For reference a Gaussian distribution would have an
excess kurtosis of 0. The level of turbulent intermittency is
measured by how leptokurtic the distribution is found to be,
with large values corresponding to increased intermittency. For
case D3 kurt{Bφ} = 9.6, while for case D3a kurt{Bφ} = 10.5,
and for case D3b kurt{Bφ} = 12.1. Leptokurtic distributions are
likely to experience strong coherent structures, such as the strong
regions of coherent toroidal field in these simulations. At even
lower levels of diffusion than can be realized with the enhanced
eddy SGS model, the strong-field regions become sufficiently
buoyant and coherent so as to form buoyant magnetic loops as
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realized in case S3 (Nelson et al. 2011), for which kurt{Bφ} =
15.6. Highly leptokurtic distributions like these indicate that
extreme events are enhanced relative to a Gaussian distribution,
and the trend toward increasing kurtosis as simulations become
more turbulent points to turbulent amplification of magnetic
fields. As we will discuss further in Section 7, this provides
an alternative pathway to produce regions within the larger
wreaths which can be amplified through turbulent intermittency
to produce coherent regions of strong magnetic field, which
can then become buoyant. We term this the turbulence-enabled
magnetic buoyancy paradigm.

4. CYCLIC REVERSALS ACHIEVED
BY REDUCING DIFFUSION

In addition to building strong magnetic wreaths, cases D3a
and D3b exhibit cyclic reversals of global magnetic polarity.
As is believed to occur in the Sun, the general pattern of
the cycles is that the toroidal fields peak at roughly the time
when the poloidal field is reversing sign, and the poloidal fields
peak in amplitude when the toroidal fields are reversing sign.
There are also a number of variations on this pattern, where
one hemisphere may develop considerably stronger fields than
the other or where both hemispheres have the same sense of
toroidal field, pointing to large contributions at these times
from quadripolar poloidal fields. Cases D3-pm1 and D3-pm2
also display strong variations in the strength and topology of
their axisymmetric fields. However, the irregularities are more
pronounced for these cases over the time simulated.

4.1. Reversals in Global Magnetic Polarity

Figure 3 shows the temporal evolution of the longitude-
averaged toroidal field 〈Bφ〉 at mid-convection zone over the
history of cases D3 (Figure 3(a)), D3a (Figure 3(b)), and D3b
(Figure 3(c)). In case D3 we see persistent wreaths centered at
about 20◦ above and below the equator. These wreaths persist
for about 68 years or as long as we have run the simulation. The
polarity of the wreaths is constant in time, though variations
on roughly 6 year timescales can be seen in both the amplitude
of the low-latitude wreaths as well as the propagation of field
to higher latitudes. The behavior of this case is discussed in
detail in Brown et al. (2010). Figure 3(b) shows case D3a over
a comparable length of time as in the first panel. Case D3a
undergoes reversals in global magnetic polarity as well as three
significant irregular states. Additionally, there are modulations
in the amplitude of the wreaths and poleward movements of
field on roughly 3 year timescales. These variations are not
always synchronized between the two hemispheres, and neither
are the reversals, indicating that the poloidal field can have a
complicated structure.

Figure 3(c) shows the temporal evolution of 〈Bφ〉 at mid-
convection zone for case D3b over about 13 years, with
indications of cycles of magnetic activity and reversals of
global polarity. We have simulated 10 reversals as measured by
the time-smoothed antisymmetric component of 〈Bφ〉 changing
sign. The time between reversals ranges from 0.6 to 1.9 years
and, as in case D3a, the two hemispheres are not always
synchronized. There are several times when one hemisphere
shows significantly stronger fields than the other or when both
hemispheres have the same sense of fields. This is partly due
to the averaging procedure used to create these figures and the
fact that we are only looking at a single depth. Analysis of the

(a)

(b)

(c)

Figure 3. Time–latitude plots of longitude-averaged toroidal magnetic field
〈Bφ〉 at 0.79 R� for (a) case D3 over about 56 years, (b) case D3a over the same
amount of time, and (c) case D3b over about 13 years. Dotted lines show times
referenced in Figures 1, 4, 11, 12, and 15. Dashed lines on (b) indicate the time
period covered by (c). Case D3b was started from case D3a at t2 (dotted line).
The evolution of case D3b is limited by the increased computational cost of the
higher resolution required for computational stability.

(A color version of this figure is available in the online journal.)

full 3D data shows that there is almost always a wreath-like
structure in each hemisphere.

Figure 4 shows a sequence of snapshots of Bφ at mid-
convection zone in case D3b over a full spherical shell and
of 〈Bφ〉 over the domain before, during, and after a reversal in
the polarity of the wreaths. Each snapshot is roughly 120 days
after the previous snapshot. The wreaths start appearing as
strong mean-field structures in the longitudinal average, but
the non-averaged cut at mid-convection zone shows that there
is significant longitudinal variation in the wreaths, with the
northern wreath covering roughly 120◦ and the southern wreath
covering 180◦ in longitude. There is also substantial evidence for
interactions between the wreaths near the center of the image in
Figure 4(a). As time progresses, the axisymmetric fields weaken
as the non-axisymmetric components begin to dominate. Small
patches of strong field persist, but they are largely washed out
in the longitudinal averages. After about 480 days (Figure 4(d))
strong patches of opposite polarity field begin to appear and
by the final frame (Figure 4(e)) the strong mean fields have
been reestablished in the opposite hemispheres from the initial
configuration.
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(a)

(b)

(c)

(d)

(e)

Figure 4. Reversal in magnetic polarity of the toroidal wreaths in case D3b
shown in Bφ in Mollweide projection at mid-convection zone on left, and in
〈Bφ〉 in longitudinal average over latitude and radius on right. Color indicates
strength of toroidal magnetic field with the color table saturating at ±7 kG for
the Mollweide images and ±3 kG for the longitudinal averages. Five snapshots
corresponding to t2 through t6 from Figure 3(c) are shown each separated by
roughly 120 days.

(A color version of this figure is available in the online journal.)

4.2. Variability at Higher Magnetic Prandtl Number

The simulations on the increasing Pm branch also show
increased temporal variability relative to case D3. There is
also evidence for a change in the nature of the dynamo action
in these simulations. Figure 5 shows the evolution of 〈Bφ〉 at
0.79 R� over the history of case D3-pm1, along with snapshots

(a)

(b)

Figure 5. (a) Time evolution in case D3-pm1 of the axisymmetric toroidal
magnetic field at 0.79 R� over roughly 15 years of simulated time. Strong
variability of the mean fields is seen in both hemispheres. (b and c) Companion
snapshots of Bφ at 0.84 R� showing the spatial variability and non-axisymmetric
nature of the wreaths. Successive snapshot times are indicated by dashed lines
in (a).

(A color version of this figure is available in the online journal.)

(a)

(b)

Figure 6. (a) Time evolution in case D3-pm2 of the axisymmetric toroidal
magnetic field at 0.79 R� over roughly 13 years of simulated time. Strong
variability of the mean fields is seen in both hemispheres, along with irregular
reversals in polarity, at times in only one hemisphere and at other times globally.
(b and c) Companion snapshots of Bφ at 0.84 R� showing the spatial variability
and non-axisymmetric nature of the wreaths. Successive snapshot times are
indicated by dashed lines in (a).

(A color version of this figure is available in the online journal.)

of the toroidal magnetic field at mid-convection zone at three
representative times. This case has selected a configuration of
toroidal field that is largely symmetric about the equator and
of essentially the same polarity at most times. Some periods
of positive polarity field are seen, though the dominant field in
both hemispheres is clearly of negative polarity. Unlike cases
D3a and D3b, case D3-pm1 does not undergo a true global
reversal of magnetic polarity. It does, however, exhibit strong
temporal variability in the wreaths seen in both hemispheres to
an extent not seen in cases D3 or D3a.

Figure 6 shows a similar view of case D3-pm2 over its
temporal evolution. Again it tends to avoid the antisymmetric
states characteristic of cases D3, D3a, and, to a lesser extent,
D3b. This case, however, does exhibit clear reversals of global
magnetic polarity. Interestingly, these reversals do not appear to
occur at regular intervals, and often one hemisphere can reverse
without a noticeable change in the other hemisphere. As an
example, the southern hemisphere maintains a positive polarity
wreath between about t = 5.5 years and t = 10.5 years while
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(a) (b)

Figure 7. Differential rotation and the terms contributing to the accompanying redistribution of angular momentum in case D3b averaged over many magnetic cycles.
(a) Angular velocity Ω profile with radius and latitude, accompanied in turn by profiles of specific angular momentum flux in cylindrical radius (λ) by Reynolds
stress (RS), meridional circulation (MC), viscous diffusion (VD), Maxwell stress (MS), and mean magnetic torques (MTs), respectively. Terms are defined in detail in
Equations (B1) and (B2). They are here averaged in time and longitude, and given in units of 1015 g s−2. (b) Scalar plot of z-integrated fluxes of angular momentum
with cylindrical radius λ in units of 1038 g cm2 s−2. Reynolds stress (RS, red) balances Maxwell stress (MS, blue), with viscous diffusion (VD, green), and magnetic
torques (MTs, purple) playing less of a role. Contribution from the meridional circulation (MC, brown) is small. The sum of all five terms is also plotted (black dashed
line).

(A color version of this figure is available in the online journal.)

the northern hemisphere exhibits four reversals in that same time
interval.

The preference for irregular polarity states in Bφ along the
increasing Pm branch is clearly related to the decreased level of
magnetic diffusion, though it may also be indicative of a shift
in behavior due to the transition from small to large magnetic
Prandtl number. In cases D3, D3a, and D3b magnetic diffusion
occurs on scales larger than those related to the diffusion of
momentum. This tends to promote the concentration of magnetic
energy at large scales. For high Pm dynamos, the resistive scale
is smaller than the viscous scale, which tends to promote the
growth of magnetic energy at small scales (e.g., Schekochihin
et al. 2004). There is still considerable large-scale organization
of magnetic field by the differential rotation, but the increasing
Pm branch exhibits less ordered behavior than the constant-Pm
branch of simulations.

When examining the relative importance of decreased mag-
netic diffusion and increased levels of turbulence, it is per-
haps most instructive to compare cases D3b and D3-pm2.
Table 2 shows that the division of magnetic energies between
the axisymmetric toroidal, axisymmetric poloidal, and fluctu-
ating magnetic fields is roughly equivalent in the two cases,
although case D3-pm2 has more magnetic energy overall. The
kinetic energies in case D3-pm2 are, however, more similar to
case D3 than case D3b with the exception of decreased DRKE
due to enhanced Lorentz force feedbacks. This suggests that the
onset of reversals is driven primarily by decreasing magnetic
diffusion rather than by some subtle shift in the velocity fields
or correlations between magnetic fields and velocities on small
scales.

5. MAINTAINING ROTATIONAL SHEAR

A crucial component in the construction of magnetic wreaths
is the strong latitudinal and radial shear from the differential
rotation. The Ω-effect has previously been shown to be the
primary production mechanism for the magnetic wreaths in
cases D3 and D5 (Brown et al. 2010, 2011), and it plays a key
role in these simulations as well. Thus the angular momentum
transport required to maintain the differential rotation is an
important physical process in these dynamo models. In the
hydrodynamic models explored by Brown et al. (2008), angular
momentum transport in simulations at 3 Ω� was shown to be

a balance between Reynolds stress (RS) supporting solar-like
differential rotation with the meridional circulation (MC) and
viscous diffusion (VD) tending to dissipate gradients in the
rotation profile. With the addition of magnetic fields, Maxwell
stress (MS) and mean magnetic torques (MTs) can also transport
angular momentum, changing the balance supporting the strong
differential rotation achieved in the hydrodynamic cases. Even
in cases without magnetic cycles such as case D3, Brown
et al. (2010) showed that there are significant feedbacks on
the differential rotation profile due to variations in the strength
of the magnetic fields over time. It is thus useful to examine not
only the steady state balance of angular momentum transport
over long time averages covering many magnetic cycles, but
also to look at the temporal variability of those balances.

In order to explore the transport of angular momentum, let us
examine the physical mechanisms which come into play. The
balance of specific angular momentum along the rotation axis
is determined by taking the product of the cylindrical radius
λ = r sin θ and the longitudinal component of the longitude-
averaged momentum equation, which can be expressed as

∂Lz

∂t
= ∇ · F . (2)

We decompose the flux vector of mean angular momentum
F into radial and latitudinal components following prior con-
vention (Elliott et al. 2000; Brun et al. 2004; Brown et al. 2011).
We also decompose the flux vector into cylindrical coordinates
along cylindrical radius (λ) and along the rotation axis (z),
which in many ways is advantageous for displaying these quan-
tities. A detailed description of this decomposition is given in
Appendix B. The cylindrical flux of angular momentum is
shown for case D3b over a long time average in Figure 7. The
differential rotation is again clearly maintained by the RS, but
here the terms opposing the differential rotation have changed
compared to similar hydrodynamic cases. In case D3b the MS
is the largest term opposing the RS with VD and the mean MTs
each playing a small role, while contribution of the MC is almost
insignificant.

We can write the evolution of the total energy of the
differential rotation EDR as

∂EDR

∂t
= LVD + LRS + LMC + LMS + LMT, (3)
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Figure 8. Companion to Table 3, showing the balance of time-averaged
generation terms for the kinetic energy in the differential rotation profiles for
each case indicated. In all cases the differential rotation is maintained by a
balance between the Reynolds stress and a combination of viscous diffusion
and fluctuating and mean magnetic torques. The contribution from meridional
circulations is not shown due to their small magnitude.

(A color version of this figure is available in the online journal.)

Table 3
Production and Dissipation of Differential Rotation Kinetic Energy

Case LRS LMC LVD LMS LMT

D3 4.26 –0.020 –2.45 –1.36 –0.68

D3a 3.18 –0.032 –1.11 –1.36 –0.70
D3b 2.59 –0.003 –0.64 –1.94 –0.19

D3-pm1 3.64 –0.014 –1.68 –1.87 –0.35
D3-pm2 3.32 –0.024 –1.61 –1.95 –0.31

Notes. Total production and dissipation of kinetic energy in the axisymmetric
differential rotation profile over the entire simulated volume and averaged in
time. Values for energy production rates are in units of 1032 erg s−1. Production
and dissipation terms are split following Equation (3) into contributions from
viscous dissipation, Reynolds stress, meridional circulations, Maxwell stress,
and mean magnetic torques, respectively. Production terms are defined in
Appendix B.

where the terms on the right-hand side represent the sources
and sinks of kinetic energy in the differential rotation due to,
respectively, VD, RS, MCs, MS, and mean MTs. Appendix B
provides a derivation of Equation (3) and an expansion of the
sources and sinks.

Using this decomposition, we can examine the balance of
production and dissipation of EDR averaged over long time
intervals in each simulation. The balances are represented
in Table 3 and Figure 8. For the increasing Pm branch the
RS change only slightly while the mean MTs and VD are
systematically replaced by the MS. Similar trends are observed
in the constant-Pm branch of cases, though here the magnitude
of the RS and VD terms decreases more dramatically. This shift
from unresolved dissipation in the form of SGS viscosity to
resolved, small-scale torques from the MS indicates that the
balances which maintain strong differential rotation can persist
in less diffusive regimes, assuming that magnetic energies
remain significantly smaller than kinetic energies.

Turning to the temporal variability in these balances, we find
that for case D3b the departures from the values presented in
Table 3 and Figure 8 are about 10% for LMS and LMT when
averaged over about 10 days, whereas those in LRS, LMC, and
LVD are about 1%. This leads to decreases in the differential
rotation when magnetic fields are strong, such as near the peak

(a)

(b)

(c)

Figure 9. Temporal variability of differential rotation in case D3b over the
same interval as in Figure 15. (a) Longitudinally averaged rotation rate at mid-
convection zone as a function of time and latitude. (b) Temporal variations are
accentuated by subtracting the time-averaged Ω at each latitude. Bands of faster
rotating fluid move poleward on about the cycle period. (c) Rotation contrasts
in radius at the equator Δr (red, solid) and in latitude between the equator and
±60◦ in the upper convection zone Δθ (red, dashed). The volume-averaged
toroidal field strength is also shown (blue, solid), with a phase lag between
peaks in magnetic field strength and decreases in differential rotation. Dotted
lines indicate times t2 through t6 from Figure 4.

(A color version of this figure is available in the online journal.)

of the magnetic activity cycles. Conversely, we observe modest
increases in the differential rotation when magnetic fields are
weak, such as during reversals of magnetic polarity.

Figure 9 shows the differential rotation in case D3b over
several magnetic reversals. The differential rotation profile at
mid-convection zone in Figure 9(a) is persistent, though there
are small systematic variations in Ω revealed in Figure 9(b)
during each magnetic cycle. Figure 9(c) shows the differential
rotation contrast in both radius and latitude over time as well as
the volume-averaged toroidal magnetic field strength, indicating
that the modest variations in the differential rotation are related
to those in the magnetic field.

6. PRODUCTION OF MAGNETIC FIELD

The transition from persistent wreaths in case D3 to cyclic
wreaths and global polarity reversals in case D3b indicates that
by reducing the levels of diffusion in these simulations we
have fundamentally altered the balance of terms in the magnetic
induction equation. The details of the reversal mechanism are
likely to be very subtle in these highly nonlinear systems. In
order to better understand the reversal mechanism, we explore
the nature of the balances in the production and dissipation of
toroidal and poloidal magnetic fields and provide indications of
where and why changes in those balances are occurring, as well
as some hints as to the nature of the reversal mechanism.

6.1. Generation of Toroidal Magnetic Energy

In Brown et al. (2010) a detailed analysis of the balance
of toroidal component of the axisymmetric induction equation
was presented. We write the toroidal component of the induction

9



The Astrophysical Journal, 762:73 (20pp), 2013 January 10 Nelson et al.

equation as

∂Bφ

∂t
= [∇ × (v × B)]φ − ∇ × (η∇ × (Bφφ̂)). (4)

Using vector identities, the first term on the right-hand side
can be written as the sum of shearing terms, advection terms,
and a compression term; additionally, all of these terms can be
decomposed into mean and fluctuating components (for a full
derivation, see Appendix A in Brown et al. 2010). That work
also showed that the wreaths in case D3 are primarily generated
by the Ω-effect and dissipated by a combination of small-scale
advection, shear, and diffusion.

Here we perform a similar analysis, but instead of examining
the generation of 〈Bφ〉, we choose to examine the generation
of the volume-integrated energy of the axisymmetric toroidal
fields over the entire computational domain V , given by

ETME =
∫
V

〈Bφ〉2

8π
dV. (5)

We can construct an evolution equation for ETME by multiplying
Equation (4) by 〈Bφ〉. The result can be written as

∂ETME

∂t
= GMS + GFS + GMA + GFA + GAC + GRD, (6)

where the six terms on the right-hand side represent, from left
to right, the shearing of axisymmetric magnetic fields by mean
flows associated with the Ω-effect (GMS), the average of fluc-
tuating flows shearing fluctuation fields (GFS), the advection of
mean fields by mean flows (GMA), the average of fluctuating
flows advecting fluctuating fields (GFA), the anelastic compres-
sion of fields (GAC), and the resistive diffusion of mean fields
(GRD). Unlike in previous analyses which looked at the genera-
tion of magnetic field vectors, here we are concerned with scalar
quantities. The terms on the right-hand side of Equation (6) are
computed as

GMS =
∫
V
〈Bφ〉 [(〈B〉 · ∇) 〈v〉]φ dV, (7)

GFS =
∫
V
〈Bφ〉[〈(B′ · ∇)v′〉]φ dV, (8)

GMA = −
∫
V
〈Bφ〉 [(〈v〉 · ∇) 〈B〉]φ dV, (9)

GFA = −
∫
V
〈Bφ〉[〈(v′ · ∇)B′〉]φ dV, (10)

GAC =
∫
V
〈Bφ〉

〈
vrBφ

∂ ln ρ̄

∂r

〉
dV, (11)

GRD = −
∫
V
〈Bφ〉∇ × (η∇ × 〈Bφ〉) dV. (12)

For consistency, angle brackets denote longitude averages.
Figure 10 shows the temporal evolution of the integrated

energy of the axisymmetric toroidal field for cases D3 and
D3b and the behavior of the production terms governing the
variation of ETME. We have chosen to combine the contributions
of the mean shear and advection terms and the fluctuating shear
and advection terms for ease of viewing. The mean advection
term GMA is generally positive and always much smaller than

(a)

(b)

Figure 10. Volume-integrated production terms of magnetic energy in the
mean toroidal fields from Equation (6) for (a) case D3 and (b) case D3b. We
have combined the mean shear and mean advection terms (blue line) and the
fluctuating shear and fluctuating advection (purple line). In both simulations,
energy is produced primarily by the shearing of mean fields by mean flows.
Also in both cases compression of fields (green line) plays a very small role. In
case D3 diffusion (red line) and the advection and shear of fluctuating flows on
fluctuating fields destroy energy, with diffusion generally a factor of 2.5 larger.
In case D3b, however, the dissipation of energy by fluctuating advection and
shear is 2.2 times greater on average than diffusion. Thus in case D3b resolved
turbulence is the primary mechanism for dissipating the magnetic wreaths.

(A color version of this figure is available in the online journal.)

the mean shear term GMS. The fluctuating shear and advection
terms are both generally negative, of approximately the same
magnitude, and tend to vary in phase with each other.

Let us first look at the average levels of each term plotted
in Figure 10 to get a sense for the basic balance of terms.
The production of ETME is dominated by the mean shear
term which is large and always positive in both cases D3
and D3b. The compression term in both cases is roughly an
order of magnitude smaller but is again always positive due
to the asymmetry in upflows and downflows in compressible
convection, which gives preference to downward pumping of
magnetic field causing an increase in magnetic energy due to
compression. The production of magnetic energy is opposed
by the resistive diffusion, fluctuating advection, and fluctuating
shear terms. In case D3 resistive diffusion is roughly three times
larger than the sum of the two fluctuating terms, while in case
D3b the roles are reversed and resolved turbulent dissipation
does most of the destruction of ETME while the unresolved
turbulent dissipation represented by our explicit resistivity is
relegated to a less prominent role. Supporting this transition
from unresolved to resolved dissipative processes, in case D3 the
sum of the fluctuating terms does not show noticeable changes
in behavior when the magnetic energy is high versus when it
is low. Instead the response is seen primarily in the resistive
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dissipation term. In case D3b, however, the fluctuating terms
show strong variations in response to changes in the magnetic
energy.

This transition from wreath-building dynamos that rely on our
SGS diffusion to wreath-building dynamos that are sufficiently
turbulent to be dominated by resolved turbulent dissipation
answers one important question relative to the extension of this
dynamo mechanism to even more turbulent states. It had long
been postulated that global-scale magnetic structures could not
exist in the convection zone as they would be quickly destroyed
by the intense turbulence. While it is clearly possible that our
wreaths may not be able to survive if we were able to simulate
far more turbulent conditions, case D3b marks an important
milestone along the path toward the possibility of magnetic
wreaths coexisting with highly turbulent convection.

Returning to Figure 10, let us now look at the time variation
in the production terms. Both cases show variability of ETME,
but for case D3b we have chosen to show a time period that
includes states before, during, and after a reversal in global
magnetic polarity. For both cases, careful examination shows
that changes in ETME are initiated primarily by changes in
GMS, not by changes to the terms dissipating energy. The terms
representing both resolved and unresolved diffusion respond
to changes in ETME rather than drive them. In case D3 this is
supported by the cross-correlation of GMS and GRD peaking
at a 39 day lag, while there is no significant cross-correlation
between GMS and either GFS or GFA for any shift in time. In
case D3b both the cross-correlation of GMS with GFS, and that
of GMS with GFA peak at a lag of 11 days. Resistive diffusion
responds faster in case D3b with a peak in cross-correlation for
a lag of only 5.6 days. This demonstrates that the variability in
the toroidal fields is driven by changes in the generation of field
by the Ω-effect.

If we more closely examine the structure of GMS from
Equation (7), we can expand it to

GMS =
∫
V

(
〈Bφ〉〈Br〉∂〈vφ〉

∂r
+

〈Bφ〉〈Bθ 〉
r

∂〈vφ〉
∂θ

+
〈Bφ〉2〈vr〉

r
+

〈Bφ〉2〈vθ 〉
r tan θ

)
dV. (13)

The third and fourth terms are geometric terms from the
spherical coordinate system which are generally small. In order
to produce a change in GMS, the dynamo can either change the
axisymmetric poloidal field or modify the differential rotation of
the domain. We have examined both the amplitude and geometry
of the mean shear due to differential rotation and find only very
small changes in any of the cases presented here. Additionally,
reversals in the polarity of the wreaths such as those seen in
cases D3a and D3b require a change in sign for the generation
term (obtained by dividing by 〈Bφ〉) and there is never a change
of sign in the shear profile of the differential rotation observed
in any of these cases. Thus we are left with the conclusion that
reversals in the polarity of the axisymmetric toroidal fields must
be initiated by changes in the axisymmetric poloidal fields.

6.2. Collapse of Resistive Balance Leading to Reversals

The key to understanding the reversals seen in cases D3a
and D3b lies in the generation of poloidal field. When the
poloidal field reverses sign the Ω-effect can then build wreaths
of the opposite polarity and reverse the sign of the axisymmetric
toroidal field. It is difficult to identify a simple model for the
generation of poloidal field in these cases, particularly in case

D3b. We can, however, identify the change in the generation
mechanism that occurred between cases D3 and D3b.

Following the work of Brown et al. (2010, 2011), we choose
to examine the evolution of the φ component of the mean vector
magnetic potential 〈A〉. This is convenient as 〈Aφ〉 completely
specifies the components of the axisymmetric poloidal magnetic
field by

∇ × (〈Aφ〉φ̂) = 〈Br〉r̂ + 〈Bθ 〉θ̂ . (14)

The temporal variations in the magnetic wreaths are driven by
changes in the shear of mean poloidal magnetic fields by mean
differential rotation and the fact that only the axisymmetric
poloidal fields can change sign, hence changes in the polarity of
the wreaths can be traced back to the evolution of 〈Aφ〉. Further,
the key region of the domain in which we should monitor 〈Aφ〉
is near the equator where the gradients in differential rotation
are largest and where the wreaths are primarily generated.

The evolution of 〈Aφ〉 is governed by

∂〈Aφ〉
∂t

= (〈v〉 × 〈B〉)φ + (〈v′ × B ′〉)φ − η〈Jφ〉. (15)

We have ignored a gauge term in Equation (15) which is
permissible for any longitudinally periodic gauge. We take a
time integral of this equation to look at the changes in 〈Aφ〉
over about 500 days in cases D3 and D3b, and define the time
integral of each term as

(ΔAφ)ME =
∫ t2

t1

(〈v〉 × 〈B〉)φ dt (16)

(ΔAφ)FE =
∫ t2

t1

(〈v′ × B ′〉)φdt (17)

(ΔAφ)RD = −
∫ t2

t1

η〈Jφ〉dt. (18)

Thus the change in 〈Aφ〉 can be written as

Δ〈Aφ〉 = (ΔAφ)FE + (ΔAφ)ME + (ΔAφ)RD. (19)

Figures 11 and 12 show the evolution of 〈Aφ〉 in cases D3
and D3b, respectively, as well as the time-integrated production
of terms shown above and the net change over the time interval.
For case D3b we chose a time period spanning a reversal in
global magnetic polarity. In both cases (ΔAφ)ME is small and
the evolution is primarily governed by the balance between
fluctuating EMF and resistive diffusion. The primary difference
between cases D3 and D3b is the collapse of the resistive
balance. Both cases show similar patterns in (ΔAφ)FE, namely,
that the fluctuating EMF in both cases is seeking to create a
region of opposite polarity poloidal field near the equator while
reinforcing the current sense of poloidal field at mid-latitudes.
Thus in both cases D3 and D3b the turbulent correlations
between the existing field and the convective turbulence tend
to build poloidal field near the equator of the opposite sense
than the field that built the current wreaths through the Ω-effect.
The difference between cases D3 and D3b is that in case D3
the diffusion term is sufficiently large to prevent the reversal by
diffusing away the opposite polarity poloidal field at the equator
before it can accumulate sufficiently to cause a reversal.

What causes the fluctuating EMF to display this propensity
toward reversing the polarity of 〈Aφ〉 near the equator? It would
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(a) (b) (c) (d) (e) (f)

Figure 11. Time evolution of 〈Aφ〉 between ±45◦ latitude for case D3 over about 500 days. Times t1 and t2 for case D3 correspond to times indicated in Figure 3.
Shown are 〈Aφ〉 at (a) the beginning and (b) end of the time interval, (c) the net change between those times Δ〈Aφ〉, the changes in 〈Aφ〉 due to (d) the fluctuating
EMF (ΔAφ )FE, (e) the mean EMF (ΔAφ )ME, and (f) resistive diffusion (ΔAφ )RD. Of particular importance is the region of positive production in (ΔAφ )FE, which if
left unimpeded by diffusion would lead to a reversal in global magnetic polarity. The color table has been chosen with a sharp transition from light blue to yellow
around zero, thus low-amplitude signals, such as seen in (c) and (e), are highlighted.

(A color version of this figure is available in the online journal.)

(a) (b) (c) (d) (e) (f)

Figure 12. Same as Figure 11, but for case D3b. Times t2 and t6 for case D3b correspond to times indicated in Figures 3 and 15. The turbulent EMF induces field of the
opposite sense to that which was present at t2 and is opposed by the resistive diffusion. Note that (ΔAφ )FE and (ΔAφ )RD for both cases are topologically similar, but
that (ΔAφ )RD is smaller in case D3b, rendering it unable to prevent the reversal of 〈Aφ〉 by the fluctuating EMF which begins with the positive region near the equator.

(A color version of this figure is available in the online journal.)

seem that there should be some link back to the strong toroidal
wreaths, but when we expand the fluctuating EMF we find that

(〈v′ × B ′〉)φ = 〈v′
rB

′
θ − v′

θB
′
r〉. (20)

Clearly, neither the axisymmetric nor fluctuating components of
Bφ come into play here, indicating that to complete a reversal
we need to connect the large-scale toroidal fields to correlations
between small-scale poloidal fields and poloidal flows. As
shown in Figure 1(i), the wreaths are not purely toroidal
structures, thus the small-scale fields needed in Equation (20)
may be supplied by the wreaths themselves. However, we have
not been able to definitively link the poloidal components of the
wreaths to the reversal process. While the subtle nature of this
process remains difficult to pin down, we do have some hints at
its origin.

6.3. Exploring an α-like Effect

The final step in the reversal process is what is often described
in the parlance of mean-field dynamo theory as the α-effect (see
Charbonneau 2010). Generally, the α-effect is the source of the
axisymmetric component of the turbulent EMF, defined as

〈ε′〉 = 〈v′ × B′〉. (21)

Specifically, we are interested in the zonal component which
generates the mean poloidal field and its connection to the
axisymmetric toroidal field, which might be expressed as

〈ε′
φ〉 = αφr〈Br〉 + αφθ 〈Bθ 〉 + αφφ〈Bφ〉. (22)

In its simplest formulation, the components of αij in
Equation (22) are constants, but more complex formulations
exist.

For case D3b, we have computed the value of the three
components of the α tensor in Equation (22) using a singular
value decomposition following the work of Racine et al. (2011).
We compute values for αij at each radial and latitudinal location,
assuming that αij is constant in time. The results of Figure 13
demonstrate that the αφφ〈Bφ〉 is the most important term in
the generation of the fluctuating toroidal EMF. Thus, it is
particularly intriguing to focus on the connection

〈ε′
φ〉 = αφφ〈Bφ〉. (23)

Brown et al. (2010) showed that for one formulation of an α-
effect in case D3, αφφ was spatially nonlocal, which would not
be picked up in our fitting procedure.

The exact mechanism for connecting mean fields and the
fluctuating EMF is subtle, but we find that in case D3b an α-like
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(a) (b) (c)

(e) (f)(d)

Figure 13. (a–c) Values for the three components of α tensor relevant to the
generation of 〈ε′

φ〉 as a function of radius and latitude. Values are computed using
a singular value decomposition over approximately 3000 days of simulation
time with the assumption that these components of α are spatially local and do
not vary in time. The αφr component is very small, whereas the αφθ and αφφ

components show significant spatial variability and comparable amplitude. (d–f)
Values for components of αφj 〈Bj 〉, showing the effect of each component on
〈ε′

φ〉. Magnetic fields have been averaged over the same interval as in Figure 12
(about 480 days). Here the contribution of αφφ〈Bφ〉 is dominant, with a smaller
but still significant contribution by αφθ 〈Bθ 〉.
(A color version of this figure is available in the online journal.)

effect emerges, which is nonlocal in time, acting on the same
timescale as convective overturning. If we consider correlations
between the volume-averaged magnetic field components and
similarity the fluctuating toroidal EMF, we find evidence that
the α-like effect in case D3b is not instantaneous but rather
acts on a timescale (47 days) which is commensurate with the
convective overturning time. The volume averages, denoted by
curly braces, are computed separately for each hemisphere over
all depths and longitudes, and between the equator and ±30◦ in
latitude. Combining the data for both hemispheres, the cross-
correlation is computed and shown in Figure 14 as a function
of the temporal interval Δτ by which {ε′

φ} is offset relative to
{Br}, {Bθ }, and {Bφ} in turn. The peaks in the cross-correlation
which exceed 2σ in significance occur when {ε′

φ} leads {Bφ} by
312 days and when {Bφ} leads {ε′

φ} by 47 days.
Analysis of the autocorrelation of both {Bφ} and {ε′

φ} indicates
that the two peaks are not due to periodicities in either of the

Figure 14. Magnitude of cross-correlation in time of {ε′
φ} and {Br } (green), {Bθ }

(red), and {Bφ} (blue) for case D3b. Cross-correlation is computed as a function
of the temporal offset τΔ, with negative offsets indicating magnetic fields precede
the toroidal EMF. Also shown are the 2σ confidence levels (dashed), computed
using a Markov chain Monte Carlo method (Wall & Jenkins 2003). The only
statistically significant peaks are those relating {ε′

φ} and {Bφ}.
(A color version of this figure is available in the online journal.)

two time series individually. Further, the widths of these peaks
largely originate from the coherence time for 〈Bφ〉 of about
100 days. The first peak at 312 days represents the timescale for
the Ω-effect and agrees well with the estimate from mean-field
theory τΩ given by

τΩ = Prot
Ω0

ΔΩ
〈Bφ〉
〈Bpol〉 , (24)

where Prot is the rotation period, Ω0 is the frame rotation rate,
ΔΩ is the differential rotation rate, and 〈Bpol〉 is the strength
of the poloidal field. For case D3b, this yields a value of
324 days. The second peak in the cross-correlation between
the two fields occurs when τΔ = −47 days. This peak suggests
that the correlations which generate the turbulent zonal EMF
are related in some way to the axisymmetric toroidal fields,
and that whatever mechanism establishes this correlation, it has
a timescale of about 50 days. This temporally and spatially
nonlocal α-effect clearly points to convection as a key player,
as other mechanisms like the meridional circulation are at least
an order of magnitude slower.

In addition to a timescale for an α-like effect which is
commensurate with the convective overturning time, we also
find evidence for an upscale transfer of magnetic energy related
to magnetic reversals. Figure 15 shows the temporal evolution
of 〈Bφ〉 at mid-convection zone over both latitude and spherical
harmonic degree �. Several reversals of global magnetic polarity
are evident in Figure 15(b), including the reversal shown in
detail in Figure 4. Figure 15(a) shows the coefficients of the
spherical harmonic expansion of the axisymmetric toroidal field
for the antisymmetric (odd �) modes with 1 � � � 29 over
roughly three magnetic activity cycles. In both physical space
and spectral space, it is clear that each cycle has opposite polarity
from the preceding cycle.

There is a preference for antisymmetric modes with odd val-
ues of �, as would be expected from the Ω-effect acting on a
poloidal field that is preferentially symmetric about the equator
(even �). The upscale cascade involving odd modes is expected
from both theoretical and observational studies of families of
dynamo modes (see Nishikawa & Kusano 2008; DeRosa et al.
2012). As a reversal occurs we see power showing up first at
moderate � and then cascading upscale to smaller � values until
it peaks at � = 3 or 1 depending on the cycle. The reversal
starts at 25 � � � 29 and then each successive mode reverses.
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(a)

(b)

Figure 15. Companion plots of the time evolution in case D3b of (a) the spherical
harmonic coefficients for antisymmetric modes with 1 � � � 29 and m =
0 for Bφ , and (b) 〈Bφ〉 in physical space as a function of latitude, both at
mid-convection zone. Dashed lines show times referenced in Figures 3, 4, 11,
and 12. A factor of (−1)(�−1)/2 is applied to the spherical harmonic coefficients
to remove the effect of the wreaths’ confinement to low latitudes. There is a clear
progressive spectral transfer of magnetic energy from high-� modes to low-�
modes as each cycle progresses. Reversals begin at moderate scales (high �)
and then progress to large scales (low �).

(A color version of this figure is available in the online journal.)

There is considerable overlap between cycles; in some cases
reversals are seen in the high-� modes in as little as 100 days
after the previous reversal is completed at low-�. We note that
convective power peaks at spherical harmonic degrees between
about 25 and 40 in these simulations. This suggests that the
reversals are caused by turbulent processes interacting with
the wreaths, yielding an upscale energy transfer which organizes
the large-scale fields. Combined with our cross-correlation anal-
ysis, this upscale transfer indicates the key role of convection in
connecting mean toroidal magnetic fields with the fluctuating
toroidal EMF.

As illustrated schematically in Figure 16, the reversal mecha-
nism involves three main processes. First, axisymmetric wreaths
of toroidal magnetic field (Figure 16(a)) lead to correlations
in the non-axisymmetric poloidal velocity and magnetic fields
which drive an axisymmetric turbulent EMF through an α-like
effect. The upscale transfer of magnetic energy and the fact that
the correlation between the magnetic energy of the wreaths and

the turbulent EMF peaks on roughly a convective overturning
time would seem to point toward the convective motions as a key
player in this α-like process. In the second step, the turbulent
EMF reinforces the dominant poloidal field at mid-latitudes but
is the opposite sign near the equator (Figure 16(b)), creating an
octopolar configuration, with strong radial field concentrations
at low latitudes (Figure 16(c)). As the reversal progresses, the
region of new poloidal field shown in red in Figure 16(c) will
expand and eventually replace the old sense of field shown in
blue. The third step involves axisymmetric poloidal magnetic
field being sheared by differential rotation. Here the differential
rotation is largely cylindrical, thus radial poloidal field is primar-
ily converted into toroidal magnetic field through the Ω-effect,
which results in axisymmetric toroidal fields of the opposite po-
larity (Figure 16(d)). The process then repeats with the opposite
polarity.

7. TURBULENCE-REGULATED FLUX EMERGENCE

Photospheric active regions are thought to arise from the
buoyant destabilization, rise, and emergence of coherent, sub-
surface toroidal flux structures. It is often argued that these
subsurface flux structures originate below the convection zone,
where the strong shear of the tachocline promotes toroidal flux
generation and the subadiabatic stratification of the overshoot
region promotes flux storage by inhibiting the buoyancy insta-
bility (Galloway & Weiss 1981; van Ballegooijen 1982). In this
section we offer an alternative viewpoint that is inspired and
supported by the numerical models presented here. Namely, we
argue that buoyant flux structures may be produced in the Sun
and stars not only in the tachocline but also in the lower convec-
tion zone through the combined action of rotational shear and
turbulent intermittency.

In previous papers we have demonstrated that organized
systems of toroidal flux can persist within a turbulent convection
zone despite the inhibiting influence of turbulent dispersal
(Brown et al. 2010, 2011). Here we have demonstrated that
this continues to hold as we decrease the diffusion, crossing
a threshold beyond which resolved motions replace artificial
dissipation in the dynamical balances that sustain mean flows
and fields. Furthermore, as the diffusion is decreased, intense,
localized wreath cores form where the magnetic energy density

(a) (b) (c) (d)

Figure 16. Schematic description of the reversal mechanism for cyclic convective dynamos in four steps. (a) Two toroidal wreaths at low latitude which generate a
turbulent EMF via a nonlocal “α”-effect, either through nonlinear interactions across the equator or via helical convection. The sign of the EMF changes at roughly
the location of the wreaths. (b) Correlations in turbulent poloidal velocities and fluctuating magnetic field drive an induction of mean poloidal field which is roughly
octopolar. (c) Mean poloidal field near the equator is sheared by differential rotation to generate mean toroidal field through the Ω-effect. In these simulations, the
largest component is the shearing of radial field lines by radial gradients in the differential rotation. (d) Toroidal wreaths of opposite polarity are generated.

(A color version of this figure is available in the online journal.)
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exceeds the surrounding kinetic energy density (Figure 2). This
trend is highlighted most dramatically by case S3, where the
much lower diffusion promotes coherent wreath cores strong
enough to become buoyant, as first demonstrated by Nelson
et al. (2011).

Here we explore in more general terms the link between
magnetic wreaths and flux emergence, addressing in particular
how it might operate in real stars where the dissipation is many
orders of magnitude less than in simulations. We begin by
noting that the Ω-effect does not just operate on axisymmetric
fields; poloidal fields of all longitudinal wavenumbers (m) in
the convection zone are converted to toroidal fields (of the same
m) and amplified by rotational shear, blurring the distinction
between mean and fluctuating fields. Turbulent intermittency in
the surrounding convection can further amplify shear-generated
flux structures, promoting the generation of fibril magnetic fields
and coherent, localized wreath cores (Figure 2).

The low Mach number of stellar convection zones ensures
that the gas pressure adjusts rapidly to any imbalance of
mechanical and magnetic stresses. Thus, the formation of
fibril, intermittent flux concentrations (wreath cores) will induce
a pressure perturbation δP ∼ Pt − Pm, where Pt is the
turbulent (kinetic plus magnetic) pressure of the surrounding
medium and Pm is the magnetic pressure associated with the
coherent flux that defines the wreath core. We have neglected
the turbulent pressure within the wreath core which may be
suppressed by magnetic tension, providing a positive feedback
mechanism that can further promote the formation of coherent,
superequipartition wreath cores, and buoyant loops (Kleeorin
et al. 1989; Rogachevskii & Kleeorin 2007; Käpylä et al. 2012).

Weak magnetic flux concentrations, Pm < Pt , are not
susceptible to buoyancy instabilities because their magnetic
pressure is insufficient to balance the surrounding turbulent
pressure, resulting in δP > 0. It is only the strongest wreath
cores that develop a pressure deficit δP < 0, in particular
only those cores in which the magnetic pressure Pm exceeds
the stabilizing influence of the surrounding convective motions.
This implies that a necessary but not sufficient condition for
the wreath cores to become buoyant is that they must be
superequipartition relative to the surrounding convection. The
surrounding flows may in turn enhance or retard the tendency
for such structures to rise. As demonstrated in Figure 2, this
is indeed achieved in our simulations and it becomes more
pronounced as the artificial diffusion is reduced, eventually
inducing buoyant rise.

If these superequipartition wreath cores form adiabatically,
this pressure deficit will be accompanied by a density deficit
ε = δρ/ρ ∼ δP/(γP ), established by diverging flows along
the axis of the wreath core. Radiative heating can further warm
and rarify the wreath cores, enhancing the density deficit to
ε ∼ δP/P = (Pm − Pt )/P on a timescale of

τ−1
r = ε

r2ρT Cp

∂

∂t

(
r2ρT CP κr

∂T

∂r

)
, (25)

where κr is the radiative diffusivity (Fan & Fisher 1996).
Inserting values from Model S (Christensen-Dalsgaard et al.
1996) for ε ∼ 10−6 yields τr < 100 days through most of
the solar convection zone. This value of ε corresponds to an
emergence time τe ∼ 2D/εg, of about 10–15 days, where D is
the depth of the convection zone, and a magnetic field strength
of B ∼ (8πεP )1/2 ∼ 20–40 kG over and above the equipartition
value.

Figure 17. Three-dimensional volume renderings of isosurfaces of magnetic
field amplitude in case S3. Blue surfaces have amplitudes of 10 kG, green
surfaces represent 25 kG, and red surfaces indicate 40 kG fields. Grid lines
indicate latitude and longitude at 0.72 R� as they would appear from the
vantage point of the viewer. Small portions of the cores of these wreaths have
been amplified to field strengths in excess of 40 kG while the majority of the
wreaths exhibit fields of about 10 kG or roughly in equipartition with the mean
kinetic energy density (see Figure 2).

(A color version of this figure is available in the online journal.)

Convection can also promote the buoyant rise of a wreath seg-
ment by introducing a finite-amplitude undular displacement,
resulting in a draining of fluid from the apex of the loop (Jouve
& Brun 2009; Nelson et al. 2011; Weber et al. 2011). This could
in principle operate for any field strength but in practice weak
fields will by shredded and reprocessed by convection before
they emerge (e.g., Fan 2009).

The dynamics discussed here are indeed exhibited by our most
turbulent simulation, case S3. Relative to more diffusive simula-
tions, this case generates more regions of strong, superequipar-
tition fields, as demonstrated in Figure 2, and these regions are
located in coherent, intermittent wreath cores, as illustrated in
Figure 17. Figure 18 highlights two examples in which such
wreath cores become buoyant and rise. As discussed in Nelson
et al. (2011), the loops rise through the convection zone through
the combined influence of magnetic buoyancy and advection,
reaching as high as 0.94 R before they are dissipated by diffu-
sion. The wreath which formed these two loops (and two others
not shown) is not axisymmetric; rather, it spans about 180◦ in
longitude, reaching peak field strengths of 45 kG. We expect the
process to be even more efficient in stars where the intermittency
is presumably much more extreme.

In summary, this paradigm of turbulence-induced flux emer-
gence postulates that the combined action of turbulent inter-
mittency and rotational shear generates a broad distribution of
toroidal magnetic structures and it is only the most extreme
events, in the high-B tail of the pdf, that become buoyant. It
is analogous to the theory of turbulence-regulated star forma-
tion, whereby supersonic turbulence in interstellar molecular
clouds generates a spectrum of density fluctuations but only
the extreme events on the tail of the pdf are dense enough to
trigger the Jeans instability and condense to form protostars
(Krumholz & McKee 2005). It is also closely related to the
negative magnetic pressure instability described by Kleeorin
et al. (1989) (see also Rogachevskii & Kleeorin 2007; Käpylä
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(a) (b) (c)

Figure 18. Buoyant magnetic loops evolving from small-scale wreath sections amplified by turbulent intermittency. (a) Field line rendering of magnetic wreaths at
low latitudes in case S3. Field lines are colored by Bφ (negative in blue, positive in red) to highlight the two wreaths present. (b) Zoom-in on region indicated in (a)
showing field line tracings of the core of the buoyant magnetic loops at the same instant colored by magnitude of B (weak fields in purple, intense fields in yellow).
Volume rendering shows Bφ using the same color scheme as in (a). (c) The same region 4 days later, showing the continued rise of the loops through the stratified
domain and their expansion.

(A color version of this figure is available in the online journal.)

et al. 2012; Kemel et al. 2012), although it does not necessarily
rely on the assumptions that underlie that instability analysis,
namely, scale separation, the invariance of the small-scale tur-
bulent energy, and the proportionality between variations in the
mean and turbulent magnetic energy (attributed to kinematic
shredding).

The radial location of the flux bundles that ultimately form
active regions depends on the kinetic energy density in the
convection (FKE) relative to that in the differential rotation
(DRKE), as well as the efficiency of magnetic pumping. In the
simulations presented here, DRKE/FKE � 1, suggesting that
the generation of the wreaths is efficient enough that they can
persist in the convection zone despite magnetic pumping. If this
ratio falls much below unity, as might be expected for lower
rotation rates, the wreaths may get pushed toward the base of
the convection zone. Likewise, if the simulations are over- or
underestimating the efficiency of magnetic pumping, this will
influence the location of flux generation and the threshold to
trigger the magnetic buoyancy instability. However, the basic
paradigm should still be valid.

The scenario outlined here may resolve several current
observational and theoretical puzzles. In particular, the non-
axisymmetric nature of turbulence-induced flux emergence is
consistent with the results of Stenflo & Kosovichev (2012) who
find that many large bipolar active regions on the Sun violate
Hale’s polarity rules, and furthermore, that the anti-Hale regions
often occur at the same latitude as bipoles that obey Hale’s
rules. The fraction of anti-Hale magnetic regions increases from
about 4% for the largest active regions (flux Φ � 1023 Mx)
to more than 25% for smaller bipoles with Φ ∼ 1020 Mx.
The result that more than 70% of intermediate-sized bipoles
(Φ ∼ 1020 Mx) obey Hale’s laws suggests the presence of
organized toroidal flux systems throughout the convection zone
since all of these regions are unlikely to be anchored in the
tachocline. Meanwhile, the diminishing of magnetic activity
patterns with decreasing flux, including an increasing fraction
of anti-Hale bipoles as well as an increased scatter in tilt angles
and emergence latitudes, is often attributed to the influence of
convection on rising flux tubes (Jouve & Brun 2009; Weber et al.
2011, 2012; Jouve et al. 2013). We propose that this intimate
coupling between flux tubes and convection exists not only in
their rise, but also in their very formation. Finally, the non-

axisymmetric nature of turbulence-induced flux emergence may
also account for the phenomenon of active longitudes.

The observed tilt angles and emergence latitudes of bipolar
magnetic regions on the Sun is best reproduced by models of
rising flux tubes with initial field strengths of 20–100 kG (e.g.,
Fan 2009; Jouve & Brun 2009; Weber et al. 2011; Pinto et al.
2011). However, generating such superequipartition fields is not
a trivial matter and in fact represents a formidable, unresolved
problem in solar dynamo theory (e.g., Rempel & Schüssler
2001). Laminar amplification of toroidal fields by rotational
shear, the Ω-effect, tends to saturate at field strengths well
below equipartition due to the back-reaction of the Lorentz
force (Vasil & Brummell 2009; Guerrero & Käpylä 2011).
Turbulent intermittency can help by tapping the energy in the
convection that is ultimately provided by the solar luminosity.
It is clear from Figure 2 that the coupled action of turbulence
and shear can generate superequipartition fields of the required
amplitude.

The paradigm proposed here may also help address
other difficulties with tachocline-based dynamos discussed by
Brandenburg (2005). For example, toroidal flux generation does
not rely on the radial shear of the tachocline, which is maximum
near the poles. Instead, the expected location of flux genera-
tion is where |∇Ω| is maximum in the convection zone. This
corresponds to the latitudinal shear at mid-latitudes, precisely
where active regions first emerge at the beginning of a cycle, as
emphasized by Spruit (2010). Note that the potential role flux
emergence plays in establishing the solar cycle is a separate
question that we do not address here.

8. RICHNESS OF STELLAR DYNAMOS

In this paper we have explored the complex behavior of a
class of numerical simulations of convective dynamo action
in rapidly rotating solar-like stars. More broadly, however,
we have also touched upon the rich landscape of convective
dynamo simulations by discussing both persistent wreath-
building dynamos such as cases D3 and D3-pm1, and cyclic
wreath-building dynamos including cases D3a, D3b, D3-pm2,
and S3. Although the simulations considered here are ostensibly
rotating three times faster than the Sun (3 Ω�), the Sun may
actually be in a similar Rossby number regime, as noted in
Section 1. Thus the results presented here may have some
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bearing on the solar dynamo as well as the dynamos of younger,
more rapidly rotating solar analogs.

We have focused on two open questions that arose out of
our previous work on wreath-building dynamos. The first is
“Can magnetic wreaths persist in the highly turbulent condi-
tions of a stellar convection zone” and the second is “What
physical mechanisms establish and regulate the magnetic cy-
cles we see in our simulations?” We have also touched upon a
third question that all solar and stellar dynamo models must
eventually face, and that is “How are sunspots and bipo-
lar active regions produced from dynamo-generated magnetic
fields?”

The principal issue with regard to the first question is
whether magnetic wreaths can persist in stellar convection zones
where the magnetic, viscous, and thermal diffusion coefficients
are many orders of magnitude lower than in our simulations. We
have investigated this question by systematically decreasing the
diffusion in our simulations along two complementary paths,
one in which only the magnetic diffusion coefficient, η, was
reduced, and one in which the magnetic and viscous diffusivity,
η and ν, were reduced together, keeping the magnetic Prandtl
number constant (at a value of 0.5). In both cases magnetic
wreaths with quasi-cyclic polarity reversals were attained,
although the constant-Pm branch exhibited more regular spatial
and temporal behavior and thus became the focus of our analysis
(see Figure 3).

Although no simulation can approach the extreme parameter
regimes of stellar interiors, we have demonstrated a shift in the
dynamical balances that bodes well for the possible persistence
of magnetic wreaths at much higher Reynolds and magnetic
Reynolds numbers. In short, our simulations suggest that the
answer to the first question may be “Yes, magnetic wreaths may
indeed occur in actual stars.” We have investigated in particular
the balance of angular momentum transport which maintains
the differential rotation in our simulations and the balance of
processes responsible for creating and destroying the magnetic
energy of the wreaths. In both cases, as we move from case
D3 to case D3b we find that resolved turbulent dissipation has
taken the place of SGS dissipation (see Figures 8 and 10). This
is an important milestone toward demonstrating that wreaths
can exist in highly turbulent settings and that they are not reliant
on the explicit diffusion in previous simulations.

We have found that magnetic wreaths persist in our higher-
resolution, lower-dissipation, more turbulent simulations, yet
their nature is altered in a fundamental and significant way. Most
notably, they are no longer axisymmetric. In our more turbulent
simulations such as case D3b, the nearly axisymmetric wreaths
of case D3 are replaced by coherent wreath segments, typically
spanning between 45◦ and 270◦ in longitude. This is associated
with a shift in the magnetic power spectrum from longitudinal
wavenumber m = 0 to moderate m values. It also has important
implications for flux emergence, as discussed with regard to
question 3 below.

The first clues as to the origin of magnetic cycles in our sim-
ulations (question 2) were uncovered by Brown et al. (2010,
2011), showing that one can move from a persistent wreath-
building dynamo state to a cyclic one by increasing the rota-
tion rate. Here we have shown that a similar transition from
persistent to cyclic wreaths can be achieved by decreasing
the effective magnetic diffusion, and thereby increasing the
magnetic Reynolds number at a fixed rotation rate. As men-
tioned above, the constant-Pm branch of solutions exhibited

more regular cyclic behavior despite the higher degree of
turbulence.

We have not obtained a definitive exposition of the physical
mechanisms that give rise to and regulate magnetic reversals.
However, we have traced their operation to the zonal component
of the turbulent EMF near the equator. In case D3 diffusion
prevented reversals in the polarity of the axisymmetric poloidal
field by locally offsetting the creation of mean poloidal field
by turbulent fluctuations. In the lower-dissipation case D3b,
this balance breaks down, leaving a residual turbulent EMF
near the equator that creates poloidal field with a polarity
that is opposite to that of the pre-existing field, as shown in
Figure 12. Once magnetic reversals are thus initiated, the overall
reversal process follows the schematic description found in
Figure 16.

Our simulations cannot directly address the third question
regarding how solar and stellar dynamos produce sunspots and
bipolar active regions. The detailed dynamics of flux emergence
are too intricate to reliably capture in any current global dynamo
simulation. However, the change in the nature of the wreaths as
the dynamical balances shift suggests that they may play an im-
portant role in generating buoyant magnetic loops in actual stars.
As discussed in Section 7, these simulations suggest that strong,
coherent magnetic structures of moderate angular extent can be
created in the cores of the magnetic wreaths. If this trend were
to continue to the extremely low diffusion regimes of actual
stellar convection zones, one would expect these flux bundles to
become buoyantly unstable and rise. Indeed, this expectation is
confirmed by our simulation case S3 that employs a less diffu-
sive SGS model and that exhibits the self-consistent generation
of buoyant toroidal flux tubes in a global convective dynamo
simulation. This picture of flux emergence as a fundamentally
turbulent process contrasts strongly with more idealized scenar-
ios where the principal role of convection is simply to produce
a differential rotation. One might expect this revised paradigm
to have observable consequences in such active region charac-
teristics as distribution, tilt angle, and helicity. Furthermore, it
may call into question our traditional reliance on sunspots as a
straightforward proxy for the axisymmetric toroidal field at or
below the base of the convection zone.

The rich behavior of these systems provides important insight
into the dynamo models for the Sun and solar-type stars. The
trend toward non-axisymmetric fields with enhanced turbulence,
while still maintaining global-scale organization, pushes at the
boundaries of our understanding of dynamo theory in solar-
like settings. That these mechanisms are accessible with current
computational resources clearly invites further intensive study
of these topics.
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APPENDIX A

THE DYNAMIC SMAGORINSKY SGS MODEL IN ASH

We implement the dynamic Smagorinsky SGS model in the
ASH code following the prescription of Germano et al. (1991),
inspired on the original formulation by Smagorinsky (1963).
The Smagorinsky eddy viscosity νS is defined as

νS = CSΔ2(êij êij )1/2, (A1)

where êij is the resolved strain-rate tensor, Δ is the grid
spacing, and CS is the constant of proportionality. The dynamic
Smagorinsky model (used here in case S3) makes an assumption
of self-similar behavior in a resolved inertial range of a turbulent
cascade to determine the value of CS at each point in the domain.
This is done by choosing a test scale which is larger than the
grid scale by a factor β. Traditionally, and in this work, β = 2.
Only high-resolution ASH simulations are able to assure that
βΔ is suitably within an inertial range.

If we define the full velocity field, including scales that are not
resolved in the simulation, as ui, then the hat operator denotes
grid-scale filtering keeping only the scales that are resolved in
the simulation and the tilde operator expresses filtering at the
test scale keeping only scales that are resolved by the simulation
and larger than βΔ. We define the stress tensor at the grid-scale
Δ as

Ŝij = ûiuj − ûi ûj (A2)

and the stress tensor at the test filter scale βΔ as

˜̂Sij = ˜̂uiuj − ˜̂ui
˜̂uj . (A3)

Finally, the resolved stresses can be written as

Sij = ˜̂uiûj − ˜̂ui
˜̂uj . (A4)

Note that Sij can be computed directly from the resolved flows

while Ŝij and ˜̂Sij require a SGS model, such as the Smagorinsky
model.

By assuming scale invariance in the inertial range of the
turbulent spectra, one obtains

Sij = ˜̂Sij − Ŝij . (A5)

Note that this is simply stating that the resolved stresses are
the difference between the stresses filtered at the test scale and
the stresses filtered at the grid scale. Applying the Smagorinsky
model and contracting with êij to obtain a scalar equation results
in

Sij êij = −2CS(β2Δ2| ˆ̃eij | ˆ̃eij êij − Δ2|êij |êij êij ). (A6)

Solving for CS gives

CS = − Sij êij

2Δ2êij (β2| ˆ̃eij | ˆ̃eij − |êij |êij )
. (A7)

To assure computational stability we require CS to be positive
and apply a spectral filter on the denominator of Equation (A7)

which removes scales smaller than βΔ. Additionally, a Gaussian
smoothing with a width equal to the largest horizontal grid
spacing is applied to CS to prevent grid-scale ringing in the
CS field. With the SGS viscosity thus determined, we apply
constant SGS Prandtl and magnetic Prandtl numbers in order to
determine the SGS thermal diffusivity and magnetic resistivity
coefficients at each point in the domain.

The dynamic procedure involving a turbulent cascade has
known problems adjacent to impenetrable walls where viscous
boundary layers form that are rather laminar, such as the upper
and lower boundaries in ASH (Meneveau & Katz 2000). To
compensate for a diminished cascade, we introduce a smoothly
varying enhanced eddy viscosity immediately adjacent to the
boundaries, occupying only 0.3% of the domain in radial
extent.

In the dynamic Smagorinsky model the nonlinear nature of
the diffusion term requires an explicit time stepping scheme
which imposes an upper limit on the size of our time step. In
order to control the time step, an artificial ceiling is placed on
the dynamic Smagorinsky viscosity. In case S3, on average, the
ceiling is applied to 800 out of 76 million grid points at each
time step. As the time step is required to be less than Δ2

min/ν for
numerical stability, the functional form of the ceiling is given
by

νmax = tmaxΔ2
min, (A8)

where Δmin is the smallest local grid spacing in any direction
and tmax is the desired size time step. In case S3 tmax is set to
125 s.

APPENDIX B

GENERATION OF DIFFERENTIAL
ROTATION KINETIC ENERGY

As shown in Equation (2), the time evolution of angular
momentum in our domain can be written in conservative form
as the divergence of a flux vector F . The radial component is
given by

Fr = ρ̄λ

[
−νr

∂

∂r

(vφ

r

)
+ v̂′

φv′
r + v̂r v̂φ + v̂rΩ0λ

− 1

4πρ̄
̂B ′

φB ′
r − 1

4πρ̄
B̂φB̂r

]
, (B1)

where the terms are from left to right due to VD, fluctuating RS,
mean RS from the MC, the Coriolis force with Ω0 representing
the frame rotation rate, the MS, and mean MTs. The latitudinal
component is given by

Fθ = ρ̄λ

[
−ν sin θ

r

∂

∂θ

( vφ

sin θ

)
+ v̂′

φv′
θ + v̂θ v̂φ + v̂θΩ0λ

− 1

4πρ̄
̂B ′

φB ′
θ − 1

4πρ̄
B̂φB̂θ

]
, (B2)

where the terms have the same ordering and identities as in the
radial component. We ignore the flux due to the Coriolis force
because while it can be large locally, it cannot do any net work
on the system when averaged over the full domain. We can
also write the fluxes in cylindrical coordinates in terms of the
cylindrical radius λ and the distance from the equatorial plane
z. The flux in cylindrical radius is given by

Fλλ̂ = Fr sin θ r̂ + Fθ cos θ θ̂ , (B3)
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while the flux in z is given by

Fzẑ = Fr cos θ r̂ − Fθ sin θ θ̂ . (B4)

If we multiply Equation (2) by the longitude-averaged rota-
tion profile Ω̂, we are left with an equation for the time evolution
of the kinetic energy density in the mean differential rotation
profile 〈EDR〉,

∂〈EDR〉
∂t

= Ω̂ (∇ · F) . (B5)

We take a volume integral over the entire domain in order
to calculate the total rate of change in the kinetic energy of
differential rotation and rewrite the right-hand side as∫

V

∂〈EDR〉
∂t

dV =
∫
V

[F · ∇Ω̂ − ∇ · (Ω̂F)]dV. (B6)

The second term in the integral can be rewritten using the
divergence theorem as a surface integral, leaving us with∫

V

∂〈EDR〉
∂t

dV =
∫
V

F · ∇Ω̂dV −
∫
S

Ω̂FrdS. (B7)

Our choice of impenetrable and stress-free boundaries causes
all of the hydrodynamic terms in the surface integral to vanish
on both the inner and outer boundaries. Likewise our choice
of a perfect conductor boundary condition on the lower surface
causes both the fluctuating and mean magnetic torques to vanish
there. The choice of a potential field boundary condition on the
upper surface forces the mean MTs to be exactly zero, however
it does in principle allow the MS to be non-zero. This reduces
the surface integral to

−
∫
S

Ω̂FrdS =
∫ π

0

∫ 2π

0

Ω̂
4π

̂B ′
φB ′

θR
3
o sin2 θ dθ dφ. (B8)

We have calculated this term to be about five orders of magnitude
smaller than the volume integral term in Equation (B7) when
averaged over long periods in cases D3, D3a, and D3b. We chose
to ignore this surface term in our analysis of time-averaged
quantities.

The generation and dissipation of DRKE can be written as
the sum of five terms, as was done in Equation (3). Those terms,
which represent VD, RS, MCs, MS, and mean MTs, are given
in turn by

LVD = −
∫
V

ρ̄νr sin θ

[
r

∂

∂r

(vφ

r

) ∂Ω̂
∂r

+
sin θ

r2

∂

∂θ

( vφ

sin θ

) ∂Ω̂
∂θ

]
dV, (B9)

LRS =
∫
V

ρ̄r sin θ

[
v̂′

φv′
r

∂Ω̂
∂r

+
1

r
v̂′

φv′
θ

∂Ω̂
∂θ

]
dV, (B10)

LMC =
∫
V

ρ̄r sin θv̂φ

[
v̂r

∂Ω̂
∂r

+
v̂θ

r

∂Ω̂
∂θ

]
dV, (B11)

LMS = −
∫
V

r sin θ

4π

⎡⎣ ̂B ′
φB ′

r

∂Ω̂
∂r

+
̂B ′

φB ′
θ

r

∂Ω̂
∂θ

⎤⎦ dV, (B12)

LMT = −
∫
V

r sin θB̂φ

4π

[
B̂r

∂Ω̂
∂r

+
B̂θ

r

∂Ω̂
∂θ

]
dV. (B13)

The time-averaged values of these terms are reported in Table 3
and Figure 8.
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