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Outline
® Structures in protoplanetary discs

e MWC 758: an archetypal transition disc?

+ observational constraints
+ two giant planets in the MWC 758 disc?

¢ A migrating mini-Neptune planet in the HD 169142 disc?

o Intermittent planet migration and the formation of multiple rings
in protoplanetary discs
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Structures in protoplanetary discs

® Spatially resolved observations indicate that radial discontinuities and (large-scale) asymmetries
may be common features of the continuum emission of protoplanetary discs
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Dark and bright structures of continuum emission are
often interpreted as dust under- and over-densities; not
so simple, however:

specific intensity: IV(T) = BV (Tdust)(l — B_T)
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® Spatially resolved observations indicate that radial discontinuities and (large-scale) asymmetries
may be common features of the continuum emission of protoplanetary discs
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+ Optically thick (z » 1) thermal emission probes
dust temperature

+ Optically thin (z = 1) thermal emission probes
HD 163296 dust temperature and density

dust emission is not necessarily dust density

dust and gas may have different spatial
distributions and temperatures
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® Spatially resolved observations indicate that radial discontinuities and (large-scale) asymmetries
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R ¢ Dark and bright structures of continuum emission are
often interpreted as dust under- and over-densities

e How to explain these structures?

32x23mas’ + transitions between dark and bright structures
imply the presence of dust traps which prevent
dust from drifting towards the star

Elias 27

+ dust traps can be formed at local maxima in the gas
pressure

— planets? magnetic effects? photo-evaporation?
(magneto-)hydrodynamic instabilities?...

+ need for multi-wavelength observations to
constrain these structures and disentangle the
various scenarios
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MW(C 758: an archetypal transition disc?

¢ The disc around MWC 758 nicely illustrates that discs may look very different when observed
at different wavelengths

star: Herbig A5, mass: 1.5+ 0.2 Mo (15), age: 3.5 +2.0 Myr (16), dist.: 160 +2 pc (1), M, ~10"° Mo yr'1
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— clump 1 is narrower at 9 mm: signature of dust’s azimuthal trapping?
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® The disc around MWC 758 nicely illustrates that discs may look very different when observed
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MWC 758: an archetvpal transition disc?

e The disc around nicely illustrates that discs may look very different when observed
at different wavelengths
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MWC 758: an arce ypal transition disc?

e The disc around nicely illustrates that discs may look very different when observed
at different wavelengths
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® can planet(s) explain the dust clumps and spirals



mw disc: physical model and numerical methods

2D gas+dust simulations post-processed with dust radiative transfer calculations

28



mw disc: physical model and numerical methods

2D gas+dust simulations post-processed with dust radiative transfer calculations

Cras model

e Navier-Stokes equations solved on a
2D polar grid (FARGO code)
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2D gas+dust simulations post-processed with dust radiative transfer calculations

{ CGras model
1

Perturl())ed Gas den?ity at 1323 ozrbits

e Navier-Stokes equations solved on a
2D polar grid (FARGO code)

100 5M upiter
@ 140 AU

¢ Two giant gap-opening planets: gap
edges form vortices via the Rossby-
Wave Instability
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2D gas+dust simulations post-processed with dust radiative transfer calculations

{ CGras model
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Perturl())ed Gas den?ity at 1323 ozrbits

e Navier-Stokes equations solved on a
2D polar grid (FARGO code)

100 5M upiter
@ 140 AU

¢ Two giant gap-opening planets: gap
edges form vortices via the Rossby-

- 50
Wave Instability
3
e Locally isothermal equation of state & ©
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% 28 disc: physical model and numerical methods

2D gas+dust simulations post-processed with dust radiative transfer calculations

{ CGras model
1

Perturl())ed Gas den?ity at 1323 ozrbits

e Navier-Stokes equations solved on a
2D polar grid (FARGO code)

100 5M upiter

¢ Two giant gap-opening planets: gap @140 AU
edges form vortices via the Rossby- 50 .
Wave Instability
)
e Locally isothermal equation of state & ©
with T(R) ~ 90K x (R/35 au)1
-50
® Small turbulent viscosity a = 104
-100

e Gas self-gravity taken into account
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28 disc: physical model and numerical methods

2D gas+dust simulations post-processed with dust radiative transfer calculations

1

Duskt model

e [agrangian particles that feel:

o the gravity of the star and planets

o the gravity of the gas since gas

self-gravity is included
® gas drag

® gas turbulent viscosity

Perturl())d Gas denﬁity at 1323 02rbits
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% 28 disc: physical model and numerical methods

2D gas+dust simulations post-processed with dust radiative transfer calculations

{ Dusk wmodel

Perturl())d Gas denﬁity at 1323 02rbits

e [agrangian particles that feel: -1
o the gravity of the star and planets 1R
o the gravity of the gas since gas 100
self-gravity is included
® gas drag 50 10° =
® gas turbulent viscosity %
Z
e Discard dust self-gravity, growth, = §
fragmentation, and feedback on gas 5
50 1076
-100 decaying vortex,
dust loses azimuthal trapping 10°
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m 28 disc: physical model and numerical methods

2D gas+dust simulations post-processed with dust radiative transfer calculations

[ Dust model

Perturl())ed Gas denﬁity at 1323 ozrbits

e Lagrangian particles that feel: 1

o the gravity of the star and planets 10°

o the gravity of the gas since gas 100

self-gravity is included
® gas drag 50

—t
Q
w

Particles size [m]

® gas turbulent viscosity

e Discard dust self-gravity, growth,
fragmentation, and feedback on gas

e Dust dynamics is primarily set by
the Stokes parameter St « Spint / Lgas
via the ratio St/« f L4

: gas surface
f dustsize dust’s density

gas turbulent viscosity internal -100 -50 0 30 100
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mw disc: physical model and numerical methods

2D gas+dust simulations post-processed with dust radiative transfer calculations

1

DPusk model

e Lagrangian particles that feel:

o the gravity of the star and planets

o the gravity of the gas since gas
self-gravity is included
® gas drag

® gas turbulent viscosity

e Discard dust self-gravity, growth,
fragmentation, and feedback on gas

® Dust particles between 10um and 1cm

with a size distribution n(s) oc s7!

an internal density of 0.1 g cm?,

and initial location between the dust grains from comet 67P collected by Rosetta
Schultz+ 2015

planets
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mw disc: physical model and numerical methods

2D gas+dust simulations post-processed with dust radiative transfer calculations

Radiative Eransfer (RT) we solve RT equation in 3D with RADMC3D code
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2D gas+dust simulations post-processed with dust radiative transfer calculations

Radiative Eransfer (RT) we solve RT equation in 3D with RADMC3D code

dust’s spatial distribution (simulation)
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dust’s spatial distribution (simulation)

o dust’s size distribution (e.g. n(s) « s73-5)
o dust’s total mass
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2D gas+dust simulations post-processed with dust radiative transfer calculations

Radiative Eransfer (RT) we solve RT equation in 3D with RADMC3D code

dust’s spatial distribution (simulation)
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dust’s surface density

l evertical expansion
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mw disc: physical model and numerical methods

2D gas+dust simulations post-processed with dust radiative transfer calculations

Radiative Eransfer (RT) we solve RT equation in 3D with RADMC3D code

dust’s spatial distribution (simulation)

o dust’s size distribution (e.g. n(s) « s73-5)
o dust’s total mass

dust’s surface density

l evertical expansion

(1)

dust’s volume density

e star
e opacities

 / ! dust is a mixture

T qust of a 511.1cate matrix,
water ices and

a vacuum inclusion
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mw disc: physical model and numerical methods

2D gas+dust simulations post-processed with dust radiative transfer calculations

Radiative Eransfer (RT) we solve RT equation in 3D with RADMC3D code

dust’s spatial distribution (simulation)

o dust’s size distribution (e.g. n(s) « s73-5)
o dust’s total mass

dust’s surface density

l evertical expansion

dust’s volume density L
= e star
l e opacities e Opacities
odisc geometry
\
e . 2,
specific intensity | < Tdust

ray tracing (RADMC3D)
(thermal absorption + anisotropic scattering)
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mw disc: physical model and numerical methods

2D gas+dust simulations post-processed with dust radiative transfer calculations

Radiative Eransfer (RT) we solve RT equation in 3D with RADMC3D code

dust’s spatial distribution (simulation)

o dust’s size distribution (e.g. n(s) « s73-5)
o dust’s total mass

dust’s surface density

l evertical expansion

dust’s volume density L
= e star
l e opacities e Opacities
odisc geometry
\
e . 2,
specific intensity | < Tdust

ray tracing (RADMC3D)

l ebeam, distance

flux map
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TWogMant planets sculpting the MWC 758 disc?
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® dust size distribution n(s) « s for s in [10um - Tcm], Mdust ~ 120 MEarth

® dustis a mixture of a silicate matrix, water ices and a vacuum inclusion
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® dustis a mixture of a silicate matrix, water ices and a vacuum inclusion




T % t planets sculpting the MWC 758 disc?
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® dust size distribution n(s) < s3 for s in [10um - 1cm], Mdust ~ 120 MEarth + 24 MEarth of small
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® dustis a mixture of a silicate matrix, water ices and a vacuum inclusion




% t planets sculpting the MWC 758 disc?

Baruteau+ 19
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® dust size distribution n(s) < s3 for s in [10um - 1cm], Mdust ~ 120 MEarth + 24 MEarth of small
dust well coupled to the gas between the two rings

® dustis a mixture of a silicate matrix, water ices and a vacuum inclusion -
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T % t planets sculpting the MWC 758 disc?
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® dust size distribution n(s) « s3- for s in [0.01um - 0.3um], Mdust ~ 8 Mgarth

® dustis well coupled to the gas, compact, made of silicates and amorphous carbons



Observational predictions of the presence of giant planets
in the dust’s radio emission of protoplanetary discs

Clément Baruteau (CNRS/IRAP, Toulouse)

Cubtline

¢ A migrating mini-Neptune planet in the HD 169142 disc?

CEA Saclay, 4 June 2019 53



A migrating minisNepttine in the HD 169142 disc?

Pérez, Casassus, Baruteau+ 19

e star: Herbig Ae, mass: 1.7 + 0.2 Mo (15), age: 63 Myr (16), dist.: 114 +1 pc (16), M, ~2x10"° Mg yr™
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A migrating minisNepttine in the D 169142 disc?

Pérez, Casassus, Baruteau+ 19

e star: Herbig Ae, mass: 1.7 + 0.2 Mo (15), age: 63 Myr (16), dist.: 114 +1 pc (16), M, ~2x10"° Mg yr™

e disc: rings and gaps seen in near-IR scattered light, and in the radio at several wavelengths
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A migrating minisNepttife in the FD 169142 disc?

Pérez, Casassus, Baruteau+ 19
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A migrating minisNepttine in the HD 169142 disc?

Pérez, Casassus, Baruteau+ 19
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The three narromzrings spotia forming planet

Pérez, Casassus, Baruteau+ 19
® 2D gas+dust simulations post-processed with dust radiative transfer calculations

Perturbed Gas densitX at 100 orbits
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The three narromzrings spotia forming planet

Pérez, Casassus, Baruteau+ 19

® 2D gas+dust simulations post-processed with dust radiative transfer calculations
e time evolution of the dust’s concentration
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The three narromzrings spotia forming planet

Pérez, Casassus, Baruteau+ 19

® 2D gas+dust simulations post-processed with dust radiative transfer calculations
e time evolution of the dust’s concentration
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The three narromzrings spotia forming planet

Pérez, Casassus, Baruteau+ 19

® 2D gas+dust simulations post-processed with dust radiative transfer calculations
e time evolution of the dust’s concentration
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The three narromzrings spotia forming planet

Pérez, Casassus, Baruteau+ 19

® 2D gas+dust simulations post-processed with dust radiative transfer calculations
e time evolution of the dust’s concentration
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— radial asymmetry of the dust rings is a natural outcome of the planet’s inward migration!
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The three narrow,rin®s spotia forming planet

Pérez, Casassus, Baruteau+ 19

® 2D gas+dust simulations post-processed with dust radiative transfer calculations

® RT calculation: dust size distribution n(s) « s3> for s in [10um - Imm], Mgust ~ 100 MEarin
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Observational predictions of the presence of giant planets
in the dust’s radio emission of protoplanetary discs

Clément Baruteau (CNRS/IRAP, Toulouse)

Cubtline

o Intermittent planet migration and the formation of multiple rings
in protoplanetary discs

CEA Saclay, 4 June 2019 64



How does planet migration shape the dust in discs?

Wafflard-Fernandez & Baruteau, in prep.

® Slow migration may result in radially asymmetric bright dust rings, as we’ve just seen
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How does planet migration shape the dust in discs?

Wafflard-Fernandez & Baruteau, in prep.

® Slow migration may result in radially asymmetric bright dust rings, as we’ve just seen

¢ What about rapid migration?
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How does planet migration shape the dust in discs?

Wafflard-Fernandez & Baruteau, in prep.

® Slow migration may result in radially asymmetric bright dust rings, as we’ve just seen

® What about rapid migration?

+ runaway migration in young massive discs for ~Saturn-mass planets Masset & Papaloizou 03
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How does planet migration shape the dust in discs?

Wafflard-Fernandez & Baruteau, in prep.

® Slow migration may result in radially asymmetric bright dust rings, as we’ve just seen

® What about rapid migration?

+ runaway migration in young massive discs for ~Saturn-mass planets Masset & Papaloizou 03

+ this migration regime can occur intermittently
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How does planet migration shape the dust in discs?

Wafflard-Fernandez & Baruteau, in prep.

Slow migration may result in radially asymmetric bright dust rings, as we’ve just seen

What about rapid migration?
+ runaway migration in young massive discs for ~Saturn-mass planets Masset & Papaloizou 03
+ this migration regime can occur intermittently

- a dust-trapping pressure maximum forms at the end of each stage of rapid migration
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How does planet migration shape the dust in discs?

Wafflard-Fernandez & Baruteau, in prep.

Slow migration may result in radially asymmetric bright dust rings, as we’ve just seen

What about rapid migration?
+ runaway migration in young massive discs for ~Saturn-mass planets Masset & Papaloizou 03
+ this migration regime can occur intermittently

- a dust-trapping pressure maximum forms at the end of each stage of rapid migration
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How does planet migration shape the dust in discs?

Wafflard-Fernandez & Baruteau, in prep.

Slow migration may result in radially asymmetric bright dust rings, as we’ve just seen

What about rapid migration?

+ runaway migration in young massive discs for ~Saturn-mass planets Masset & Papaloizou 03
+ this migration regime can occur intermittently

- a dust-trapping pressure maximum forms at the end of each stage of rapid migration

T = 12500 years
(139 orbits)

0.2
1.3 mm (model)

0.1

0.0

y [au]
Dec offset [arcsec]

=10

-20 -10 0 10 20 0.2 0.1 0.0 -0.1 -0.2
x [au] RA offset [arcsec]

e ~fy/beam
-0.6-0.4-0.2 0.0 0.2 0.4 0.610° 10~* 103 1072 1071

T ——— Size of dust grains s [m] 0 100 200 300 400 500 600 700 800

L P




How does planet migration shape the dust in discs?

Wafflard-Fernandez & Baruteau, in prep.

® Slow migration may result in radially asymmetric bright dust rings, as we’ve just seen

¢ What about rapid migration?
+ runaway migration in young massive discs for ~Saturn-mass planets Masset & Papaloizou 03
+ this migration regime can occur intermittently
- a dust-trapping pressure maximum forms at the end of each stage of rapid migration
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thanks for your attention!

Some open questions

HD 143006 Elias 20

HD 163296

=

Andrews+ 18, DSHARP collaboration (ALMA@1.3mm)

What structures are indirect signatures of planets?

If planets, why don’t we see them directly? Would observed structures rather

constrain planet formation or migration?
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mw disc: physical model and numerical methods

2D gas+dust simulations post-processed with radiative transfer calculations

Radiative Eransfer (RT) we solve RT equation in 3D with RADMC3D code
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