Principe d'un usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse du faisceau

Conclusion

Étude et conception d'un anneau de désintégration pour une usine à neutrinos utilisant les décroissances β d'ions radioactifs

Antoine CHANCÉ

Laboratoire d'Étude et de Développement des Accélérateurs CEA Saclay

26 Septembre 2007

Plan

- Principe d'une usine à neutrinos
- Paramétrage des β -beams
- Pertes par décroissance β
- Pertes liées a système d'injection
- Stabilité transverse du faisceau
- Conclusion

1 Principe d'une usine à neutrinos

- 2 Paramétrage des β-beams
- 3 Pertes par décroissance β
- 4 Pertes liées au système d'injection
- 5 Stabilité transverse du faisceau

Plan

Principe d'une usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées a système d'injection

Stabilité transverse d faisceau

Conclusion

Principe d'une usine à neutrinos

) Paramétrage des eta-beams

Pertes par décroissance eta

Pertes liées au système d'injection

Stabilité transverse du faisceau

Bref historique

Plan

Principe d'une usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse du faisceau

Conclusion

- Les neutrinos ont été introduits en 1933 par Pauli pour expliquer l'énergie manquante dans la décroissance β.
- 3 saveurs de neutrinos : $(\nu_e, \nu_\mu, \nu_\tau)$.
- 3 sources ont été utilisées :
 - Soleil
 - \Rightarrow Flux prédit différent du flux mesuré.
 - Atmosphère
 - \Rightarrow Flux détecté dépendant de la direction de propagation.
 - Centrales nucléaires
 - \Rightarrow Flux détecté dépendant de la distance parcourue.

 \Rightarrow Mise en évidence de l'oscillation du neutrino entre ses différentes saveurs et donc de la masse non nulle des neutrinos.

Principe de l'oscillation du neutrino

Plan

Principe d'une usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance ß

Pertes liées au système d'injection

Stabilité transverse du faisceau

Conclusion

 $\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} \neq \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$

États propres États propres Opérateur de Opérateur de l'interaction masse faible

Angles de mélange θ_{12} et θ_{23} déterminés par les expériences. Problème : Valeurs de l'angle de mélange θ_{13} et de la phase δ ? \Rightarrow Besoin d'une source intense de neutrinos dont le spectre en énergie est connu.

Quelle usine à neutrinos?

3 concepts proposés d'accélérateurs reposant sur la désintégration de particules :

- Principe d'une usine à neutrinos
- Paramétrage des β -beams
- Pertes par décroissance β
- Pertes liées au système d'injection
- Stabilité transverse du faisceau
- Conclusion

• « Super beams » : utilisation de la décroissance de pions issus d'intenses faisceaux de protons frappant une cible.

$$\begin{array}{l} \pi^+ \to \mu^+ + \nu_\mu \\ \pi^- \to \mu^- + \overline{\nu}_\mu \end{array}$$

• « Neutrino factory » : utilisation de la décroissance de muons après accélération.

$$\begin{array}{l} \mu^- \to e^- + \overline{\nu}_e + \nu_\mu \\ \mu^+ \to e^+ + \nu_e + \overline{\nu}_\mu \end{array}$$

 « β-beam » : utilisation de la décroissance β d'ions radioactifs.

$$X^{n+} \to Y^{(n-1)+} + e^+ + \nu_e X^{n+} \to Y^{(n+1)+} + e^- + \overline{
u}_e$$

Plan

Principe d'une usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées a système d'injection

Stabilité transverse d faisceau

Conclusion

Principe d'une usine à neutrinos

2 Paramétrage des β -beams

) Pertes par décroissance eta

Pertes liées au système d'injection

Stabilité transverse du faisceau

Choix des noyaux radioactifs β

Critères pour le choix :

- Taux de production des ions suffisant.
- Gaz nobles de préférence diffusion simple en dehors de la cible, gazeux à température ambiante.
- Temps de vie assez long pour conserver des intensités raisonnables en fin de ligne.
- Temps de vie assez court pour avoir un taux suffisant de décroissance par seconde à haute énergie.
- Les produits de décroissance ne sont pas à longue durée de vie (problèmes d'activation).

Meilleur compromis (${}^{9}Li^{3+}$, ${}^{19}Ne^{10+}$, ${}^{8}B^{4+}$,...) :

- Hélium-6 : ${}^{6}\text{He}^{2+} \rightarrow {}^{6}\text{Li}^{3+} + e^{-} + \overline{\nu}_{e}$
 - $\langle E_{\overline{
 u}}
 angle = 1.94$ MeV, $au_{1/2} = 0.81$ s
- Néon-18 : 18 Ne ${}^{10+} \rightarrow {}^{18}$ F ${}^{9+} + e^+ + \nu_e$ $\langle E_{\nu} \rangle = 1.86$ MeV, $\tau_{1/2} = 1.67$ s

Plan

Principe d'un usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse di faisceau

Choix du facteur γ

 $\frac{4\pi\hbar E_{\nu}}{c^3|m_2^2-m_3^2|}$

P. Zucchelli

Plan

Principe d'un usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance / $\sin^2 2\theta_{13} \sin^2 \theta_{23}$

Pertes liées a système d'injection

Stabilité transverse di faisceau

Conclusion

Pour un complexe basé au CERN et pour une détection au LSM (à 130 km), le meilleur compromis est : $\gamma = 100$. Faisceau pur de $\nu_e, \overline{\nu}_e$ pour étudier $\nu_e \rightarrow \nu_\mu, \overline{\nu}_e \rightarrow \overline{\nu}_\mu$.

> La longueur d'onde de l'oscillation du neutrino dépend de son énergie et de la différence entre les masses au carré des états propres.

Transformation de Lorentz pour un faisceau collimaté.

Choix du facteur γ

 $\frac{4\pi\hbar E_{\nu}}{c^3|m_2^2-m_3^2|}$

P. Zucchelli

Plan

Principe d'ur usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance

 $\sin^2 2\theta_{13} \sin^2 \theta_{23}$

Pertes liées a système d'injection

Stabilité transverse di faisceau

Conclusion

Pour un complexe basé au CERN et pour une détection au LSM (à 130 km), le meilleur compromis est : $\gamma = 100$. Faisceau pur de $\nu_e, \overline{\nu}_e$ pour étudier $\nu_e \rightarrow \nu_\mu, \overline{\nu}_e \rightarrow \overline{\nu}_\mu$.

> La longueur d'onde de l'oscillation du neutrino dépend de son énergie et de la différence entre les masses au carré des états propres.

Transformation de Lorentz pour un faisceau collimaté.

Schéma de principe

Choix de dipôles supraconducteurs dans l'arc

Plan

Principe d'une usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse du faisceau

Conclusion

Le rapport entre la longueur des sections droites et celle de l'arc doit être la plus grande possible pour maximiser le flux de neutrinos émis vers le détecteur.

L'arc est supposé constitué à 50 % de dipôles.

Avec un champ de 6 T dans les dipôles, le ratio est de 36 % alors qu'il ne serait que de 7.5 % pour un champ de 2 T. \Rightarrow Technologie supraconductrice pour les dipôles des arcs.

Paramètres β -Beams

	Unités	⁶ He ²⁺	¹⁸ Ne ¹⁰⁺
Βρ	T.m	934.93	559.26
Nombre de ν utiles désiré	an^{-1}	$2.9 imes10^{18}$	$1.1 imes10^{18}$
Portion utile	%	36	36
Nombre total ν	an^{-1}	$8.2 imes10^{18}$	$3.1 imes10^{18}$
Temps demi-vie au repos	S	0.81	1.67
Nombre d'ions stockés	-	$9.66 imes10^{13}$	$7.42 imes 10^{13}$
Temps entre 2 injections	S	6	3.6
Nombre d'ions injectés	-	$9 imes 10^{12}$	$4.3 imes10^{12}$

Nombre d'harmoniques	-	924	924
Nombre de paquets	-	20	20
Émittance hor. rms	mm.mrad	0.11	0.22
Émittance ver. rms	mm.mrad	0.06	0.22
Émittance long. total injecté	mm.mrad	170	125
Émittance long. total stocké	mm.mrad	2550	2550

Plan

Principe d'un usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance (c

Pertes liées a système d'injection

Stabilité transverse du faisceau

Résumé des contraintes sur l'optique

- Plan
- Principe d'une usine à neutrinos

Paramétrage des β -beams

- Pertes par décroissance β
- Pertes liées au système d'injection
- Stabilité transverse du faisceau
- Conclusion

- Afin de maximiser le flux incident sur le détecteur, il faut :
 - ⇒ des fonctions bêtatron élevées dans les longues sections droites (mailles FODO). L'angle rms $\sqrt{\gamma_x \epsilon_x}$ des ions doit être faible devant l'angle du cône d'émission $(1/\gamma \approx 10 \text{ mrad}).$
- Le système d'injection impose :
 - ⇒ une insertion à haute dispersion et à bas β_x . L'insertion pour l'injection sera dans l'arc : dispersion naturellement présente, fonctions bêtatron faibles et dipôles déjà présents.
 - $\Rightarrow\,$ une collimation des ions qui ne sont plus acceptés après l'injection.
- Tous les ions injectés sont perdus dans l'anneau . Il faut donc :
 - \Rightarrow extraire les produits de décroissance quand c'est possible.
 - \Rightarrow limiter les dépôts dans les éléments magnétiques.

Fonctions optiques de l'arc

Plan

- Principe d'un usine à neutrinos
- Paramétrage des β -beams

Pertes par décroissance β

- Pertes liées a système d'injection
- Stabilité transverse d faisceau
- Conclusion

Principe d'une usine à neutrinos

- Paramétrage des β -beams
- 3 Pertes par décroissance β
 - Pertes liées au système d'injection
 - Stabilité transverse du faisceau

Pertes liées aux décroissances β dans l'anneau

La décroissance des ions stockés entraîne une perte continue de puissance dont la valeur moyenne est :

 $P = 10.8 \text{ W/m pour l'}^{6}\text{He}^{2+}$ $P = 11.8 \text{ W/m pour le}^{18}\text{Ne}^{10+}$

La différence relative en rigidité magnétique $\frac{P}{Q}$ est : $\delta \approx -33\%$ pour l'⁶He²⁺ (⁶He²⁺ \rightarrow ⁶Li³⁺ + e⁻ + $\overline{\nu}_e$) $\delta \approx +11\%$ pour le ¹⁸Ne¹⁰⁺ (¹⁸Ne¹⁰⁺ \rightarrow ¹⁸F⁹⁺ + e⁺ + ν_e) La différence en rigidité est trop importante pour accepter les produits de décroissance dans les arcs : ils sont perdus après transport dans quelques dipôles.

 \Rightarrow Pics de dépôt après les longues sections droites : plusieurs dizaines de kiloWatt ! Nécessité d'extraire.

 \Rightarrow Nécessité de limiter le dépôt dans les éléments magnétiques de l'arc en dessous de 10 W/m.

Plan

Principe d'un usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse du faisceau

Extraction des produits de décroissance issus des sections droites

Les dimensions du faisceau sont données à $\pm 6\sigma$ et le transport des produits de décroissance a été réalisé en différents points de la section droite.

Le premier dipôle de l'arc est utilisé pour séparer les produits de décroissance.

Dans le cas de l'⁶He²⁺, la différence en rigidité est suffisante pour extraire les produits de décroissance à l'entrée de l'arc. Dans le cas du ¹⁸Ne¹⁰⁺, il est nécessaire d'ajouter un septum d'extraction de 12 m et de 0.5 T.

Plan

Principe d'ur usine à neutrinos

Paramétrage les β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse du faisceau

Évaluation des dépôts dans l'arc

Plan

Principe d'ur usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse du faisceau

Conclusion

Puissance perdue :

$$P(W) = N \frac{\log 2}{\tau_{1/2}} \frac{\gamma - 1}{\gamma} E_0$$

- $au_{1/2}$ temps demi vie (au repos).
- E_0 énergie de masse de l'ion.
- N_S nombre d'ions stockés.
 - longueur de l'anneau.
- f_{σ} distribution du faisceau.
 - écart type de la distribution.

Nous pouvons situer les dépôts des ions situés entre les enveloppes à $n_1\sigma$ et $n_2\sigma$ (en comparant la taille de l'enveloppe et celle de la chambre). Ainsi, il est possible d'évaluer ces pertes dans chaque élément.

Avantages et inconvénients de la méthode

Avantages :

- Rapidité du programme.
- Facilité d'utilisation.

Inconvénients :

- Ne tient pas compte des interactions avec les parois.
- Le faisceau est supposé elliptique avec les deux plans découplés.
- La géométrie des chambres est simple (rectangulaire).

 \Rightarrow La méthode est utile pour évaluer rapidement le design de l'anneau. Mais des simulations plus poussées sont nécessaires (*FLUKA* par exemple).

Plan

Principe d'une usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse du faisceau

Résultats de l'optimisation

Principe d'u usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse du faisceau

Conclusion

La longueur des dipôles et la position des absorbeurs sont optimisées (angles, ouverture aux absorbeurs, ...).

Les demi-ouvertures dans les dipôles sont de 8 cm pour des champs de 6 T.

Les absorbeurs protègent les éléments magnétiques.

Les simulations utilisant un transport particulaire et *FLUKA* sont en cours pour

Confirmer (F. Jones et E. Wildner THPAN006,

PAC07, Albuquerque).

Plan

- Principe d'un usine à neutrinos
- Paramétrage des β -beams
- Pertes par décroissance β
- Pertes liées au système d'injection
- Stabilité transverse d faisceau
- Conclusion

Principe d'une usine à neutrinos

- Paramétrage des eta-beams
- Pertes par décroissance β
- 4 Pertes liées au système d'injection
 - Stabilité transverse du faisceau

Pourquoi une injection "off momentum"

L'injection se fait en présence d'un faisceau circulant.

 \Rightarrow Pas d'injection sur l'axe.

Pas de phénomène d'amortissement entre deux injections.

 \Rightarrow Injection à l'énergie nominale avec déformation d'orbite fermée insuffisante.

La solution envisagée est d'injecter à une énergie différente de celle du faisceau stocké et, en utilisant un système RF approprié, de mélanger ensemble les faisceaux injecté et stocké. MAIS :

- Dans l'espace longitudinal, le faisceau stocké grossit à chaque injection (Liouville).
- La présence de la lame du septum limite l'acceptance transverse et donc en énergie (zone dispersive) de l'anneau.

Plan

Principe d'un usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse du faisceau

Principe d'ur usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance

Pertes liées au système d'injection

Stabilité transverse d faisceau

- Le faisceau stocké est dévié par 4 déviateurs rapides.
- Le faisceau entrant est injecté "off momentum" sur son orbite chromatique.
- Les déviateurs sont éteints. Le faisceau injecté reste sur son orbite chromatique et passe sous la lame du septum.
- Les 2 faisceaux sont mélangés par un programme RF adapté.

Principe d'ur usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance

Pertes liées au système d'injection

Stabilité transverse d faisceau

- Le faisceau stocké est dévié par 4 déviateurs rapides.
- Le faisceau entrant est injecté "off momentum" sur son orbite chromatique.
- Les déviateurs sont éteints. Le faisceau injecté reste sur son orbite chromatique et passe sous la lame du septum.
- Les 2 faisceaux sont mélangés par un programme RF adapté.

Principe d'ur usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance

Pertes liées au système d'injection

Stabilité transverse d faisceau

- Le faisceau stocké est dévié par 4 déviateurs rapides.
- Le faisceau entrant est injecté "off momentum" sur son orbite chromatique.
- Les déviateurs sont éteints. Le faisceau injecté reste sur son orbite chromatique et passe sous la lame du septum.
- Les 2 faisceaux sont mélangés par un programme RF adapté.

Principe d'ur usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance

Pertes liées au système d'injection

Stabilité transverse de faisceau

- Le faisceau stocké est dévié par 4 déviateurs rapides.
- Le faisceau entrant est injecté "off momentum" sur son orbite chromatique.
- Les déviateurs sont éteints. Le faisceau injecté reste sur son orbite chromatique et passe sous la lame du septum.
- Les 2 faisceaux sont mélangés par un programme RF adapté.

Principe d'ur usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance

Pertes liées au système d'injection

Stabilité transverse de faisceau

- Le faisceau stocké est dévié par 4 déviateurs rapides.
- Le faisceau entrant est injecté "off momentum" sur son orbite chromatique.
- Les déviateurs sont éteints. Le faisceau injecté reste sur son orbite chromatique et passe sous la lame du septum.
- Les 2 faisceaux sont mélangés par un programme RF adapté.

Principe du mélange avec 2 cavités

Utilisation de 2 familles de cavités de phase et tension variables dont l'une est à l'harmonique double.

$$V(\theta) = V_1 \left[\sin(h\theta + \theta_1) + r \sin(2h\theta + \theta_2) \right]$$

Plan

Principe d'un usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse di faisceau

Conclusion

 \Rightarrow permet de moduler la forme des isohamiltoniennes afin d'avoir 2 phases synchrones stables : une pour le faisceau stocké et une autre pour le faisceau injecté.

5 grandes étapes dans le programme RF :

() Rotation d'un quart de tour dans l'espace (I, δ) .

- 2 La seconde cavité est allumée.
- Mélange asymétrique avec une aire constante pour le lobe de capture.
- Mélange symétrique.
- S Extinction progressive de la seconde cavité.

Évolution du faisceau injecté au cours d'un programme RF

Évolution du faisceau injecté au cours d'un programme RF

Plan

Principe d'ur usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse d faisceau

Évolution du faisceau au cours des injections progressives

La présence de la lame du septum réduit l'acceptance en énergie à $\delta=2.5\%$.

30 $\frac{\Delta \mathbf{p}}{p}~(10^{-3})$ -1 -2-3 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 1(m)

Plan

Principe d'ur usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance μ

Pertes liées au système d'injection

Stabilité transverse d faisceau

Conclusion

26 / 43

Nombre d'injections

Plan

Principe d'une usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse d faisceau

Conclusion

• Injection à $\delta = 5\%$.

- ⇒ Déformation du faisceau injecté après un quart de tour synchrotron.
- ⇒ Une partie du faisceau injecté n'est pas capturée par le système RF.
- \Rightarrow Formation d'un halo.
- Gonflement dans l'espace (1, δ) injection après injection.
 ⇒ Après 15-20 injections, les ions ne sont plus acceptés.

Plan

Principe d'un usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse di faisceau

Conclusion

1 Injection à $\delta = 5\%$.

- ⇒ Déformation du faisceau injecté après un quart de tour synchrotron.
- ⇒ Une partie du faisceau injecté n'est pas capturée par le système RF.
- \Rightarrow Formation d'un halo.
- **2** Gonflement dans l'espace (I, δ) injection après injection.
 - \Rightarrow Après 15-20 injections, les ions ne sont plus acceptés.

Plan

Principe d'un usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse di faisceau

Conclusion

1 Injection à $\delta = 5\%$.

- ⇒ Déformation du faisceau injecté après un quart de tour synchrotron.
- ⇒ Une partie du faisceau injecté n'est pas capturée par le système RF.
- \Rightarrow Formation d'un halo.
- **2** Gonflement dans l'espace (I, δ) injection après injection.
 - \Rightarrow Après 15-20 injections, les ions ne sont plus acceptés.

Plan

Principe d'un usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse d faisceau

Conclusion

• Injection à $\delta = 5\%$.

- ⇒ Déformation du faisceau injecté après un quart de tour synchrotron.
- ⇒ Une partie du faisceau injecté n'est pas capturée par le système RF.
- \Rightarrow Formation d'un halo.
- **2** Gonflement dans l'espace (I, δ) injection après injection.
 - \Rightarrow Après 15-20 injections, les ions ne sont plus acceptés.

Principe du système de collimation

Plan

Principe d'une usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse d faisceau

Conclusion

La puissance moyenne collimatée dans l'anneau est alors de 74 kW pour l'⁶He²⁺et atteint 248 kW pour le ¹⁸Ne¹⁰⁺. \Rightarrow Collimation à plusieurs étages en utilisant un collimateur primaire comme diffuseur et des collimateurs secondaires pour collecter les ions diffusés.

- 2 endroits possibles pour la section de collimation :
 - section d'injection dans l'arc : Dispersion normalisée élevée MAIS aimants supraconducteurs à proximité : À ÉVITER.
 - longue section droite ne pointant pas vers le détecteur : Très large place pour une insertion avec aimants chauds + Liberté d'optimiser la section.

Optique de la section de collimation

Plan

- Principe d'un usine à neutrinos
- Paramétrage des β -beams
- Pertes par décroissance β
- Pertes liées au système d'injection
- Stabilité transverse du faisceau

Conclusion

Principe d'une usine à neutrinos

-) Paramétrage des eta-beams
-) Pertes par décroissance eta
- 4 Pertes liées au système d'injection
- 5 Stabilité transverse du faisceau

Pourquoi une correction de la chromaticité

Plan

Principe d'une usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse du faisceau

Conclusion

Chromaticités naturelles dans l'anneau : $\xi_x = -1.667 \text{ et } \xi_y = -2.347$ Point de fonctionnement dans l'anneau : $\nu_x = 22.23 \text{ et } \nu_y = 12.16$ Dispersion en énergie du faisceau : $\delta = \pm 2.5\%_0$ Variations du nombre d'onde dues à l'énergie :

 $\Delta \nu_x = \mp 0.093$ et $\Delta \nu_y = \mp 0.071$

 \Rightarrow Les variations sur les nombres d'onde nécessitent une correction de la chromaticité. Nécessité d'ajouter des hexapôles dans les régions dispersives de l'anneau.

Ouverture dynamique sans défaut

Stabilité transverse du faisceau

Conclusion

Après compensation des résonances de troisième ordre et correction de la chromaticité, l'ouverture dynamique obtenue est très large.

6 familles de sextupôles ont été utilisées.

Défauts multipolaires systématiques dans les dipôles

Plan

Principe d'une usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse du faisceau

Conclusion

Les dipôles sont à large ouverture (16 cm). Le design des dipôles ne peut être parfait et des erreurs de champ multipolaires sont présentes.

La symétrie du dipôle fait que les défauts d'ordre pair sont en moyenne nuls.

C. Vollinger, E. Wildner

Multipôles	$b_n (10^{-4})$	$K_n L = \frac{b_n \theta}{R^{n-1}} \left(\mathbf{m}^{1-n} \right)$
1 (champ principal)	10 ⁴	$ heta=rac{\pi}{86}$ rad
3	-1.68	-0.00171
5	33.02	9.307
7	-50.12	-3924.5
9	29.58	643400

Influence sur l'ouverture dynamique?

Effets des défauts multipolaires sur l'ouverture dynamique

transverse du faisceau

Conclusion

cause des multipôles d'ordre 5 et 7. Il est nécessaire d'élargir l'ouverture dynamique en présence des défauts multipolaires.

Diagramme du nombre d'onde et résonances

Plan

Principe d'u usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance (c)

Pertes liées au système d'injection

Stabilité transverse du faisceau

Conclusion

Plusieurs points de fonctionnement ont été comparés pour minimiser les effets multipolaires sur la stabilité transverse du faisceau.

Cas 1 $\nu_x = 22.228, \nu_y = 12.16$ Cas 3 $\nu_x = 22.22, \nu_y = 12.24$ Cas 2 $\nu_x = 22.18$, $\nu_y = 12.16$

Principe de l'optimisation

"Algorithm for chromatic sextupole optimization and dynamic aperture increase", E. Lebichev, P. Piminov, EPAC06

Plan

Principe d'une usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse du faisceau

Conclusion

But :

Trouver les forces pour les différentes familles (8) de sextupôles chromatiques afin d'avoir la plus grande ouverture dynamique. **Idée de base :**

2 familles de sextupôles suffisent pour obtenir n'importe quelle chromaticité.

Principe de l'algorithme :

La chromaticité est corrigée en N pas successifs.

Sélection du "meilleur" couple de sextupôles à chaque étape (couple donnant la chromaticité voulue et avec la plus large ouverture dynamique).

Exemple d'application

Principe d'ur usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance *µ*

Pertes liées au système d'injection

Stabilité transverse du faisceau

Conclusion

L'exemple a été réalisé pour des jeux aléatoires de défauts décapolaires dans les dipôles.

Le test montre une amélioration sur l'ouverture dynamique pour une grande partie des cas et une réduction sur la dispersion sur l'ouverture dynamique.

Ouvertures dynamiques à différents δ

Plan

- Principe d'un usine à neutrinos
- Paramétrage des β -beams
- Pertes par décroissance β
- Pertes liées a système d'injection
- Stabilité transverse di faisceau
- Conclusion

Principe d'une usine à neutrinos

- Parametrage des *p*-beams
- Pertes par décroissance eta
- Pertes liées au système d'injection
- Stabilité transverse du faisceau

BILAN

Plan

Principe d'une usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse du faisceau

Conclusion

BUT : Concevoir un anneau de stockage pour les β -beams et étudier ses propriétés.

Des solutions pour faire face au dépôt des produits de décroissance ont été proposées :

• Section d'extraction à l'entrée des arcs.

• Insertion d'absorbeurs dans les arcs.

BILAN

Plan

Principe d'une usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse du faisceau

Conclusion

BUT : Concevoir un anneau de stockage pour les β -beams et étudier ses propriétés.

Des solutions pour faire face au dépôt des produits de décroissance ont été proposées :

- Section d'extraction à l'entrée des arcs.
- Insertion d'absorbeurs dans les arcs.

BILAN II

Plan

Principe d'une usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse du faisceau

Conclusion

Le système d'injection a également été développé :

- Réalisation d'une section dédiée dans l'un des arcs.
- Étude du système RF et du mélange des deux faisceaux.
- Évaluation des pertes liées à ce système.

Ceci a alors abouti à définir un système de collimation en énergie pour l'anneau.

BILAN II

Plan

Principe d'une usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance ß

Pertes liées au système d'injection

Stabilité transverse du faisceau

Conclusion

Le système d'injection a également été développé :

- Réalisation d'une section dédiée dans l'un des arcs.
- Étude du système RF et du mélange des deux faisceaux.
- Évaluation des pertes liées à ce système.

Ceci a alors abouti à définir un système de collimation en énergie pour l'anneau.

BILAN III

Plan

Principe d'une usine à neutrinos

Paramétrage des β -beams

Pertes par décroissance β

Pertes liées au système d'injection

Stabilité transverse du faisceau

Conclusion

Une optique de l'anneau a alors été réalisée et ses propriétés ont été évaluées.

En l'absence de défauts :

Les propriétés aux premier et second ordres sont suffisantes.

En présence de défauts multipolaires :

Besoin d'élargir l'ouverture dynamique.

 \Rightarrow Un algorithme automatique d'optimisation de l'ouverture dynamique a été réalisé.

 \Rightarrow Plusieurs points de fonctionnement ont été testés afin de limiter l'effet des résonances multipolaires.

Perspectives

- Plan
- Principe d'une usine à neutrinos
- Paramétrage des β -beams
- Pertes par décroissance β
- Pertes liées au système d'injection
- Stabilité transverse du faisceau
- Conclusion

- Réaliser des simulations de transport de faisceau dans la section de collimation. L'interaction avec les collimateurs devra être simulée.
- Poursuivre les études sur les défauts de champ dans les éléments et proposer des solutions pour en réduire l'effet ainsi que des valeurs limites.
- Poursuivre les simulations de dépôt dans les éléments.
- Étudier l'impact des hautes intensités stockées sur la dynamique du faisceau (beam loading, impédances, ...).
- Donner une évaluation des erreurs permises sur les phases et tensions des cavités pour le programme RF.