Liquid Hydrogen Experiment Facility with System Enabling Observation under Horizontal Vibration*

<u>M. Takeda¹</u>, S. Yagi¹, Y. Matsuno², I. Kodama², S. Fujikawa², H. Kumakura³, and T. Kuroda³

¹Graduate School of Maritime Sciences, Kobe University, JAPAN ²Iwatani Industrial Gases Corporation, JAPAN ³National Institute for Materials Science, JAPAN

* to be appeared in *Adv. Cryo. Eng.* (2010).

watani

OUTLINES

- 1. INTRODUCTION Background
 - Objectives
- 2. EXPERIMENTAL

LHEF

LH₂ Optical Cryostat

Apparatus for Generating Horizontal Vibrations

3. EXPERIMENTAL RESULTS

Evaporation Rates of LN_2 and LH_2

Damped Oscillation of LH₂ Surface

Damped Oscillation of other cryogens surface

4. SUMMARY

1. INTRODUCTION Background (1)

Background (2)

Recently, superconducting magnesium diboride (MgB₂) level sensors have been reported as new sensors for detecting the level of liquid hydrogen (LH₂):

Self-heating-type sensors (Haberstroh *et al.*, Kajikawa *et al.*) External-heating-type sensors (Takeda *et al.*)

Research on their level-detecting characteristics and durability under vibration conditions of the LH_2 surface has been insufficient.

The behavior of the LH_2 surface in the tank under vibration conditions has not yet been sufficiently clarified experimentally.

Objectives

To establish a storage and transport system for large quantities of LH_2 , it is important to develop an LH_2 level gauge and to clarify the vibrational behavior of the LH_2 surface.

Objectives of this work is to construct a liquid hydrogen experiment facility (LHEF) enabling observation under horizontal vibration.

The details of the constructed LHEF and experimental results on the damped oscillation of the LH₂ surface as well as other cryogens surface are presented.

2. EXPERIMENTAL Basic Layout of LHEF

House

Laboratory

Photograph of LHEF

Gas-handling system

Small vacuum pump

Apparatus for generating horizontal vibration

Windows

Cryostat

Schematic Diagram of LH₂ Optical Cryostat

Schematic Diagram of Apparatus for Generating Horizontal Vibrations

3. EXPERIMENTAL RESULTS Evaporation Rates of LN₂ and LH₂

Subject	Evaporation rate [L/h]	Heat Leak [W]	Heat Leak (Cal.) [W]
LN ₂ Space	0.30	13.6	13.9
LH ₂ Space	0.05	0.40	0.33

Observation under Horizontal Vibration

Horizontal Vibration: example of 0.1 G

Displace. vs. Time

Speed vs. Time

Photograph of LH₂ Surface (20.3 K) under Horizontal Vibration

LH₂ Surface

θ

Time Chart of Acceleration and Liquid Surface Angle (LH₂: 20.3 K)

A Damped Oscillation Model

Assuming that the liquid surface angle θ is minute and that the effects of the breaking force is less than that of the restoring force, the slowly damped liquid surface oscillation can be expressed as

$$\theta(t) = \theta_{\max} \exp(-\gamma t) \cos \sqrt{\omega_0^2 - \gamma^2} t , \qquad (1)$$
$$T = \frac{2\pi}{\sqrt{\omega_0^2 - \gamma^2}} , \qquad (2)$$

where θ_{max} : the maximum liquid surface angle at $t = 0, \gamma$: the attenuation constant, ω_0 : the intrinsic angular frequency, *T*: the period.

Damped Oscillation of LH₂ Surface (20.3 K)

LN₂ (77.3 K and 65.0 K)

LHe (4.2 K) and He I (2.0 K)

Damped Oscillation of Some Cryogens

Subject	Max angle	Atten. const.	Period T	Log. atten.
	$\boldsymbol{\theta}_{\max}$ [deg.]	γ [1/s]	[S]	const. γ <i>T</i> [-]
LN ₂ (65.0 K)	9.5	0.249	0.367	0.091
LN ₂ (77.3 K)	9.5	0.239	0.380	0.091
LH ₂ (20.3 K)	9.5	0.215	0.372	0.080
LHe (4.2 K)	9.5	0.200	0.433	0.087
He II (2.0 K)	9.5	0.180	0.363	0.065

Discussion about γ and T

 $\gamma \propto \eta / \rho$ (= ν : dynamic viscosity)

where η : viscosity and ρ : density.

$$T \propto \frac{1}{\sqrt{\omega_0^2 - \gamma^2}}$$

Physical Properties of Some Cryogens

Subject (Sat. vap)	Eq. temp. T_{eq} [K]	Viscosity η [μPa s]	Density <i>p</i> [kg/m ³]	Dy. viscosity ν [mm²/s]
LN_2	65.0	284	882	0.322
LN ₂	77.3	158	809	0.195
LH ₂	20.3	12.5	70.8	0.176
LHe	4.2	3.17	125	0.025
He I	2.0	1.5	145	0.010

Relationship between γ and ν

Relationship between *T* and $1/\sqrt{\omega_0^2 - \gamma^2}$

4. SUMMARY

- (1) A liquid hydrogen experiment facility (LHEF) with system enabling observation under horizontal vibration was designed and constructed.
- (2) The LHEF performance test results show that the heat leak in the LH₂ space was sufficiently small.
- (3) Using LHEF under horizontal vibration, observations of the LH₂ surface as well as other cryogens under damped oscillation were carried out successfully.
- (4) The calculated values of liquid surface angle based on a damped oscillation model were in good agreement with the experimental values.

ACKNOWLEDGMENTS

We would like to thank Prof. K. Sakamoto, Dr. Y. Iwamoto, Dr. T. Akazawa, and Mr. H. Iwashita for helpful discussion and technical support, and Mr. Y. Okubo, Mr. C. Kazama, and Mr. M. Maekawa for their assistance in the experiment.

This work was supported in part by the Hyogo Prefecture COE Program, NYK-Heyerdahl Projects, and the Mayekawa Houonkai Foundation, Japan.

