

Resent Status on Cryogenics for J-PARC Neutrino SC Magnet

Nobuhiro KIMURA Cryogenic Science Center/KEK

KEK

Y. AJIMA, O. ARAOKA, Y. FUJII, N. HIGASHI, A. ICHIKAWA, M. IIDA, K. KASAMI, T. KOBAYASHI, Y. MAKIDA, T. NAKAMOTO, T. OGITSU, H. OHHATA, T. OKAMURA, K. SASAKI, S. SUGAWARA, K. TANAKA, A. TERASHIMA, T. TOMARU, and A. YAMAMOTO

JAEA J. KUSANO and N. MROSHITA

Hayakawa Rubber Co. T. TABASAKI and A. YAMAMOTO

- Introduction
- System overview and Design of the Cryogenics
- · Quench Relief Valve
- Elastomer Seal for the Cryostat
- Summary and Schedule

- Introduction
- System overview and Design of the Cryogenics
- · Quench Relief Valve
- Elastomer Seal for the Cryostat
- Summary and Schedule

- Introduction
- System overview and Design of the Cryogenics
- · Quench Relief Valve
- Elastomer Seal for the Cryostat
- Summary and Schedule

Super Conducting Combined Function Magnet

Cryogenics Science Center/KEK

(Nobuhiro KIMURA - 28/March/2007)

Structure of a Cryostat for SCFM

Reduce cost

- LHC common parts
 - Vacuum vessel (modified)
 - Cold diode for protection
 - Support post
 - Shield bottom tray (modified)
 - Connecting Sleeve
- · 2 magnets assemble with 1 cryostat
 - F & D magnets (doublet optics)

Horizontal Test Bench with the Cryostat

Cryogenics Science Center/KEK

Conceptual Flow Diagram

SHe Flow Rate	max 300 g/s	Main Compressor		
SHe Condition	0.4 MPa(A), 4.5 K			
SHe Return	4.9 K			
Thermal Load to SHe Flow	410 W			
Pressure Head of SHe	85 kPa	box Turbine		
Current Lead cooling gas	1.1 g/s (1 pair)			
Shield Temperature	60~100 K	J.T.Valve Current		
Shield Cooling	Cold Helium Gas			
Thermal Load to Shield Line	1710 W			
Shield Cooling Gas Condition	Not specified			
LN2 usage	Only Pre-cooling			
	after quench	28 S.C. Magnets		
Pre-cooling duration	< 20 days	Schematic diagram of SHe circulation system		
Re-cooing duration	<6 hours (30GeV			
	operation)			

Cryogenics Science Center/KEK

(Nobuhiro KIMURA – 28/March/2007)

Required Cooling Capacity - Estimation

Mass-flow rate is controlled to be 300 g/s at the maximum.

total load

0.4

0.5

		Thermal Load @4.5 K Level	Thermal Load @shield Level
KEK Requirement	Magnet & Transfer Line	410 W + 1.1 g/s	1710 W
	SHe Flow conditions	Max 300 g/s, 4.5 K, 0.4 MPa Pressure Head 85 kPa	
Contractor Design	SHe Pump Load	330 W	
	Sub-cooler, Transfer Line b/w CB	150 W	250 W
	Required Refrigeration	890 W + 1.1 g/s → 1.0 kW	1960 W → 2 kW
	+ 20 % Margin	1.2 kW	2.4 kW

<u>Taiyo-Nissan Co.</u> in the business collaboration with <u>LINDE</u> won the bid.

Transfer Line with SC bus-bar

Cross section of the Transfer Line

- Introduction
- System overview and Design
- Quench Relief Valve
- Elastomer Seal System
- Summary and Schedule

Cryogenics Science Center/KEK

(Nobuhiro KIMURA - 28/March/2007)

Quench Release Analysis

OKAMURA Takahiro takahiro.okamura@kek.jp

- 0. Motivation of this work
- 1. Conceptual diagram of quench release
- 3. Analytical model & Method
- 4. Highlight numerical result
- 5. Summary

Conceptual diagram of quench release

Allowable pressure of SC magnet system: 2.0 MPa

1-Dimensional Heat Transfer Model

Cryogenics Science Center/KEK

$$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \\ & \text{Heat Generation term} \\ & \text{from Magnet to SHE} \end{aligned} \quad \dot{Q} = \frac{q \Delta S}{\Delta x} \end{aligned}$$

This model is based on an assumption that flow is Two-dimensional Numerical simulation is carried out involving four magnets, one relief valve, venting line and

• E.Q.: NSE+Equation of State

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) &= 0\\ \frac{\partial}{\partial t} (\rho \boldsymbol{v}) + \nabla \cdot (\rho \boldsymbol{v} \boldsymbol{v}) &= -\nabla p + \nabla \cdot \boldsymbol{\tau} + \rho \boldsymbol{g}\\ \frac{\partial}{\partial t} (\rho e) + \nabla \cdot (\rho e \boldsymbol{v}) &= -\nabla \cdot \boldsymbol{q} - p(\nabla \cdot \boldsymbol{v}) + \boldsymbol{\tau} : \nabla \boldsymbol{v}\\ de &= \left(\frac{1}{\varphi \rho}\right) dp - \left(\frac{c^2}{\varphi \rho} - \frac{p}{\rho^2}\right) d\rho\end{aligned}$$

where
$$\left\{ \boldsymbol{\tau} = \mu \left\{ \nabla \boldsymbol{v} + \left(\nabla \boldsymbol{v} \right)^T \right\} - \frac{2}{3} \mu \left(\nabla \cdot \boldsymbol{v} \right) \boldsymbol{I} \right\}$$

- · Method: FVM+ $q = -\lambda \nabla T$
- · Coordinate: BFC

- A new Implicit Continuous-fluid Eulerian code for SHe venting simulation has been developed by means of 1 & 2 Dimensional Heat transfer model.
- Maximum Pressure is about 1.8 MPa and lower than allowable pressure of the magnet under the present relief valve and emergent exhaustion line design conditions.

- Introduction
- System overview and Design
- Quench Relief Valve
- Elastomer Seal for the Cryostat
- Summary and Schedule

Summary of Organic Materials in Magnet and Radiation Resistance

New Elastomer Seal for the Cryostat

New EPDM type Elastomer seal were developed with collaboration of KEK, JAEA and Hayakawa Rubber Co..

New Elastomer seal have been tested up to Dose=9.1 MGy with γ ray source.

Outgas Characteristics of EPDM Elastomer Seal

It is confirmed that new EPDM type elastomer seal can be used up to Dose=1.2 MGy.

- Introduction
- System overview and Design
- Quench Relief Valve
- Elastomer Seal for the Cryostat
- Summary and Schedule

 $\cdot It$ is confirmed that the heat load of two in one structure cryostat has lower than 8 W.

- Six cryostat are completed, and first one is still testing in KEK. Left five cryostat were transferred to J-PARC.
- •The performance of cooling system was fixed and is being manufactured by LINDE. Tank foundation design, machine room design is in progress.
- •Maximum Pressure in the magnet after quench is
- about 1.8 MPa and lower than allowable pressure
- of the magnet under the present relief valve and emergent exhaustion line design conditions.
- New EPDM type Elastomer seal are developed with
- •Collaboration of KEK, JAEA and Hayakawa Rubber Co.. It is confirmed that new EPDM type elastomer seal can be used up to Dose=1.3 MGy.

	2005	2006	2007	2008
Cryostat w/ 2- SCFMs	1 (proto)	6 (12 Mag.)	6 (12 Mag.)	2 & Install
Transfer Line				Install
Refrig.				Install
PS				Install
Corrector Magnet				Install
Quench Detector				Install