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Outline

1 - Why are we interested in MW-like galaxies?
2 - What populations made the mass growth of the MW?

3 - Highlight from Gaia: searching for the in situ halo of the MW



1 - Why are we interested in MW-like galaxies?
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Why are Milky Way-like galaxies interesting?
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Stellar Mass [Mg]

The stellar mass of the MW is ~ 5.101° Mo

‘A randomly chosen star in today’s Universe is most
likely to live in a galaxy with a stellar mass between
that of the Milky Way and Andromeda.’,

Nelson et al. 2018

Stellar-mass density distribution of galaxies
Papovich+2015

In the local universe, most stellar matter is in ~ MW-mass galaxies

> We want to know how they form
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A Milky Way like galaxy?
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The Milky Way

Gas history (accretion, consumption) Stars history (accretion, redistribution)
Time Stellar populations Structure formation
Collapse

Components
Inner halo Accreted
Thick disk , 1 halo

[ Outer disk ] Thin disk Bulge

=Bar?

What we have been doing in the last 20 years is largely to (try) deconvolve the
in situ / ex situ components



Some of my favorite questions where Gaia will help us

Time Stellar populations Structure formation
Collapse

Components
Inner halo Accreted
Thick disk : w halo

[ Outer disk J Thin disk Bulge

=Bar?
v "
v v
Understanding the Measuring the Age dating the Finding halo
outer disk global SFH bar? substructures?

(structure, chemical evolution)




2 - What populations made the mass growth of the MW?

Measuring the Star Formation History of the Milky Way



MW: present star formation properties
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Milky Way
" log(M(Mo))= 10.69
log(SFR/Muw(year-1)) ~ -10.22

The MW is on the low side of star forming
galaxies: it has almost finished forming

stars (SFR~1-3 Mo.yr-1), increasing its
stellar mass by only a few % per Gyr

How do we measure the Star Formation
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History of the MW?



From stellar ages: Even with Gaia, this is going to be difficult. WHY?

The Gaia DR2 age sphere:
typical parallax standard error: 0.04 mas at G=15, or 10% relative error
on distance for a G-type star at ~1.6 kpc




From stellar ages: Even with Gaia, this is going to be difficult. WHY?

typical parallax standard error: 0.04 mas at G=15, or 10% relative error for a star at ~1.6 kpc

A

R [kpc]
GC
Gaia DR2 age sphere

Local age distribution strongly biased against old stars

The inner disk, which makes up most of the mass of the MW,
Is only a few % at the solar vicinity

Go for galactic archeology from spectroscopy = the intensity of the past SFR is imprinted in stellar
abundances



The SFH of the MW is encrypted in chemical abundances of its stars
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The higher the SFR, the steeper the age-[alpha/Fe] relation
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The Star Formation History from stellar abundances

[o/Fe]

0.1

Observed age-alpha relation from the solar vicinity, Haywood et al. 2013

From a sample of solar vicinity F,G stars at the solar vicinity:
and accurate spectroscopy from Adibekyan et al. (2012)
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The Star Formation History from stellar abundances

Snaith et al. 2014, 2015

redshift
;

(SiFa)
A

, AR - Fitted age-[a/Fe] relation 2] /\/

and corresponding SFH = m
Two results: ol P

e The TD represents ~ 50% of the MW stars

O .

14 12 10 8 6 4 2 0
e The TD formed stars at a rate of about Age [Gyr]

10-12 Mo/yr ~90% 50%

thick disk phase  thin disk phase

The thick disk was the dominant epoch of star formation in the MW
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Typical level of SFR for a MW-mass galaxy (~ 5. 101°Mo)
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a larger scale?




What constraints on
a larger scale?

APOGEE survey,
Majewski et al. 2017
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APOGEE 2 (on-going),
300 000 science targets




The thick disk chemical pattern can be traced well beyond solar vicinity:

APOGEE shows that the alpha-rich sequence is present and strong at R<10kpc but is
essentially absent from the outer disk (R>11 kpc)
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APOGEE survey, Majewski et al. 2015 75 100
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The [¢/M] distribution is bimodal
in all the inner disk
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SFR (arbitray unit)
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A bimodal [ot/Fe] distribution requires a very specific SFH



SFR (arbitray unit)

# (arbitrary unit)

A two phases SFH generates...
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APOGEE data
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* The SFH deduced from solar
vicinity data is a good
match to large scale
chemical data

e The minimum in the [ot/M]
distribution Is associated to
a ‘quenching’ episode
experienced by our Galaxy
about 10 Gyr ago (Haywood
et al 2016)



MW MASS GROWTH: the importance of the thick disk

14% (of the total disk) (Bland-Hawthorn & Gerhard ARAA2016) ?
50% Snaith et al. (2014, 2015) ? _
Mass growth of MW-type galaxies

z=0 0.5 1 2 3 van Dokkum+2013, cf also Papovitch+2015
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- - At 14%, the MW is an outlier of the
thick disk phase evolution of MW type galaxies

It is the formation of a massive thick disk that allows the MW to follow the general
evolution of MW-mass galaxies
24



ABUNDANCGES as tests of INSIDE-OUT FORMATION

Inside-out disk formation leaves specific signatures in chemical abundances
that are not observed:
the spread in [ot/Fe] is expected to be significant (>0.2 dex), it is <0.1 dex
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The thick disk did not formed inside-out and is chemically homogeneous at any
given time
=> the TD formation was a general process (10 kpc scale) that included strong

mixing -



What put an end to the
formation of the thick disk?



After the thick disk: What put an end to the

formation of the thick disk?

Galaxy (u-r)

Depletion of fuel for star formation?
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Not favored because MW-like galaxies show substantial amount of molecular gas at z~1
(Tacconi et al., 2013; Saintonge et al. 2013; Zavadsky et al. 2015)

A possibility:
Formation of a strong bar?
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Kruk et al., 2017

At a given mass, galaxies with bar

are redder, i.e, have less star formation
see also James & Percival, 2018 on
nearby galaxies



After the thick disk: What put an end to the
formation of the thick disk?

The epoch of thick disk end is the epoch of bar formation for Milky Way-mass
galaxies, or z=1-1.5, see Sheth et al. 2008; Melvin et al. 2014

Could the bar have played a role?

Khoperskov et al. 2018

Simulations of gas rich disks with bar formation:
The bar increases the random motion of the gas,
stabilizing the gas layer against fragmentation,
suppressing star formation

A strong bar is able to decrease the SFR
by a factor of ~ 10, in less than 1 Gyr

28



3 - Highlight from Gaia: searching for the in situ halo of the MW

(or: the Galactic halo before
and after Gaia)
see Haywood et al. 2018

ERIS simulation of a MW-Ilike stellar halo




g, T/ Mz kpe #

MW:-like galaxies are expected to have a halo made of both in situ and accreted stars

Milky Way-like stellar halo density distributions
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Stellar density break at the passage between in situ and accreted halo stars



Standard view of the Milky Way Galactic halo (before Gaia)
See Carollo et al. (2007), Belokurov (2013)

-1.6<[Fe/H]<-1.4

Two components:

e |n-situ, dominating the inner halo (<15-20kpc)
e MDF peaks at [Fe/H]~-1.5

e Age > 10 Gyr

e Flattened distribution

e Accreted, dominating at > 20kpc
e Dominate at [Fe/H]<-2.0

e Younger ages

e Spherical distribution [Fe/Hl<-22

Density profiles for the in situ (top)
and accreted (bottom), according to Carollo et al. (2007)




GAIA COLOR-MAGNITUDE DIAGRAM

Disk stars
Tangential velocities V1 - 40km.s-1
(velocities perpendicular to the line of sight)

~1.8x106 stars

Gaia Collaboration, Babusiaux et al. 2018




One of the Gaia highlights:
The first colour-magnitude diagram of the thick disk and halo

10

15 -

High velocity stars
Tangential velocities V1 > 200km.s-1
(velocities perpendicular to the line of sight)

~64700 stars

Gaia Collaboration, Babusiaux et al. 2018



One of the Gaia highlights:
The first colour-magnitude diagram of the thick disk and halo

Cleaner sample (stars with low extinction)
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One of the Gaia highlights:
The first colour-magnitude diagram of the thick disk and halo
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Gaia collaboration et al. :~1dex metallicity separation between the two sequences

Blue sequence: stellar halo
Red sequence: thick disk



High velocity stars with chemistry from the APOGEE survey
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What is the kinematics of these two groups?
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KINEMATICS OF GAIA HRD BLUE AND RED SEQUENCES

Toomre diagram

500
see also Koppelman et al. 2018« e The stars in the red sequence are the high-velocity

200 . R tail of the thick disk
@ T etk : Some are counter-rotating:
E . ° b - -
< 300 . could be the consequence of an interaction,
L I &v... | see Jean-Baptiste et al. 2018
+ 200 o e
> . ,'.::" e Stars in the blue sequence form a blob at high-energy,

0 SN more 110 no-rotation

° o g o %% s stars=
R
0_

700 —-600 -500 —400 -300 —200 —100 O
V [km/s]

Energy-Angular momentum diagram

E [(100km/s)?]

|
=
N

_14 .

—3000 —2000 —1000 0 1000 2000

Lz [kpc*km/s]



ORBITAL PARAMETERS OF THE HRD BLUE AND RED SEQUENGCE STARS
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e Blue sequence dominates at R2Dmax > 15-20kpc
e Wedges are seen in both the thick disk and

‘halo’ stars. What are they?
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What was the mass of the progenitor?
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Does it have a name? Several:
‘Gaia sausage’, Belokurov et al., 2018
‘Gaia Enceladus’, Helmi et al., 2018

Possibly 8 associated globular clusters, Viyeong et al. 2018




Conclusions |

The Galactic stellar halo:

e What we thought was the in situ inner halo is probably dominated by the
remnants of a single, massive, merger, *not* by an in-situ population

e We are still looking to identify a possible In situ component that pre-dated
the thick disk



Conclusions i

The Thick disk:

® |s not a fortuitous (accretion or interaction-like event) component of the MW:
it formed during an epoch of active star formation

e |s massive, and dominated the first Gyrs of the formation of the MW

e Puts the MW mass growth in accord with that of MW mass galaxies

¢ Did not form inside-out

42



Several features of the thick disk of the MW could be generic to thick
disk formation in general:

e massive component
e chemical homogeneity

e Star formation ‘quenched’ due to the bar permitted the transition of the
thin disk

Need to investigate these in Milky Way-like galaxies !




