
RAMSES User’s Guide

Self-gravitating fluid dynamics

with Adaptive Mesh Refinement

using massively parallel computers.

Romain Teyssier

Version Issue: Version 3.0. Last Update: November 6, 2008

2

Contents

1 Introduction 4
1.1 About This Guide . 4
1.2 Getting RAMSES . 4
1.3 Main features . 4
1.4 Acknowledgements . 5
1.5 The CeCILL License . 5

2 Getting started 6
2.1 Obtaining the package . 6
2.2 Compiling the code . 6
2.3 Executing the test case . 7
2.4 Reading the Log File . 8

3 Runtime Parameters 11
3.1 Global parameters . 13
3.2 AMR grid . 14
3.3 Initial conditions . 15
3.4 Output parameters . 16
3.5 Boundary conditions . 17
3.6 Hydrodynamics solver . 18
3.7 Physical parameters . 19
3.8 Poisson solver . 20
3.9 Refinement strategy . 21

4 Cosmological simulations 22
4.1 Parameter file and initial conditions . 22
4.2 Memory management . 23
4.3 Restarting a run . 23
4.4 Parallel computing . 24
4.5 Post-processing utilities . 26
4.6 Zoom simulations . 27

5 Advanced simulations 28
5.1 Patching the code . 28
5.2 Physical units . 28
5.3 Initial conditions . 28
5.4 Boundary conditions . 29
5.5 External gravity sources . 30
5.6 External thermal sources . 30

6 Publication policy 31

Index 32

3

1 Introduction

The RAMSES package is intended to be a versatile platform to develop applications using
Adaptive Mesh Refinement for computational astrophysics. The current implementation allows
solving the Euler equations in presence of self-gravity and cooling, treated as additional source
terms in the momentum and energy equations. The RAMSES code can be used on massively
parallel architectures when properly linked to the MPI library. It can also be used on single
processor machines without MPI. Output files are generated using native RAMSES Fortran
unformatted files. A suite of post-processing routines is delivered within the present release,
allowing the user to perform a simple analysis of the generated output files.

1.1 About This Guide

The goal of this User’s Guide is to provide a step-by-step tutorial in using the RAMSES code.
This guide will first describe a simple example of its use. More complex set-up will be addressed
at the end of the document. Typical RAMSES users can be grouped into 3 categories:

• Beginners: It is possible to execute RAMSES using only run parameter files. The code is
compiled once, and the user only modifies the input file to perform various simulations.
Cosmological simulations can be performed quite efficiently in this way, using the initial
conditions generated by external packages such as mpgrafic.

• Intermediate users: For more complex applications, the user can easily modify a small set
of routines in order to specify specific initial or boundary conditions. These routines are
called “patches” and the code should be recompiled each time these routines are modified.

• Advanced users: It is finally possible to modify the base scheme, add new equations, or
add new routines in order to modify the default RAMSES application. This guide will
not describe these advanced features. In this case, a new documentation would be given
separately.

1.2 Getting RAMSES

RAMSES software can be downloaded in the Codes section from various web sites, the most
frequently updated ones being http://www-dapnia.cea.fr/Projets/COAST and http://www.
projet-horizon.fr/. It is freely distributed under the CeCILL software license (see section
1.5 and http://www.cecill.info/) according the French legal system for non-commercial use
only. For commercial use of RAMSES, please contact the author: be prepared for a massive
financial compensation.

1.3 Main features

RAMSES contains various algorithms designed for:

• Cartesian AMR grids in 1D, 2D or 3D

• Solving the Poisson equation with a Multi-grid and a Conjugate Gradient solver

• Using various Riemann solvers (Lax-Friedrich, HLLC, exact) for adiabatic gas dynamics

• Computing collision-less particles (dark matter and stars) dynamics using a PM code

• Computing the cooling and heating of a metal-rich plasma due to atomic physics processes
and an homogeneous UV background (Haardt and Madau model).

4

http://www-dapnia.cea.fr/Projets/COAST
http://www.projet-horizon.fr/
http://www.projet-horizon.fr/
http://www.cecill.info/

• Implementing a model of star-formation based on a standard Schmidt law with the tradi-
tional set of parameters.

• Implementing a model of supernovae-driven winds based on a local Sedov blast wave
solution.

All these features can be used and parameterized using the RAMSES parameter file, based
on the Fortran “namelist” format.

1.4 Acknowledgements

The development of the RAMSES code has been initiated and coordinated by the author. The
author would like to thank all collaborators who took an active role in the development of this
version. They are cited in chronological order.

• Matthias Gonzalez and Dominique Aubert (initial conditions)

• Stéphane Colombi and Stéphanie Courty (cooling and atomic physics)

• Yann Rasera (star formation, post-processing)

• Yohan Dubois (supernovae feedback)

• Thomas Guillet (multigrid Poisson solver)

• Sébastien Fromang, Patrick Hennebelle and Emmanuel Dormy (MHD solver).

• Philippe Wautelet and Philippe Sériès (code optimization)

I would like to thank my collaborators for helping me developing more advanced versions of
RAMSES, not yet available as complete releases, since it is mostly work in progress.

• Benôıt Commerçon (thermal conduction)

• Édouard Audit and Dominique Aubert (radiative transfer)

• Rémi Abgrall and Richard Saurel (multifluid)

1.5 The CeCILL License

This software is under Copyright of CEA and its author, Romain Teyssier.
This software is governed by the CeCILL license under French law and abiding by the rules

of distribution of free software. You can use, modify and/or redistribute the software under the
terms of the CeCILL license as circulated by CEA, CNRS and INRIA at the following URL:
http://www.cecill.info/.

As a counterpart to the access to the source code and rights to copy, modify and redistribute
granted by the license, users are provided only with a limited warranty and the software’s author,
the holder of the economic rights, and the successive licensors have only limited liability.

In this respect, the user’s attention is drawn to the risks associated with loading, using,
modifying and/or developing or reproducing the software by the user in light of its specific
status of free software, that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced professionals having in-depth
IT knowledge. Users are therefore encouraged to load and test the software’s suitability as
regards their requirements in conditions enabling the security of their systems and/or data to
be ensured and, more generally, to use and operate it in the same conditions as regards security.

The fact that you are presently reading this means that you have had knowledge of the
CeCILL license and that you accept its terms.

5

http://www.cecill.info/

2 Getting started

In this section, we will explain step by step how to get the RAMSES package and install it,
then how to perform a simple test to check the installation.

2.1 Obtaining the package

The package can be downloaded from the web site http://www-dapnia.cea.fr/Projets/COAST
in the Codes section. You will get a tar ball named ramses.tar.gz. The first thing to do is to
un-tar the archive on your preferred computer’s home directory.

$ gunzip ramses.tar.gz | tar xvf

This will create a new directory named ramses/. In this directory, you will find the following
directory list

amr/ bin/ doc/ hydro/ mhd/ namelist/ patch/ pm/ poisson/ utils/

Each directory contains a set of files with a given common purpose. For example, amr/ con-
tains all F90 routines dealing with the AMR grid management and MPI communications, while
hydro/ obviously contains all F90 routines dealing with hydrodynamics. The first directory you
are interested in is the bin/ directory, in which the code will be compiled.

2.2 Compiling the code

In this bin/ directory, you will find a Makefile. The first thing to do is to edit the Makefile and
modify the two variables F90 and FFLAGS. Several examples corresponding to different Fortran
compilers are given. The default values are:

F90=pgf90
FFLAGS=-Mpreprocess -DWITHOUTMPI -DNDIM=$(NDIM) -DSOLVER=$(SOLVER)

The first variable is obviously the command used to invoke the Fortran compiler. In this
case, this is the Portland Group compiler. The second variable contains Fortran flags and
preprocessor directives. The first directive, -DWITHOUTMPI, when used, switches off all MPI
routines. On the other hand, if you don’t use this directive, the code must be linked to the
MPI library. We will discuss this point later. Theses directives are called Compilation Time
Parameters. They should be defined within the Makefile. Default values are:

NDIM=1
SOLVER=hydro

The first variable, NDIM, sets the dimensionality of the problem. The default value is for
1D, plan-parallel flows. Allowed values are 1, 2 and 3. The second directive defines the solver,
which in the current release of RAMSES can be hydro or mhd. Other solvers are currently under
development, such as rad, diff and so on.

There are 3 other preprocessor directives that can be use in RAMSES: -DNVAR=NDIM+2,
useful to set more variables in the hydro solver, -DNPRE=8, to set the number of bytes used
for real numbers. NPRE=8 corresponds to double precision arithmetic and NPRE=4 to single
precision. This option is useful to save memory during memory intensive runs. Finally, you can
use -DNVECTOR=500 to set the size of the vector sweeps for computationally intensive operations.

6

http://www-dapnia.cea.fr/Projets/COAST

The optimal size for vector operations is machine dependant. It can be anything between, say,
4 and 8192.

To compile RAMSES, execute:

$ make

If everything goes well, all source files will be compiled and linked into an executable called
ramses1d.

2.3 Executing the test case

To test the compilation, you need to execute a simple test case. Go up one level and type the
following command:

$ bin/ramses1d namelist/tube1d.nml

The first part of the command is the executable, and the second part, the only command line
argument, is an input file containing all Run Time Parameters. Several examples of such param-
eter files are given in the namelist/ directory. The run we have just performed, tube1d.nml,
is the Sod’s test, a simple shock tube simulation in 1D. For comparison, we now show the last
14 lines of standard output:

1428 Mesh structure
1429 Level 1 has 1 grids (1, 1, 1,)
1430 Level 2 has 2 grids (2, 2, 2,)
1431 Level 3 has 4 grids (4, 4, 4,)
1432 Level 4 has 8 grids (8, 8, 8,)
1433 Level 5 has 16 grids (16, 16, 16,)
1434 Level 6 has 28 grids (28, 28, 28,)
1435 Level 7 has 37 grids (37, 37, 37,)
1436 Level 8 has 18 grids (18, 18, 18,)
1437 Level 9 has 15 grids (15, 15, 15,)
1438 Level 10 has 13 grids (13, 13, 13,)
1439 Main step= 43 mcons= 0.00E+00 econs=-8.07E-17 epot= 0.00E+00 ekin= 1.38E+00
1440 Fine step= 688 t= 2.45001E-01 dt= 3.561E-04 a= 1.000E+00 mem= 7.8%
1441 Run completed

To save the standard output in a file, the user is encouraged to redirect the standard output
in a Log File, in which all control variables are outputted and stored, as well as simulation data
for 1D cases only

$ bin/ramses1d namelist/tube1d.nml > tube1d.log

To monitor the progress of longer runs, you can also redirect standard output to both a log file
and the terminal at the same time with:

$ bin/ramses1d namelist/tube1d.nml | tee tube1d.log

7

2.4 Reading the Log File

We will now briefly describe the structure and the nature of the information available in the
Log Files. We will use as example the file tube1d.log, which should contain, starting from the
top

1 _/_/_/ _/_/ _/ _/ _/_/_/ _/_/_/_/ _/_/_/
2 _/ _/ _/ _/ _/_/_/_/ _/ _/ _/ _/ _/
3 _/ _/ _/ _/ _/ _/ _/ _/ _/ _/
4 _/_/_/ _/_/_/_/ _/ _/ _/_/ _/_/_/ _/_/
5 _/ _/ _/ _/ _/ _/ _/ _/ _/
6 _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/
7 _/ _/ _/ _/ _/ _/ _/_/_/ _/_/_/_/ _/_/_/
8 Version 3.0
9 written by Romain Teyssier (CEA/DSM/DAPNIA/SAP)

10 (c) CEA 1999-2007
11

12 Working with nproc = 1 for ndim = 1
13

14 Building initial AMR grid
15 Initial mesh structure
16 Level 1 has 1 grids (1, 1, 1,)
17 Level 2 has 2 grids (2, 2, 2,)
18 Level 3 has 4 grids (4, 4, 4,)
19 Level 4 has 8 grids (8, 8, 8,)
20 Level 5 has 8 grids (8, 8, 8,)
21 Level 6 has 8 grids (8, 8, 8,)
22 Level 7 has 8 grids (8, 8, 8,)
23 Level 8 has 8 grids (8, 8, 8,)
24 Level 9 has 6 grids (6, 6, 6,)
25 Level 10 has 4 grids (4, 4, 4,)
26 Starting time integration
27 Output 58 cells
28 ==
29 lev x d u P
30 4 3.12500E-02 1.000E+00 0.000E+00 1.000E+00
31 4 9.37500E-02 1.000E+00 0.000E+00 1.000E+00

...

86 4 9.06250E-01 1.250E-01 0.000E+00 1.000E-01
87 4 9.68750E-01 1.250E-01 0.000E+00 1.000E-01
88 ==
89 Fine step= 0 t= 0.00000E+00 dt= 6.603E-04 a= 1.000E+00 mem= 3.2%
90 Fine step= 1 t= 6.60250E-04 dt= 4.453E-04 a= 1.000E+00 mem= 3.2%

After the code banner and copyrights, the first line indicates that you are currently using
1 processor and 1 space dimension for this run. The code then reports that it is building the
initial AMR grid. The next lines give the current mesh structure.

The first level of refinement in RAMSES covers the whole computational domain with 2, 4
or 8 cells in 1, 2 or 3 space dimensions. The grid is then further refined up to levelmin, which
is this case is defined in the parameter file to be levelmin=3. The grid is then further refined

8

up to levelmax, which is in this case levelmax=10. Each line in the Log File indicates the
number of octs (or grids) at each level of refinement. The maximum number of grids in each
level l is equal to 2l−1 in 1D, to 4l−1 in 2D and to 8l−1 in 3D. The numbers inside parentheses
give the minimum, maximum and average number of grids per processor. This is obviously only
relevant to parallel runs.

The code then indicates the time integration starts. After outputting the initial conditions
to screen, the first Control Line appears, starting with the words Fine step=. The Control
Line gives information on each Fine Step, its current number, its current time coordinate, its
current time step. Variable a is for cosmology runs only and gives the current expansion factor.
The last variable is the percentage of allocated memory currently used by RAMSES to store
each flow variable on the AMR grid and to store each collision-less particle, if any.

In RAMSES, adaptive time stepping is implemented, which results in defining Coarse Steps
and Fine Steps. Coarse Steps correspond to the coarse grid, which is defined by variable
levelmin. Fine Steps correspond to finer levels, for which the time step has been recursively
subdivided by a factor of 2. Fine levels are “sub-cycled” twice as more as their parent coarse
level. This explains why, at the end of the Log File, only 43 Coarse Steps are reported (1
through 43), for 689 Fine Steps (numbered 0 to 688).

When a Coarse Step is reached, the code writes in the Log File the current mesh structure.
A new Control Line then appears, starting with the words Main step=. This Control Line
gives information on each Coarse Step, namely its current number, the current error in mass
conservation within the computational box mcons, the current error in total energy conservation
econs, the gravitational potential energy and the fluid total energy (kinetic plus thermal).

This constitutes the basic information contained in the Log File. In 1D simulations, output
data are also written to standard output, and thus to the Log File. For 2D and 3D, output
data are stored into unformatted Fortran binary files. 1D data are shown using 5 columns (level
of refinement, position of the cell, density, velocity and pressure) as in the following Sod’s test
example:

1281 Output 143 cells
1282 ==
1283 lev x d u P
1284 5 1.56250E-02 1.000E+00 0.000E+00 1.000E+00
1285 5 4.68750E-02 1.000E+00 0.000E+00 1.000E+00
1286 5 7.81250E-02 1.000E+00 0.000E+00 1.000E+00
1287 5 1.09375E-01 1.000E+00 1.896E-09 1.000E+00
1288 6 1.32812E-01 1.000E+00 2.536E-08 1.000E+00

You can cut and paste the 143 lines into another file and use your favorite data viewer like
xmgrace or gnuplot to visualize the results. These should be compared to the plots shown
on Figure 1. If you have obtained comparable numerical values and levels of refinements, your
installation is likely to be valid. You are encouraged to edit the parameter file tube1d.log and
play around with other parameter values, in order to test the code performances. You can also
use other Parameter Files in the namelist/ directory.

Do not forget to recompile entirely the code (make clean, then make)
with NDIM=2 for 2D cases like sedov2d.nml or NDIM=3 for 3D cases such
as sedov3d.nml.

In the next section, we will describe in more detail the various Runtime Parameters available
within RAMSES.

9

Figure 1: Numerical results obtained with RAMSES for the Sod shock tube test (symbols)
compared to the analytical solution (red line).

10

3 Runtime Parameters

The RAMSES parameter file is based on the Fortran namelist syntax. The Sod test parameter
file is shown below, as it should appear if you edit it.

1 This is the RAMSES parameter file for Sod’s shock tube test.
2

3 &RUN_PARAMS
4 hydro=.true.
5 nsubcycle=3*1,2
6 /
7

8 &AMR_PARAMS
9 levelmin=3

10 levelmax=10
11 ngridmax=2000
12 nexpand=1
13 boxlen=1.0
14 /
15

16 &BOUNDARY_PARAMS
17 nboundary=2
18 ibound_min=-1,+1
19 ibound_max=-1,+1
20 bound_type= 1, 1
21 /
22

23 &INIT_PARAMS
24 nregion=2
25 region_type(1)=’square’
26 region_type(2)=’square’
27 x_center=0.25,0.75
28 length_x=0.5,0.5
29 d_region=1.0,0.125
30 u_region=0.0,0.0
31 p_region=1.0,0.1
32 /
33

34 &OUTPUT_PARAMS
35 noutput=1
36 tout=0.245
37 /
38

39 &HYDRO_PARAMS
40 gamma=1.4
41 courant_factor=0.8
42 slope_type=2
43 scheme=’muscl’
44 /
45

46 &REFINE_PARAMS

11

47 err_grad_d=0.05
48 err_grad_u=0.05
49 err_grad_p=0.05
50 interpol_var=0
51 interpol_type=2
52 /

This parameter file is organized in namelist blocks. Each block starts with &BLOCK_NAME
and ends with the character “/”. Within each block, you can specify parameter values using
standard Fortran namelist syntax. There are currently 9 different parameter blocks implemented
in RAMSES.

4 parameter blocks are mandatory and must always be present in the pa-
rameter file. These are &RUN_PARAMS, &AMR_PARAMS, &OUTPUT_PARAMS and
&INIT_PARAMS.

The 5 other blocks are optional. They must be present in the file only if they are rel-
evant to the current run. These are &BOUNDARY_PARAMS, &HYDRO_PARAMS, &PHYSICS_PARAMS,
&POISSON_PARAMS and finally &REFINE_PARAMS. We now describe each parameter block in more
detail.

12

3.1 Global parameters

This block, called &RUN_PARAMS, contains the run global control parameters. These parameters
are now briefly described. More thorough explanations will be given in dedicated sections.

Variable name, syntax
and default value

Fortran type Description

cosmo=.false. Logical Activate cosmological “super-comoving coordi-
nates” system and expansion factor computing.

pic=.false. Logical Activate Particle-In-Cell solver

poisson=.false. Logical Activate Poisson solver.

hydro=.false. Logical Activate hydrodynamics or MHD solver.

verbose=.false Logical Activate verbose mode

nrestart=0 Integer

Output file number from which the code loads
backup data and resumes the simulation. The
default value, zero, is for a fresh start from the
beginning. You should use the same number of
processors than the one used during the previ-
ous run.

nstepmax=1000000 Integer Maximum number of coarse time steps.

ncontrol=1 Integer Frequency of screen output for Control Lines
(to standard output) into the Log File).

nremap=0 Integer
Frequency of calls, in units of coarse time steps,
for the load balancing routine, for MPI runs
only, the default value, zero, meaning “never”.

ordering=’hilbert’
Character
LEN=128

Cell ordering method used in the domain de-
composition of the grid among the processors,
for MPI runs only. Possible values are hilbert,
planar and angular.

nsubcycle=2,2,2,2,2, Integer array

Number of fine level sub-cycling steps within
one coarse level time step. Each value corre-
sponds to a given level of refinement, starting
from the coarse grid defined by levelmin, up
to the finest level defined by levelmax. For ex-
ample, nsubcycle(1)=1 means that levelmin
and levelmin+1 are synchronized. To enforce
single time stepping for the whole AMR hier-
archy, you need to set nsubcycle=1,1,1,1,1,

13

3.2 AMR grid

This set of parameters, called &AMR_PARAMS, controls the AMR grid global properties. Param-
eters specifying the refinement strategy are described in the &REFINE_PARAMS block, which is
used only if levelmax>levelmin.

Variable name, syntax
and default value

Fortran type Description

levelmin=1 Integer
Minimum level of refinement. This parameter
sets the size of the coarse (or base) grid by nx =
2levelmin

levelmax=1 Integer
Maximum level of refinement. If
levelmax=levelmin, this corresponds to
a standard cartesian grid.

ngridmax=0 Integer
Maximum number of grids (or octs) that can
be allocated during the run within each MPI
process.

ngridtot=0 Integer
Maximum number of grids (or octs) that can be
allocated during the run for all MPI processes.
One has in this case ngridmax=ngridtot/ncpu.

npartmax=0 Integer Maximum number of particles that can be allo-
cated during the run within each MPI process.

nparttot=0 Integer

Maximum number of particles that can be
allocated during the run for all MPI pro-
cesses. Obviously, one has in this case
npartmax=nparttot/ncpu.

nexpand=1 Integer Number of mesh expansions (mesh smoothing).

boxlen=1.0 Real Box size in user units

14

3.3 Initial conditions

This namelist block, called &INIT_PARAMS, is used to set up the initial conditions.

Variable name, syntax
and default value

Fortran type Description

nregion=1 Integer Number of independent regions in the compu-
tational box used to set up initial flow variables.

region_type=’square’
Character
LEN=10 array

Geometry defining each region. square defines
a generalized ellipsoidal shape, while point de-
fines a delta function in the flow.

x_center=0.0
y_center=0.0
z_center=0.0

Real arrays Coordinates of the center of each region.

length_x=0.0
length_y=0.0
length_z=0.0

Real arrays Size in all directions of each region.

exp_region=2.0 Real array

Exponent defining the norm used to com-
pute distances for the generalized ellip-
soid. exp_region=2 corresponds to a
spheroid, exp_region=1 to a diamond shape,
exp_region>=10 to a perfect square.

d_region=0.0
u_region=0.0
v_region=0.0
w_region=0.0
p_region=0.0

Real arrays

Flow variables in each region (density, veloc-
ities and pressure). For point regions, these
variables are used to defined extensive quanti-
ties (mass, velocity and specific pressure).

filetype=’ascii’
Character
LEN=20

Type of initial conditions file for particles. Pos-
sible choices are ’ascii’ or ’grafic’.

aexp_ini=10.0 Real
This parameter sets the starting expansion fac-
tor for cosmology runs only. Default value is
read in the IC file (’grafic’ or ’ascii’).

multiple=.false. Logical If .true., each processor reads its own IC file
(’grafic’ or ’ascii’). For parallel runs only.

initfile=’ ’
Character
LEN=80 array

Directory where IC files are stored. See section
4.1 for details.

15

3.4 Output parameters

This namelist block, called &OUTPUT_PARAMS, is used to set up the frequency and properties of
data output to disk.

Variable name, syntax
and default value

Fortran type Description

tend=0 Real Final time of the simulation.

delta_tout=0 Real Time increment between outputs.

aend=0 Real Final expansion factor of the simulation.

delta_tout=0 Real Expansion factor increment between outputs.

noutput=1 Integer

Number of specified output time. If tend or
aend is not used, at least one output time
should be given, corresponding to the end of
the simulation.

tout=0.0,0.0,0.0, Real array Value of specified output time.

aout=1.1,1.1,1.1, Real array
Value of specified output expansion factor
(for cosmology runs only). aout=1.0 means
“present epoch” or “zero redshift”.

foutput=1000000 Integer

Frequency of additional outputs in units of
coarse time steps. foutput=1 means one out-
put at each time step. Specified outputs (see
above) will not be superceded by this parame-
ter.

16

3.5 Boundary conditions

This namelist block, called &BOUNDARY_PARAMS, is used to set up boundary conditions on the
current simulation. If this namelist block is absent, periodic boundary conditions are assumed.
Setting up other types of boundary conditions in RAMSES is quite complex. The reader is
invited to read the corresponding section. The default setting, corresponding to a periodic
box should be sufficient in most cases. The strategy to set up boundary conditions is based
on using “ghost regions” outside the computational domain, where flow variables are carefully
specified in order to mimic the effect of the chosen type of boundary. Note that the order in
which boundary regions are specified in the namelist is very important, especially for reflexive
or zero gradient boundaries. See section 5.4 for more information on setting up such boundary
conditions. Specific examples can be found in the namelist/ directory of the package.

Variable name, syntax
and default value

Fortran type Description

nboundary=1 Integer Number of ghost regions used to specify the
boundary conditions.

bound_type=0,0,0, Integer array

Type of boundary conditions to apply in the
corresponding ghost region. Possible values
are:
bound_type=0: periodic,
bound_type=1: reflexive,
bound_type=2: outflow (zero gradients),
bound_type=3: inflow (user specified).

d_bound=0.0
u_bound=0.0
v_bound=0.0
w_bound=0.0
p_bound=0.0

Real arrays
Flow variables in each ghost region (density, ve-
locities and pressure). They are used only for
inflow boundary conditions.

ibound_min=0
jbound_min=0
kbound_min=0

Integer arrays

Coordinates of the lower, left, bottom corner of
each boundary region. Each coordinate lies be-
tween −1 and +1 in each direction (see figure 3
on page 30).

ibound_max=0
jbound_max=0
kbound_max=0

Integer arrays Likewise, for the upper, right and upper corner
of each boundary region.

17

3.6 Hydrodynamics solver

This namelist is called &HYDRO_PARAMS, and is used to specify runtime parameters for the Go-
dunov solver. These parameters are quite standard in computational fluid dynamics. We briefly
describe them now.

Variable name, syntax
and default value

Fortran type Description

gamma=1.4 Real Adiabatic exponent for the perfect gas EOS.

courant_factor=0.5 Real CFL number for time step control (less than 1).

smallr=1d-10 Real Minimum density to prevent floating excep-
tions.

smallc=1d-10 Real Minimum sound speed to prevent floating ex-
ceptions.

riemann=’llf’
Character
LEN=20

Name of the desired Riemann solver. Possi-
ble choices are ’exact’, ’acoustic’, ’llf’,
’hll’ or ’hllc’ for the hydro solver and
’llf’, ’hll’, ’roe’, ’hlld’, ’upwind’ and
’hydro’ for the MHD solver.

riemann2d=’llf’
Character
LEN=20

Name of the desired 2D Riemann solver for
the induction equation (MHD only). Possi-
ble choices are ’upwind’, ’llf’, ’roe’, ’hll’,
and ’hlld’.

niter_riemann=10 Integer Maximum number of iterations used in the ex-
act Riemann solver.

slope_type=1 Integer

Type of slope limiter used in the Godunov
scheme for the piecewise linear reconstruction:
slope_type=0: First order scheme,
slope_type=1: MinMod limiter,
slope_type=2: MonCen limiter.
slope_type=3: Multi-dimensional MonCen
limiter.
In 1D runs only, it is also possible to choose:
slope_type=4: Superbee limiter
slope_type=5: Ultrabee limiter

pressure_fix=.false. Logical
Activate hybrid scheme (conservative or prim-
itive) for high-Mach flows. Useful to prevent
negative temperatures.

18

3.7 Physical parameters

This namelist, called &PHYSICS_PARAMS, is used to specify physical quantities used in cosmolog-
ical applications (cooling, star formation and supernovae feedback). We briefly describe them
now.

Variable name, syntax
and default value

Fortran type Description

cooling=.false. Logical Activate the cooling and/or heating source
term in the energy equation.

isothermal=.false. Logical

Enforce isothermal equation of state. The con-
stant temperature is taken equal to the one
given by the polytropic equation of state (see
below).

metal=.false. Logical

Activate metal enrichment, advection and cool-
ing. In this case, the preprocessor directive
-DNVAR=6 should be added in the Makefile be-
fore the compilation.

haardt_madau=.false. Logical

Use the UV background model of Haardt and
Madau. Default value .false. corresponds to
a simple analytical model with parameters J21
and a_spec.

J21=0.0 Real Normalization for the UV flux of the simple
background model. Default means “no UV”.

a_spec=1.0 Real
Slope for the spectrum of the simple back-
ground model. Default value corresponds to
a standard “quasars + OB stars” spectrum.

z_reion=8.5 Real Reionization redshift for the UV background
model.

z_ave=0.0 Real Average metallicity used in the cooling func-
tion, in case metal=.false.

t_star=0.0, eps_star=0.0 Real
Star formation time scale (in Gyr) at the den-
sity threshold, or star formation efficiency. De-
fault value of zero means no star formation.

n_star=0.1, del_star=200 Real
Typical interstellar medium physical density or
comoving overdensity, used as star formation
density threshold and as EOS density scale.

T2_star=0.0, g_star=1.6 Real Typical interstellar medium polytropic EOS
parameters.

eta_sn=0.0, yield=0.1 Real
Mass fraction of newly formed stars that ex-
plode into supernovae. Default value of zero
means no supernovae feedback.

f_w=10.0, r_bubble=0 Real Mass loading factor and supernovae bubble ra-
dius in pc.

ndebris=1 Integer
Use debris particles (or grid cells if set to zero)
to set the blast wave model for supernovae feed-
back.

f_ek=1 Real Fraction of the supernovae energy that goes
into kinetic energy of the gas.

19

3.8 Poisson solver

This namelist, &POISSON_PARAMS, is used to specify runtime parameters for the Poisson solver.
It is used only if poisson=.true. or pic=.true.

Two different Poisson solvers are available in RAMSES: conjugate gradient (CG) and multi-
grid (MG). Unlike the CG solver, MG has an initialization overhead cost (at every call of the
solver), but is much more efficient on very big levels with few “holes”. The multigrid solver is
therefore used for all coarse levels.

In addition, MG can be used on refined levels in conjuction with CG. The parameter
cg_levelmin selects the Poisson solver as follows:

• Coarse levels are solved with MG

• Refined levels with l < cg_levelmin are solved with MG

• Refined levels with l ≥ cg_levelmin are solved with CG

Variable name, syntax
and default value

Fortran type Description

gravity_type=0 Integer

Type of gravity force. Possible choices are:
gravity_type=0: self-gravity (Poisson solver)
gravity_type>0: analytical gravity vector
gravity_type<0: self-gravity plus additional
analytical density profile

epsilon=1d-4 Real
Stopping criterion for the iterative Poisson
solver: residual 2-norm should be lower than
epsilon times the right hand side 2-norm.

gravity_params=0.0, 0.0,
0.0, 0.0,

Real array
Parameters used to define the analytical gravity
field (routine gravana.f90) or the analytical
mass density field (routine rho_ana.f90).

cg_levelmin=999 Integer
Minimum level from which the Conjugate Gra-
dient solver is used in place of the Multigrid
solver.

cic_levelmax=999 Integer

Maximum level above which no CIC interpo-
lation is performed for dark matter particles.
This allows to have very high level of refinement
without suffering from two-body collisions.

20

3.9 Refinement strategy

This namelist, &REFINE_PARAMS, is used to specify refinement parameters controlling the AMR
grid generation and evolution during the course of the run. It is used only if levelmax >
levelmin.

Variable name, syntax
and default value

Fortran type Description

mass_sph=0.0 Real
Quasi-Lagrangian strategy: mass_sph is used
to set a typical mass scale. For cosmo runs, its
value is set automatically.

m_refine=-1.,-1.,-1., Real array

Quasi-Lagrangian strategy: each level is re-
fined if the baryons mass in a cell ex-
ceeds m_refine(ilevel)*mass_sph, or if the
number of dark matter particles exceeds
m_refine(ilevel), whatever the mass is.

jeans_refine=-1.,-1., Real array
Jeans refinement strategy: each level is refined
if the cell size exceeds the local Jeans length
divided by jeans_refine(ilevel).

floor_d=1d-10,
floor_u=1d-10,
floor_p=1d-10

Real
Discontinuity-based strategy: density, velocity
and pressure floor below which gradients are
ignored.

err_grad_d=-1.0,
err_grad_u=-1.0,
err_grad_p=-1.0

Real
Discontinuity-based strategy: density, velocity
and pressure relative variations above which a
cell is refined.

x_refine=0.0,0.0,0.0,
y_refine=0.0,0.0,0.0,
z_refine=0.0,0.0,0.0,

Real arrays Geometry-based strategy: center of the refined
region at each level of the AMR grid.

r_refine=1d10,1d10,
a_refine=1.0,1.0,
b_refine=1.0,1.0,
exp_refine=2.0,2.0,

Real arrays Geometry-based strategy: size and shape of the
refined region at each level.

interpol_var=0 Integer

Variables used to perform interpolation (pro-
longation) and averaging (restriction).
interpol_var=0: conservatives (ρ, ρu, ρE)
interpol_var=1: primitives (ρ, ρu, ρε)

interpol_type=1 Integer

Type of slope limiter used in the interpolation
scheme for newly refined cells or for buffer cells.
interpol_type=0: No interpolation,
interpol_type=1: MinMod limiter,
interpol_type=2: MonCen limiter,
interpol_type=3: Central slope (no limiter).

21

4 Cosmological simulations

In this section, we describe in more detail how RAMSES can be used to perform cosmological
simulations. Useful concepts related to parallel computing or post-processing will be introduced,
and can also be used for non-cosmological runs. Cosmological simulations are performed by
specifying cosmo=.true. in the &RUN_PARAMS namelist.

4.1 Parameter file and initial conditions

The first thing to do when performing cosmological simulations is to generate initial con-
ditions as Gaussian random fields. The easiest way is to use the freely available grafic2
code, developed by Edmund Bertschinger at MIT (see http://web.mit.edu/edbert) or its
parallel version mpgrafic developed by Christophe Pichon and Simon Prunet at IAP (see
http://www.projet-horizon.fr/). These codes will generate initial conditions according to
a given cosmological model and for a given box size. As outputs, 7 files will be generated,
called ic_deltab, ic_velcx, ic_velcy, ic_velcz, ic_velbx, ic_velby and ic_velbz. The
directory in which these files are stored should be entered in the Parameter File as parameter
initfile(1) in namelist &INIT_PARAMS. Index 1 stands here for levelmin, and corresponds to
the coarse grid. RAMSES will automatically read the cosmological parameters and the physical
box length contained in these initial conditions files. The so-called “super-comoving” coordinate
system is used in RAMSES for cosmological runs (see Martell & Shapiro 2003). If necessary,
the translation from this scale-free coordinate system (boxlen=1.0) to the cgs system is per-
formed using scaling factors stored in the output files. The units are set in routine units.f90
in directory amr/.

The following namelist can be found in directory namelist/ in the RAMSES package as file
cosmo.nml. It is the Parameter File for a pure N -body simulation, using 1283 particles and a
1283 coarse grid with 7 additional levels of refinement. To specify that initial conditions are to
be read in grafic files, filetype=’grafic’ should be set in namelist &INIT_PARAMS.

1 &RUN_PARAMS
2 cosmo=.true.
3 pic=.true.
4 poisson=.true.
5 nrestart=0
6 nremap=10
7 nsubcycle=1,2
8 ncontrol=1
9 /

10

11 &OUTPUT_PARAMS
12 foutput=10
13 noutput=10
14 aout=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0
15 /
16

17 &INIT_PARAMS
18 filetype=’grafic’
19 initfile(1)=’/scratchdir/grafic_files’
20 /
21

22 &AMR_PARAMS
23 levelmin=7

22

http://web.mit.edu/edbert
http://www.projet-horizon.fr/

24 levelmax=14
25 ngridtot=2000000
26 nparttot=3000000
27 nexpand=1
28 /
29

30 &REFINE_PARAMS
31 m_refine=7*8.
32 /

Parameters ngridtot and nparttot specify the maximum memory allocated for AMR grids
and collisionless particles respectively. These numbers should be greater than or equal to the
actual number of AMR grids and particles used during the course of the simulation.

ngridtot stands for the total number of AMR grids allocated over all MPI processes. The
ngridmax parameter can be used equivalently, but stands for the local number of AMR grids
within each MPI process. Obviously, one has ngridtot=ngridmax*ncpu.

Recall that, in RAMSES, we call“AMR grid”or“oct”a group of 2ndim cells.
If for some reason, during the course of the execution, the maximum allowed
number of grids or particles has been reached, the simulation stops with the
message:

No more free memory
Increase ngridmax

In this case, don’t panic: just increase ngridmax in the Parameter File and
resume the execution, starting from the last valid output file.

4.2 Memory management

These two parameters control the memory allocated by RAMSES. It is important to know how
much memory in Gb is actually allocated by RAMSES for a given choice of parameters. This
can be approximated by:

• 0.7(ngridmax/106) + 0.7(npartmax/107) Gbytes for pure N -body runs,

• 1.4(ngridmax/106) + 0.7(npartmax/107) Gb for N -body and hydro runs,

• 1.0(ngridmax/106) Gb for pure hydro runs.

Because of MPI communications overheads, the actual memory used can be slightly higher.
Note that these numbers are valid for double precision arithmetic. For single precision runs,
using the preprocessor directive -DNPRE=4, you can decrease these figures by 40%.

4.3 Restarting a run

As we just discussed, it is possible to resume a RAMSES run if the execution has stopped
abnormally. For that, RAMSES uses its output files, stored in directories called

output_00001/
output_00002/
output_00003/
output_00004/

23

Each directory contains all the necessary information for RAMSES to resume the execution.
The frequency at which these output files are created is specified by parameter foutput, in
units of coarse time steps. If you want to resume the execution starting from output directory
number 4, you need to specify the corresponding number in parameter nrestart=4. If you set
nrestart=0, the run will start from the beginning as a completely new run.

When restarting a job, you can change almost all run parameters. There are
however some notable exceptions: The number of output times can only be
increased, and only new output times can be added after the old ones. The
number of processors used with MPI cannot change. If you want to change
the number of processes, you should start from the very beginning.

4.4 Parallel computing

We are now ready to address the complex issue of parallel computing with RAMSES. It is based
on the MPI library through regular calls of MPI communication routines. In order to compile
and link RAMSES with the MPI library, you need first to remove the preprocessor directive
-DWITHOUTMPI from the compilation options in the Makefile. Don’t forget to type make clean
and then make again.

In order to launch a parallel RAMSES run, type for example

$ mpirun -np 4 bin/ramses3d namelist/sedov3d.nml

The two key parameters for parallel runs are nremap and ordering, both contained in
the &RUN_PARAMS namelist block. The first one specifies the frequency at which the code will
optimize load balancing by adjusting the domain decomposition, in units of coarse time step.
Since it is a rather costly operation, this should not be performed too frequently. On the other
hand, if the AMR grid evolves significantly with time, the computational and memory load
might be very inhomogeneous across the processors. The optimal choice for parameter nremap
is therefore application-dependent. Bear in mind that if nremap>10, the associated overhead
should be negligible.

The other important parameter for an efficient parallel computing strategy is ordering.
This character string specifies the type of domain decomposition you want to use. There are
3 possible choices in RAMSES currently implemented: ’hilbert’ (default value), ’planar’
and ’angular’. Each cell in RAMSES is ordered with an integer index according to a given
space ordering. One of the most famous ordering used in computer science is the Peano-Hilbert
space-filling curve. This is a one-dimensional object filling up the three-dimensional space. An
example of such domain decomposition is shown in figure 2. This strategy is known to be the
optimal choice if one considers the rather large ensemble of all possible AMR grids. In some
cases, however, it is no longer an efficient strategy. The planar decomposition, for example,
sets up computational domains according to one coordinate only (the altitude z for example).
Each processor receives a layer of cells whose thickness is automatically adjusted in order to
optimize load balance. The angular decomposition follows the same strategy, except that now
the coordinate is the polar angle around a given axis in the simulation box. These various
orderings can be adapted easily to account for specific constraints. The user is encouraged to
edit and modify the routine load_balance.f90 in directory amr/.

In case of parallel execution, RAMSES performs hard disk outputs in a very simple way:
each processor creates its own file. Therefore, in directory output_00001/, one can find several
files with a numbering corresponding to the processor number. One should bear this in mind
when using the snapshots generated by RAMSES.

24

Figure 2: Domain decomposition of the unit square for a 322 grid over 7 processors using the
Peano-Hilbert space-filling curve shown as the continuous line.

25

4.5 Post-processing utilities

Several post-processing codes are available in the current package in directory utils/f90. These
are very simple pieces of software performing rather basic operations on RAMSES generated
outputs. Users are encouraged to edit and modify these routines in order to design specific
post-processing applications. We briefly describe them now.

• amr2map: this application reads RAMSES outputs and generates a projected map along
one principal axis. The output is a binary Fortran image that can be read using any
image-processing tool.

• amr2cube: this application reads RAMSES outputs and generates a 3D Cartesian cube
with only one flow variable represented. The output is a binary Fortran file (raw data or
grafic data) or a VTK file that can be read using any data visualization tool.

• part2map: this application reads RAMSES outputs for collisionless particles only and
projected the particle distribution along one principal axis. The output is a binary Fortran
image.

• part2cube: this application reads RAMSES outputs for particles only and generates a
CIC interpolated density field. The output is a binary Fortran file.

Each one of these codes is a stand-alone application that can be compiled straightforwardly
by typing directly for example:

$ f90 amr2map.f90 -o amr2map

In directory utils/idl, you can find a set of IDL routines to be used in order to display
AMR data using IDL (see http://www.ittvis.com/). Here is an example of interactive com-
mands you need to type within your IDL session to watch RAMSES data (for example using
sedov2d.nml).

IDL> rd_amr,a,nout=2 ; Read AMR data from snapshot nr 2 and store in a
IDL> rd_hydro,h,nout=2 ; Read hydro data and store in variable h
IDL> window,0,xs=512,ys=512 ; Set up a square window
IDL> loadct,33 ; Load a nice color table
IDL> tv2d,a,h,type=1,/log,/show ; Plot a density map with the grid

Here is another example to plot a density profile from the previous data.

IDL> amr2cell,a,h,c ; Convert AMR data into cell-based data
IDL> r=sqrt(c.x^2+c.y^2) ; Compute cell radius
IDL> d=c.var(*,0) ; Compute cell density
IDL> plot,r,d,psym=6

For 3D data, you can use a simple raytracing algorithm to project various quantities along one
of the box principal axis.

IDL> ray3d,a,h,lmin=7,lmax=9,/zproj,/ave,type=1,/log
; Project the average density along the z-axis

26

http://www.ittvis.com/

4.6 Zoom simulations

Another interesting cosmological application for RAMSES is the so-called “zoom” technology
or “re-simulation” process. Let us consider the large-scale periodic box simulation we have pre-
sented in the previous section, performed with 1283 particles by RAMSES with the grafic files
stored in directory /scratchdir/grafic_files. After using the sod application, all dark mat-
ter halos in the final output have been identified. One halo is believed to be a good candidate
for re-simulation. A quasi-spherical region must be determined, whose size and position are
optimized in order to contain all the particles ending up in the final halo. A new set of initial
conditions must then be generated using mpgrafic, providing the same large-scale modes than
the previous run, but allowing now to simulate up to 10243 particles. A suite of applications
is available in directory utils/f90 to perform the extraction of a high-resolution region con-
taining the halo particles only. These codes are called center_grafic, extract_grafic and
degrade_grafic. The idea is to center the simulation box on the high-resolution region, to ex-
tract a nested collection of rectangular grids around this position with various particle masses.
The initial conditions data for each box are stored in a different directory. The original data
centered on the region center can be called boxlen100_n256, where 100 stands for the box size
in h−1 Mpc and 128 for the number of particles per box length. The nested box hierarchy we
obtained using our various utilities is now:

boxlen100_n128/
boxlen50_n128/
boxlen25_n128/
boxlen12p5_n128/

Each of these directories should contain 7 grafic files. These names should be now inserted in
the Parameter File, in the &INIT_PARAMS block, as

&INIT_PARAMS
filetype=’grafic’
initfile(1)=’/scratchdir/grafic_directories/boxlen100_n128’
initfile(2)=’/scratchdir/grafic_directories/boxlen50_n128’
initfile(3)=’/scratchdir/grafic_directories/boxlen25_n128’
initfile(4)=’/scratchdir/grafic_directories/boxlen12p5_n128’
/

The re-simulation is now ready to go. Those are our last words on cosmological simulations and
how to run them using only Parameter Files as Runtime Parameters. We now describe how to
use RAMSES with more advanced settings.

27

5 Advanced simulations

For truly innovative scientific applications, the user is usually forced to define complex initial
conditions, to impose time varying boundary conditions or to use more than the 5 standard
Euler variables (chemical species for example). We briefly describe the easiest way to do it in
RAMSES.

5.1 Patching the code

The general philosophy to design advanced RAMSES applications is to “patch the code”. What
do we mean by that? A few key routines have been designed in RAMSES in a user-friendly
fashion, allowing the user to edit the file, modify it according to it needs and recompile the code.
For that, it is recommended to create your own directory, for example mypatch/, in which you
will copy the various files you plan to modify. In the Makefile, you need to specify the complete
path of this directory in the PATCH variable, as:

PATCH=/home/foo/mypatch

The make command will seek for sources files in this directory first, compile and link them if
present. If not, it will use the default source files already available in the RAMSES package.
Virtually any RAMSES source file can be modified to obtain a “patched” version of RAMSES
that fulfill your needs. Usually, however, only a few routines need to be modified in order
to perform advanced simulations. These routines will be described now in more detail. The
corresponding files are stored in various RAMSES subdirectories. These are: amr/units.f90,
hydro/boundana.f90, hydro/condinit.f90, poisson/gravana.f90, poisson/rho_ana.f90,
hydro/cooling_fine.f90. Of course, other routines of RAMSES can be modified at will,
although potential changes might be more complicated to implement. A simple example of
patch can be found in the directory patch/ of the package.

5.2 Physical units

This very simple routine can be found in directory amr/ and is called units.f90. It is used
to set the conversion factors from the user units into the cgs unit system. In this routine, the
user must provide 3 scaling factors, namely scale_d for the density units in g.cm−3, scale_l
for the length scale in cm and scale_t for the time scale in seconds. For self-gravity runs,
since RAMSES assumes G = 1 in the Poisson equation, it is mandatory to define the time scale
as scale_t=1.0/sqrt(G*scale_d) with G=6.67d-8. These scaling factors are stored in the
output files and can be used later on during post-processing.

5.3 Initial conditions

This routine can be found in directory hydro/ and is called condinit.f90. It is self-documented.
The calling sequence is just call condinit(x,u,dx,ncell), where x is an input array of cell
center positions, u is an output array containing the volume average of the fluid conservative
variables, namely (ρ, ρu, ρv, ρw and E), in this exact order. If more variables are defined, using
the -DNVAR directive, then the user should exploit this routine to define them too. dx is a single
real value containing the cell size for all the cells and ncell is the number of cells. This routine
can be used to set the initial conditions directly with Fortran instructions. Examples of such
instructions can be found in directory patch/.

Another way to define initial conditions in RAMSES is by using input files. For the hydro
solver, these files are always in the grafic format. We have already explained how to use
the grafic format for cosmological runs. For non-cosmological runs, initial conditions can

28

be defined using the exact same format, except that instead of 4 files (ic_deltab, ic_velbx,
ic_velby and ic_velbz), one now needs 5 files called (ic_d, ic_u, ic_v, ic_w and ic_p) and
containing the fluid primitive variables.

For collisionless particles, the grafic format is used only for cosmological runs, for which
particles are initially placed at the cell centers of a Cartesian grid. For non-cosmological
runs, the particles’ initial positions, velocities and masses are read in an ASCII file, in which
each line corresponds to one particle, and should contain the following particle attributes:
x,y,z,vx,vy,vz,m.

5.4 Boundary conditions

As explained in the previous sections, RAMSES can provide boundary conditions of different
types: periodic (default mode), reflexive, outflow and imposed. This is performed in RAMSES
using ghost regions, in which the fluid variables are set in order to obtain the required boundary.
Ghost regions are defined in the namelist block &BOUNDARY_PARAMS. Each region is identified by
its position, its type and eventually by the value of the fluid variables.

The exact order with which boundary regions are entered in the namelist
block is very important. Let us consider the 4 boundary regions shown in
figure 3. They are defined by the following namelist block:

&BOUNDARY_PARAMS
nboundary=4
ibound_min=-1,+1,-1,-1
ibound_max=-1,+1,+1,+1
jbound_min= 0, 0,+1,-1
jbound_max= 0, 0,+1,-1
bound_type= 1, 1, 1, 1
/

The first region is located in the rectangle defined by coordinate (i =
−1, j = 0), while the third region is defined by coordinates (−1 ≤ i ≤
+1, j = +1). The boundary type for all 4 regions is set to “reflexive”
(bound_type=1). The fluid variables within the ghost region are there-
fore taken equal to the values of their symmetric cells, with respect to the
boundary. This is why the order of the ghost regions is so important: re-
gions 1 and 2 are updated first, using only the fluid variables within the
computational domain. Regions 3 and 4 are updated afterwards, using the
fluid variables within the computational domain, but also within regions 1
and 2. In this way, all cells within boundary regions are properly defined,
especially in the 4 corners of the computational domain.

It is possible to define only 2 regions (say regions 1 and 2 in figure 3), the orthogonal direction
will be considered as periodic. For gravity runs, the gravitational force is also updated in the
ghost regions, following the same rules as the velocity vector.

For the Poisson equation, however, boundary conditions are either periodic, if no ghost
regions are defined in the corresponding direction, or “φ = 0” Dirichlet boundary conditions
within ghost regions. No other types of boundary conditions for the Poisson equation have been
implemented (such as isolated, reflexive and so on).

If bound_type=3, boundary conditions must be imposed by the user. The first possibility
is to use parameters d_bound, u_bound. . . to set a constant fluid state within the desired

29

Figure 3: Example of ghost regions used in RAMSES to impose specific boundary conditions.

ghost region. For more advanced applications, the user is encouraged to patch the routine
boundana.f90 within directory hydro/. This routine is very similar to routine condinit.f90.
The calling sequence is call boundana(x,u,dx,ibound,ncell). The ghost region number is
therefore provided, so the user can specify some region-dependent fluid conditions.

5.5 External gravity sources

If bound_type=3, boundary conditions must be imposed also for the gravitational force. This is
performed by modifying routine gravana.f90 in directory poisson/. If gravity_type>0, this
routine is also used to specify the gravitational force within the computational domain. Note
that in this case, the fluid is not self-gravitating anymore. There is another way to impose an
external gravity source and in the same time, to solve for the Poisson equation. This is done
using routine rho_ana.f90 in directory poisson/. In this routine, again very similar to the
previously presented Fortran routines, the user can specify the density profile for the external
gravity source. This density profile will be added to the fluid density as the source term in the
Poisson equation.

5.6 External thermal sources

The final routine that can be easily modified by the user is cooling_fine.f90 in directory hy-
dro/. This routine is used if cooling=.true. or if the polytropic temperature T2_star>0.0.
In the first case, cooling and heating source terms are added to the energy equation and solved
by a fully implicit integration scheme. In the second case, the thermal energy of the fluid
is not allowed to be lower than a polytropic Equation-Of-State, for which one has T/µ =
(T/µ)∗(ρ/ρ∗)

γ∗−1. All starred parameters can be set within the namelist block &PHYSICS_PARAMS.
On the other hand, the user might want to modify routine cooling_fine.f90 in order to im-
plement more complex thermal modeling of the fluid.

30

6 Publication policy

The RAMSES code is freely available for non-commercial use under the CeCILL License agree-
ment. If a paper is published with simulations performed with RAMSES, the authors should
cite the following paper, in which the RAMSES code was presented for the first time:

Teyssier, Romain, “Cosmological hydrodynamics with Adaptive Mesh Refinement: a new
high-resolution code called RAMSES”, Astronomy and Astrophysics, 2002, volume 385, page
337

If the same users need some basic help from the author on how to use RAMSES, or if the
simulations performed have needed from the code’s author some small adaptation of the code,
a small sentence like “We thank Romain Teyssier for. . . ” in the Acknowledgment section will
do it.

If, on the other hand, the simulations performed requires the code’s author to be more
deeply involved in the project (new developments, new simulations from the author’s side),
then co-authorship of the paper is asked.

31

Index

makefile options and flags
F90 option, 6
FFLAGS option, 6
NDIM option, 6, 9
NPRE option, 6, 23
NVAR option, 6, 19, 28
NVECTOR option, 6
PATCH option, 28
WITHOUTMPI option, 6, 24

namelist blocks
&AMR_PARAMS block, 12, 14
&BOUNDARY_PARAMS block, 12, 17, 29
&HYDRO_PARAMS block, 12, 18
&INIT_PARAMS block, 12, 15, 22, 27
&OUTPUT_PARAMS block, 12, 16
&PHYSICS_PARAMS block, 12, 19, 30
&POISSON_PARAMS block, 12, 20
&REFINE_PARAMS block, 12, 14, 21
&RUN_PARAMS block, 12, 13, 22, 24

namelist parameters & log entries
J21, 19
T2_star, 19, 30
a_refine, 21
a_spec, 19
aend, 16
aexp_ini, 15
angular, 13
aout, 16
a log entry, 9
b_refine, 21
bound_type, 17, 29, 30
boxlen, 14, 22
cg_levelmin, 20
cic_levelmax, 20
cooling, 19, 30
cosmo, 13, 22
courant_factor, 18
d_bound, 17, 29
d_region, 15
del_star, 19
delta_tout, 16
econs log entry, 9
eps_star, 19
epsilon, 20
err_grad_d, 21
err_grad_p, 21
err_grad_u, 21

eta_sn, 19
exp_refine, 21
exp_region, 15
f_ek, 19
f_w, 19
filetype, 15, 22
floor_d, 21
floor_p, 21
floor_u, 21
foutput, 16, 24
g_star, 19
gamma, 18
gravity_params, 20
gravity_type, 20
haardt_madau, 19
hilbert, 13
hydro, 13
ibound_max, 17
ibound_min, 17
initfile, 15, 22
interpol_type, 21
interpol_var, 21
isothermal, 19
jbound_max, 17
jbound_min, 17
jeans_refine, 21
kbound_max, 17
kbound_min, 17
length_x, 15
length_y, 15
length_z, 15
levelmax, 9, 13, 14, 21
levelmin, 8, 13, 14, 21, 22
m_refine, 21
mass_sph, 21
mcons log entry, 9
metal, 19
multiple, 15
n_star, 19
nboundary, 17
ncontrol, 13
ndebris, 19
nexpand, 14
ngridmax, 14, 23
ngridtot, 14, 23
niter_riemann, 18
noutput, 16
npartmax, 14, 23

32

nparttot, 14, 23
nregion, 15
nremap, 13, 24
nrestart, 13, 24
nstepmax, 13
nsubcycle, 13
ordering, 13, 24
p_bound, 17
p_region, 15
pic, 13, 20
planar, 13
poisson, 13, 20
pressure_fix, 18
r_bubble, 19
r_refine, 21
region_type, 15
riemann2d, 18
riemann, 18
slope_type, 18
smallc, 18
smallr, 18
t_star, 19
tend, 16
tout, 16
u_bound, 17, 29
u_region, 15
v_bound, 17
v_region, 15
verbose, 13
w_bound, 17
w_region, 15
x_center, 15
x_refine, 21
y_center, 15
y_refine, 21
yield, 19
z_ave, 19
z_center, 15
z_refine, 21
z_reion, 19

solvers
acoustic Riemann solver, 18
diff solver, 6
exact Riemann solver, 18
hllc Riemann solver, 18
hlld Riemann solver, 18
hll Riemann solver, 18
hydro Riemann solver, 18
hydro solver, 6
llf Riemann solver, 18

mhd solver, 6
rad solver, 6
roe Riemann solver, 18
upwind Riemann solver, 18

utilities & directories
amr/ directory, 6, 22, 24, 28
amr2cube utility, 26
amr2map utility, 26
bin/ directory, 6
center_grafic utility, 27
degrade_grafic utility, 27
extract_grafic utility, 27
grafic2 package, 22
grafic package, 27–29
hydro/ directory, 6, 28, 30
mpgrafic package, 4, 22, 27
namelist/ directory, 7, 9, 17, 22
output_00001/ directory, 24
part2cube utility, 26
part2map utility, 26
patch/ directory, 28
poisson/ directory, 30
ramses/ directory, 6
sod utility, 27
utils/f90 directory, 26, 27
utils/idl directory, 26

33

	Introduction
	About This Guide
	Getting RAMSES
	Main features
	Acknowledgements
	The CeCILL License

	Getting started
	Obtaining the package
	Compiling the code
	Executing the test case
	Reading the Log File

	Runtime Parameters
	Global parameters
	AMR grid
	Initial conditions
	Output parameters
	Boundary conditions
	Hydrodynamics solver
	Physical parameters
	Poisson solver
	Refinement strategy

	Cosmological simulations
	Parameter file and initial conditions
	Memory management
	Restarting a run
	Parallel computing
	Post-processing utilities
	Zoom simulations

	Advanced simulations
	Patching the code
	Physical units
	Initial conditions
	Boundary conditions
	External gravity sources
	External thermal sources

	Publication policy
	Index

