Superconductivity in space: the SRS2 project and beyond

R. Battiston INFN-TIFPA and University of Trento Italian Space Agency

CEA Saclay

"Anything a man could imagine, other men could make it possible"

Jules Verne

The Consortium

SPA 2012 2.2.02 Key technologies for in-space activities

Istituto Nazionale di Fisica Nucleare CERN Commissariat a l'Energie Atomique Thales Alenia Space Italia Compagnia Generale dello Spazio Columbus Superconductors Carr Communication

Istituto Nazionale di Fisica Nucleare CERN Commissariat a l'Energie Atomique Thales Alenia Space Italia Compagnia Generale dello Spazio Columbus Superconductors Carr Communication

Istituto Nazionale di Fisica Nucleare

Istituto Nazionale di Fisica Nucleare CERN

Commissariat a l'Energie Atomique Thales Alenia Space Italia Compagnia Generale dello Spazio Columbus Superconductors Carr Communication

European Laboratory for Nuclear Research

SEVENTH FRAMEWORK

Istituto Nazionale di Fisica Nucleare CERN Commissariat a l'Energie Atomique Thales Alenia Space Italia Compagnia Generale dello Spazio Columbus Superconductors Carr Communication

Centre Energie Atomique

Saclay

Istituto Nazionale di Fisica Nucleare CERN Commissariat a l'Energie Atomique Thales Alenia Space Italia Compagnia Generale dello Spazio Columbus Superconductors Carr Communication

Istituto Nazionale di Fisica Nucleare CERN Commissariat a l'Energie Atomique Thales Alenia Space Italia Compagnia Generale dello Spazio Columbus Superconductors Carr Communication

Compania Generale dello Spazio - Milano

SEVENTH FRAMEWORK

Istituto Nazionale di Fisica Nucleare CERN Commissariat a l'Energie Atomique Thales Alenia Space Italia Compagnia Generale dello Spazio **Columbus Superconductors** Carr Communication

The Company

Columbus is a world leader in the production of the new superconductor **MgB_{2,}** that is distinguished for its workability in **long lengths** and **high performances**

The actual plant is fully operational for MgB₂ wire production and has recently completed its scaling up (plant area now is 4'400 m²)

MgB₂ chemical synthesis is now also fully implemented

Wire unit length today possible up to 20 Km in combination with a nominal plant full capacity exceeding 5'000 Km/ year

Columbus MgB₂ production is already implemented in commercial products and has a long record of fully tested and qualified wires

Istituto Nazionale di Fisica Nucleare CERN Commissariat a l'Energie Atomique Compagnia Generale dello Spazio Thales Alenia Space Italia Compagnia Generale dello Spazio Columbus Superconductors Carr Communication

Dublin

DIGITAL MEDIA

PUBLIC RELATIONS

FP7 SR2S program (2013-15)

R. Battiston, Università di Trento, INFN, Italy W.J. Burger, Università di Perugia, INFN, Italy F. Ambroglini, INFN-Perugia, Italy R. Musenich, INFN-Genova, Italy V. Calvelli, INFN-Genova, Italy S. Farinon, INFN-Genova, Italy P. Spillantini, INFN-Firenze, Italy G. Volpini, INFN-Milan, Italy M. Sorbi, INFN-Milan, Italy G. Laurenti, INFN-Bologna, Italy M. Guerzoni, INFN-Bologna, Italy P. Rapagnani, INFN-Roma1. Italy B. Spataro, INFN-Frascati, Italy P. Fazilleau, CEA, France B. Baudoy, CEA, France L. Quettier, CEA, France A. Ballarino, CERN. Switzerland C. Gargiulo, CERN, Switzerland B.Romain, CEA, France

V.I. Datskov, CERN, Switzerland D. Schinzel, CERN, Switzerland G. Grasso, Columbus Superconductors, Italy S. Brisigotti, Columbus Superconductors, Italy D. Nardelli, Columbus Superconductors, Italy V. Cubeda, Columbus Superconductors, Italy M. Tropeano, Columbus Superconductors, Italy R. Piccardo, Columbus Superconductors, Italy F. Maillard, CGS, Italy E. Monchieri, CGS, Italy F. Zurla, CGS, Italy G. Ober, CGS, Italy E. Tracino, Thales Alenia Space, Italy M. Giraudo, Thales Alenia Space, Italy R. Destefanis, Thales Alenia Space, Italy C. Lobascio, Thales Alenia Space, Italy E. Gaia, Thales Alenia Space, Italy

B. Bordini CERN, Switzerland

L. Rossi, CERN, Switzerland

20

Radiation effects on biological tissues

21

γ-rays

Tracks in cells

Cucinotta and Durante, Lancet Oncol. 2006

Radiation effects on biological tissues

Courtesy of D.T. Goodhead

SEVENTH FRAMEWORK

23

The interplanetary travel case

The evidence for cancer risks from humans who are exposed to *low-LET* radiation is extensive for doses above *100 mSv (10 rem)*.

The doses that are to be expected on space missions, as well as the nuclear type and energies, are quite well understood.

The main contribution to the ionizing radiation encountered in space are

- Solar Particle Events (SPE)
- Galactic Cosmic Rays (GCR)

Distribution of energies of GCR. This is a graph of the more abundant nuclear species in CR as measured near Earth. Below a few GeV/nucleon these spectra are strongly influenced by the Sun. The different curves for the same species represent measurement extremes resulting from varying solar activity (Physics Today, Oct. 1974, p. 25)

Particle spectra observed in SPE compared with the GCR

Galactic cosmic radiation

Radiation doses in different missions

% of death due to cancer - 95% CL

Physics simulation

1977 Solar Minimum

Doses vary significantly with the solar cycles. There is a 60% difference between *solar maximum* and *solar minimum* total doses (factor 1,6).

Doses vary greatly on different parts of the body. *Skin* is exposed to the highest dose, 90% higher (factor 1,9) than *BFO* and 130% higher (factor 2,3) than whole body.

Doses vary greatly with the *CR* **species**. Although protons are by far most abundant (*85%* of the total flux), their dose is only a factor *2* higher than He (*14%* of the total flux), but it is *10* time lower (*skin*) than the contributions of ions having *Z*>*2* (1% of the total flux).

	Solar Minimum			Solar Maximum		
Z	skin	BFO	body	skin	BFO	body
1	10.8	11.3	11.1	5.5	5.6	5.6
2	5.3	5.2	5.1	2.9	2.8	2.7
3-10	35.9	22.2	11.8	22.1	14.8	6.8
11-20	38.4	16.6	14.8	23.1	11.2	9.2
21-28	27.3	7.1	8.7	17.4	5.1	5.8
total	117.7	62.4	51.5	71.0	39.5	30.1

The astronauts.....

SEVENTH FRAMEWORK

H₂O cylinder: Ø 24 cm, length 180 cm

The cylindrical water volumes used to compute the dose of the skin and blood forming organs (BFO). The total dose refers to the full volume of the 24 cm diameter. 180 cm lona cvlinder

31

Doses for exploration missions....

- FREE SPACE: equivalent doses in excess of 1.2 Sv /yr (~120 rem/yr)
- SPACECRAFT (thin) SHIELDING: about 700-800 mSv/yr (70-80 rem/yr)
- ON THE MARS SURFACE: between 100 and 200 mSv/yr (10 and 20 rem/yr), depending on the location
- ON THE MOON SURFACE : 223 mSv/yr (22,3 rem/yr) with oscillations of ± 10 rem/yr as a function of solar activity

-for comparison: ISS about **18 rem/yr** --> 6 month expeditions

Projection of risk of radiation

Various form of shielding

Of the 26892 man-days spent in space only 303 have been in Apollo Mission outside the magnetosphere (1.1%)

3% REID limit =>increase of P(cancer death)

Table 12: Solar Maximum Safe Days in deep space, which are defined as the maximum number of days with 95% CL to be below the NASA 3%REID limit. Calculations are for average solar maximum assuming large August 1972 SPE with 20 g/cm2 aluminium shielding. Values in parenthesis are the case without SPE that also represents the case of an ideal storm shelter that reduce SPE doses to a negligible amount

a _E , y	NASA 2012 U.S. Avg. Population	NASA 2012 Never-smokers					
Males							
35	306	395					
45	344	456					
55	367	500					
Females							
35	144	279					
45	187	319					
55	227	383					

Mars Mission 1000 days in space

Table 19: 1st approximation DRF

Environment	Number of safe days in space	DRF
Solar minimum with SPE	227	4.41
Solar minimum when SPE is negligible	212	4.72
Solar maximum with SPE	319	3.13
Solar maximum when SPE is negligible	394	2.54

SR2S mission scenarios

Mission	Total Mission Duration	Outbound	Stay	Return	Total Days in Deep-Space
Lagrange's Points [LEM2]	200	-	-	-	200
NEA	410	~170	30	~210	~380
MARS TITO mission	501	228	-	273	501
MARS Short Stay	545	224	30	291	515
MARS Long Stay (minimum energy)	919	224	458	237	461
MARS Long Stay (fast transit)	879	150	619	110	260

Table 20: Possible mission scenarios for SR2S

Table 21: DRF for possible SR2S mission scenarios

Mission	Total Mission Duration	Total Days in Deep-Space	Solar maximum DRF	Solar minimum DRF
Lagrange's Points [LEM2]	200	200	on and the discussion of the second statement of the	-
NEA	410	~380	~1,19	~1,67
MARS TITO mission	501	501	1,57	2,21

Shield in space if it is "thin"then it "adds" dose

Advanced materials can help SPE not GCR

39

So we turn to active radiation shields

Active magnetic shielding

Doughnut-shaped manned spaceship, pictured near Mars, wards off lethal solar protons (curved white trails) with huge built-in magnetic coil (below, left).

41

Magnetic shield configurations

- The angular deflection in the magnetic field may be compared to the kinetic energy lost by ionization, where BL replace the electromagnetic and nuclear radiation length to characterizing the shielding performance of the material
- Unconfined Field (e.g. Earth's field), very large volume (L), lower field strength (B)
- Confined field: small volume (L), higher field (B) and larger mass

Superconductivity

100 Years of Super Conductivity

1913

1972

1987

2003

Normal conduction Wire

Metal atoms oscillate \Rightarrow cause friction \Rightarrow HEAT

Super-Conduction at -270°C (Kammerlingh-Onnes 1911)

Superconducting Shield

current

SEVENTH FRAMEWORK

PROGRAMM

Metals: Pb, Nb, Ti ⇒ Atoms rest, Cooper pairs of electrons move frictionless (Quantum Mech.)

Quench: loss of superconductivity due to relative motion of wire => friction => heat

The ATLAS superconducting toroid

Superconductivity in space : why?

AMS SC magnet qualified for space

SEVENTH FRAMEWORK

Previous Monte Carlo Studies

Configuration	1 Hoffman et al.	2 Choutko et al.	3 Spillantini et al.
Magnet Mass (t)	400-1600(1)	31 (2)	90 ⁽³⁾
BL (<u>Tm.)</u>	15,6	17	20,3
iux reduction factor	10	4-7	10
Dose (rem/y)	MARCHING AND	<u> </u>	
Diameter/Length (m)	10/10	4/5,5	6/10
Shielded Volume (m ³)	269	69	282
3D Magnetic Transport	No	Yes	No
Full MC CR Simulation	No	Yes	No
Structural mass in MC	No	No	No

total mass including coil, mechanical structure, cryocooler, liquid helium

(2) quoted as "magnet system weight"

(3) cold mass x 1,5

Table 5.1 Summary of previous studies on toroidal magnetic shield systems

Active magnetic shielding

Principle of operation

B field tangent to the shielded volume bends particle away

toroidal B field, orthogonal to Hab axis
solenoidal B field, parallel to Hab axis

1) TOROIDAL-ORTHOGONAL FIELD

eg. racetracks toroid

49

...but also

Supe

conducting Shield

SEVENTH FRAMEWORK

PROGRAMME

2) SOLENOIDAL-PARALLEL FIELD

eg. coaxial solenoids

51

...but also

Shielding power : SBdL

For an ideal toroid, the shielding power is defined as

$$\Xi = \int_{R_i}^{R_e} BdR = \frac{\mu_0 NI}{2\pi} \ln \frac{R_e}{R_i}$$

--> large radius --> large B we would reach effective shielding with BdL≈15 Tm

Magnet mechanical structure

 $P(Pa) = B^2/2\mu_0 (T^2)$

Toroidal field →B non uniform→ 1-large inward pressure →<u>structural mass</u> 2-low leakage field

Solenoidal field \rightarrow B is uniform \rightarrow 1-large outward forces 2-large leakage field \rightarrow compensation coil

Avoid stresses on superconducting cable $\rightarrow \underline{coil \ support}$

SRS2 tradeoff -> racetrack toroid system

Structure configuration

Magnet mechanical structure

Magnet design iterations in SR2S

- Structure design optimization:
 - -minimize the material traversed by GCR to avoid secondary production
 - –maximize the BdL to deflect away Z<3 particles</p>
 - –exploit the passive material to absorb Z>2 particles (stopping power)
- Perform Monte Carlo calculations of the dose reduction factor for GCR and SPE
- Improve the use advanced materials and mechanical solutions to reduce mass.
- Current design configuration: $BdL \approx 8 Tm$

Example of mass optimization

Analytical and Monte Carlo analyses

$$K_{\eta} = -\frac{E}{\eta} \left(1 - \sqrt{\left(\frac{q}{m_0} \frac{\chi}{c(1 - sin\varphi)}\right)^2 + 1} \right)$$

K_η:Cut off energy per nucleon E: rest mass η: number of nucleons q: charge m₀:mass c: light speed χ: Shielding power φ:incidence angle

See M. Giraudo talks

Magnetic shielding of a SPE event

500 SEP protons generated around the habitat in the direction of the origin (0,0,0)

Superconducting cable for space applications

Superconductors for space

Main issues:

- Lightness
- Stiffness
- High thermal capacity High conductivity (greater heat content, easier to protect)

Superconducting Compound	I _c in Kelvin	Hc ₂ at 4.2 K in Tesla	Mass Density (g/cm ³)
Nb-Ti	9	10	6.0
Nb₃Sn	18	28	7.8
MgB ₂	39	up to 70	2.5
YBCO-123	90	> 50	5.4
BSCCO-2223	108	> 50	6.3

Columbus cable for magnet applications

Overall weight per 1m of MgB2 standard cable: 17 grams

19 MgB₂ filaments

Nickel cladding

OFHC copper tape laminated (by tin soldering)

MgB₂ superconducting cable for magnet applications:

•Flat tape (3x0,5mm) multifilamentary tape, nickel clad

•Overall dimensions: 3x0,7mm

Columbus cable for SPACE applications

Which way is it possible to reduce the averall weight for reducing the launching load?

<u>1- REDUCE THE WEIGHT:</u>

-substitute nickel cladding with a lighter metal (titanium) -substitute copper stabilizer with aluminum stabilizer

2- IMPROVE CRITICAL CURRENT DENSITY:

-If we are able to improve the current density, we can reduce the overall amount of conductor to be wound in the magnet

Columbus cable for SPACE applications

Materials densities:

titanium: ρ = 4.5 g/cm³ alluminium: ρ = 2.7 g/cm³ MgB₂: ρ = 2.55 g/cm³

<u>Materials weights per</u> <u>component (per meter):</u>

titanium: 5.4g

alluminium: 4.0g

MgB₂: 0.77g

Materials percentages:

titanium: 40% alluminium: 50% MgB₂: 10%

Global weight per 1m of MgB2 SPACE app. cable: 10.2 grams

Columbus cable for SPACE applications

FROM:

3x0,5 nickel clad wire 3x0,2 copper stabilization <u>TO:</u>

3x0,5 titanium clad wire 3x0,5 alluminium stabilization

FROM 17 TO 10.2 grams,

40% weight reduction

Cryogenics and thermal control system

SEVENTH FRAMEWORK

Cryogenics concept

Thermal links

- Conductive thermal link between the cold mass of the magnet and the 2nd stage of the cryocoolers
- Efficient thermal links between the 80 K thermal shield and the 1st stage of cryocoolers
- No gravity, high heat transfer, passive (no pump) and <u>long</u> <u>thermal link</u>
- Pulsating Heat Pipe

R&D on large Cryo-Pulsating Heat Pipes

• A pulsating heat pipe is a small tube without wick structure partially filled with a working fluid and arranged in many turns

R&D on Cryo-PHP

- Use of 4-m horizontal cryostat
- Use of 8-m vertical cryostat

perconducting Shield

R&D on Cryo-Loop Heat Pipe

Selected TCS devices

LHP is based on the fluid evaporation inside a porous wick

- Completely Passive System
- Self regulating heat transport (e.g. valves)
- Possible long transportation line
- Highest thermal conductance

R&D on AMS-02 Loop Heat Pipe

Similar TCS concept for SR2S

- **Cryocooler Power to be dissipated** ~630W

TCS solution adopted

- 4 Cryocooler (Stirling Cycle)
- 8 LHP lines : 4 (main)+ 4(red) lines
- Radiator with embedded LHP (Area ~6m²)

Identify critical technologies and TRL

We have identified 10 Critical Technologies which would need significant R&D to meet the requirements of an active shield for Space Exploration. Critical Technology #1 ITSC and HTSC wires of better suitable quality (MgB₂, YBCCO) Critical Technology #2 Lightweight coils, congifuration, design and assembly Critical Technology #3 Cryogenically stable, light mechanics Critical Technology #4 Gas/liquid based recirculating large cooling systems Critical Technology #5 Cryo-coolers operating a low temperature Critical Technology #6 Magnetic field flux charging devices Critical Technology #7 Quench protection for ITS/HTS coils Critical Technology #8 Space deployment and assembly of magnetic elements Critical Technology #9 Super cryo-insulation, radiation shielding, heat removal Critical Technology #10 Superconducting Cable splicing in space

Critical technologies and TRL

• Improvement of SC cable : MgB₂, YBCO

Process	J _e (A/mm²) at 10K, 2 T	J _e (A/mm²) at 10K, 4 T
Carbon doping	200	130
Ball milling	250	200
Improved Boron	450	350
High pressure process	700	500

• Development of large, light coils

Critical technologies and TRL

Deployable technologies

76

Low heat leakage cryostats and cryogen-free technologies

Critical technologies and TRL

Flux pump power supplies

77

Quench protection systems for HT SC

Ground demonstrator philosophy

Radiation shield development plan

AMS: A TeV precision, multipurpose spectrometer TRD Particles and nuclei are defined by their TOF Identify e⁺, e⁻ **Z**, **E** charge (Z) and energy ($\mathbf{E} \sim \mathbf{P}$) HHAPPARPART and a contraction Magnet **Silicon Tracker** TRD Ζ. Ρ TOF 3-4 > 5-6 **>7-8** TOF **RICH** RICH **Z**, **E ECAL E** of <u>e⁺</u>, <u>e⁻</u>, γ 29 ECA **P** are measured independently by the Track **RICH, TOF and ECAL**

AMS today

.

1

Y.

300

1 mar

Ĩ

*** Te**

"First Result from the AMS on the ISS: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-350 GeV"

Selected for a Viewpoint in Physics and an Editors' Suggestion [Aguilar,M. et al (AMS Collaboration) Phys. Rev. Lett. 110, 1411xx (2013)]

Published by American Physical Society,

Open issues after AMS-02

- Dark matter (LHC will not be able to explore mχ> O(100)GeV)
 - Positrons at the 1-10 TeV scale
 - Antiprotons at the 1 TeV scale
 - Gamma rays at the TeV scale
 - Antideuterons at the GeV scale
- Spectral features at the knee scale
 - Protons at the PeV scale
 - Helia at the PV scale
 - Ions at the 100 TV scale

What will the Positron Fraction look like at high energy?

Expected AMS-02 reach in 10 more years

Current limits: neutralino/chargino 7

How to reach the O(10 TeV) scale ?

• Exposure : increase by a factor O(100) for e+

From 0.05 to 5 m2sr

- Detector : capable to deal with 10 TeV particles
 - Tracker + Magnet \rightarrow MDR > 20 TV
 - ECAL \rightarrow ECAL+HCAL

AMS-03 : expected rates detection tools/limitations

ELECTRON AND POSITRON PHYSICS @ AMS-03

	i m2 sr	3,14E+07	s/v			ACCESSIBLE	EXCLUDED	EXCLUDED
eV	10^8	10^9	10^10	10^11	10^12	10^13	10^14	10^15
scale	100MeV	GV			тv			PV
Integral 1/v	@ 0 1_1	@ 1-10	@ 10-100	@ 100-1000	@ 1 000 ->	e 10 000 x	e 100 000 x	e 1 000 000 b
Integral . 1/y	.@ 0,1-1		.@ 10-100	.@ 100-1000	.@ 1.000 ->	.@ 10.000 ->	.@ 100.000 ->	.@ 1.000.000 ->
e-	4,99E+10	3,11E+09	1,56E+08	9,33E+05	7,78E+03	7,78E+01	7,78E-01	7,78E-03
e+	2,50E+09	1,56E+08	1,56E+07	1,40E+05	1,17E+03	1,17E+01	1,17E-01	1,17E-03
Detectors	tracker, TOF, TRD, ECAL	tracker, TOF, TRD, ECAL	Tracker, TRD, ECAL	Tracker, TRD, ECAL	Tracker,SRD,ECAL	Tracker, SRD, ECAL		
Variables	R, beta, gamma, energy	R, beta, gamma, energy	R, gamma, energy	R, gamma, energy	R,Energy, Syncrotron Radiation	R, Energy, Synchroton Radiation		
Physics	Van Allen, solar, subcutoff	solar, geomagnetic, galactic	DM, galactic, asymmetries	DM, galactic, asymmetries	DM, galactic	DM, galactic, moon shadow, sun shadow	DM, galactic	DM, extragalactic, knee

AMS-03 : expected rates and detection tools/limitations

PROTON and HELIUM PHYSICS @ AMS-03

5	m2 sr	3,14E+07	s/y			ACCESSIBLE	ACCESSIBLE	ACCESSIBLE
	10^8	10^9	10^10	10^11	10^12	10^13	10^13	10^13
	TOOMEY							PV
Integral . 1/y	.@ 0,1-1	.@ 1-10	.@ 10-100	.@ 100-1000	.@ 1.000 ->	.@ 10.000 ->	.@ 100.000 ->	.@ 1.000.000 ->
p	4,99E+10	9,96E+10	1,99E+10	3,97E+08	7,19E+06	1,44E+05	2,86E+03	5,71E+01
Не	1,80E+09	1,79E+10	3,58E+09	7,14E+07	1,29E+06	2,58E+04	5,15E+02	1,03E+01
Detectors	tracker, TOF, RICH	Tracker, (RICH)	Tracker	Tracker	Tracker	Tracker+ HCAL	Tracker+ HCAL	Tracker+ HCAL
Variables	R, beta	R	R	R	R	R, Energy	Energy	Energy
Physics	Van Allen, solar, subcutoff	solar, geomagnetic, galactic	galactic	galactic	galactic, moon shadow, sun shadow	galactic, moon shadow, sun shadow	galactic	extragalactic, knee

PRELIMINARY DESIGN (25-10-2013) (B) with SC magnet

ToF + Tracker + Ecal/HCAL + SRD-Like

SRD-like: 2D X-ray detector to be installed on the top of the magnet on the space station

Magnet: (B) MgB2 double helix (perfect dipole) : Inner radius 130 cm, Height 100 cm, B-field 1 Tesla Weight: 1 Ton , MDR 56 TV, Acceptance 6 times AMS-02-Magnet

ECAL: Radius 130cm, tungsten absorber, scintillating fibers with SiPM readout, Thickness 32 cm, 37 Radiation Length, Weight < 15 Tons Acceptance 75 times AMS-02 ECAL</p>

Hadronic energy resolution of the ECAL : to be calculated , expected 30-40% @ TV scale

Tracker: 5 carbon fiber disks in a carbon fiber support structure with

a top and bottom silicon layer on each disk.

Single Point resolution < 0.002 mm. Technology : CMOS camera arrays being developed for LHC during the last 10 years (record resolution 600 nanometers)

Expected Acceptance: 9 m² sr MDR: 56 TV

AMS-03-SC

How to get to micron tracking accuracy

- 1) AMS experience show us that through suitable cooling micron level stability can be achieved over O(1)m³ using stiff CR as alignement tool
- 2) Space seems to be the right place to implement O(1) um resolution tracking which is considered for LHC upgrades and has been developed for at least 10 years.

Fig. 3. Layout of a Successor2 prototype, showing four arrays of 32x32 pixels. The arrays described in this work are located in the bottom part: the 3 transistor standard structures are on the left while the self-biased diodes are on the right. Two upper arrays contain a novel PhotoFET charge sensing element, not discussed in this work. On top of the device, large test structures for the study of irradiation effects through C-V and I-V measurements are included

Fig. 1. Cross section of silicon wafers used for the fabrication of CMOS monolithic pixel sensors. On the left, the structure of epitaxial type wafer is shown. On the right the non-epitaxial, high resistivity wafer is presented.

Table 3. Intrinsic resolution measurements for APS devices

Sensor	Telescope	Sigma	Telescope	Telescope	
	Method	of the Fit	on-a-chip	on-a-chip	
				with $\sigma_{predicted}$ subtraction	
	[µm]		[µm]	[µm]	
RAPS03 (small phot.)	1.400 ± 0.260	1.870 ± 0.500	1.560 ± 0.100	n.a.	
RAPS03 (large phot.)	n.a.	1.780 ± 0.920	1.100 ± 0.240	n. a.	
MT9V011	n.a.	0.851 ± 0.185	0.694 ± 0.478	0.580 ± 0.230	
MT9T031	n.a.	0.739 ± 0.150	0.493 ± 0.280	0.375 ± 0.158	
MT9T012	n.a.	0.323 ± 0.081	0.287 ± 0.216	0.297 ± 0.053	
MT9T013	n.a.	0.280 ± 0.103	0.240 ± 0.122	0.166 ± 0.037	
MT9J003	n.a.	0.311 ± 0.073	0.137 ± 0.087	0.090 ± 0.027	

Micron accuracy, tiles tracker

High accuracy dipolar MgB₂ magnet

Fig. 2. Conceptual view of pure dipole windings.

The current density at any given location in z is a function of ϑ only, whereas $J = J_0(\vartheta)$ and its components are proportional to:

Fig. 3. Center cut of the 4 layer "cos-theta" dipole.

Fig. 8. Actual cross section of the dipole tested.

Conclusions (1)

- The SR2S project brings one of the most challenging magnet systems to be built
- Various of the technologies for such a space superconducting system do not exist yet
- SR2S is an extraordinary technology development field and technology driver

Conclusions (2)

- Active Radiation Shielding for exploration is a necessity
- Passive shielding for GCR is not adequate and for SPE can only protect limited volumes
- Active magnetic shielding becomes effective at high ∫ BdL values and only if the material thickness traversed by the GCR is "small"
- Interplay between active and passive shielding is complex and detailed simulations are needed to understand it

Conclusions (3)

- Optimization of magnetic and structural forces is mandatory
- During the first year SR2S has developed the basic tools for active shield analysis, started a sistematic investigation and achieved important technological developments
- We are analyzing a toroidal configuration: other magnetic configurations would also deserve careful study
- Collaboration and synergy with NASA, ESA and EU

- A R&D path towards future developments for *light, high field, modular* toroidal shield design has been identified
- <u>Multi-TeV Cosmic Ray</u> physics would be accessible with a SC spectrometer based on SR2S technology and based on recirculating cryogenics

Thank you !

backup

SC cables

