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Star formation: a multi-scale, intricate, and inefficient  process
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o The	energy	balance	of	molecular	clouds

o The	structure	and	dynamics	of	hub	filament	systems

o The	impact	of	OB	stars	on	their	parent	cloud		
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o Formation of GMCs requires the presence of converging flows: Gravity 
(e.g. Kim & Ostriker 2002); SN/HII region compression (e.g. Ntormousi+ 
2011; Inutsuka+ 2015); Galactic dynamics (e.g. Dobbs+ 2013)  
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o Virial balance:        EG=2EK ->				𝜶𝒗𝒊𝒓 =2EK/EG=1

𝜎'( ∝ Σ	R

o Heyer et	al	(2009,	2015)	proposed	that	GMCs	
are	all	self-gravitating	and	compatible	with	
virial equilibrium

o However,	one	expects	very	similar	relationship	
for	clouds	in	free-fall	(Ballesteros-Paredes	et	al.	
2011/2017)

𝜶𝒗𝒊𝒓 = 𝟏

𝜶𝒗𝒊𝒓 = 𝟒Heyer et	al.	2009

o A	majority	of	unbound	clouds	(𝛼'01 > 2)
(e.g.	Miville-Deschenes+	2017;	Schuller+2017)

Miville-Deschenes et	al.	2017
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o Sample of 27 IRDCs from 
Peretto & Fuller 2009 catalogue

o Kinematic distances: 3 to 5 kpc
(using Reid + 09 model)

o Masses: 300 to 20,000 Msun
in 1 to 6 pc diameters

o Aspect ratio: 1 to 6
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o All detected, with excellent correlation with column density

Peretto et al., to be subm
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o Following up clouds from few tenths to few tens of pc using 2D 
dendrogrammes …..

Peretto et al., to be subm
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o …. and line fitting all the way

Peretto et al., to be subm.

13CO large scale points N2H+ small scale points

Decreasing radiusLargest scale 
R = 23 pc

Smallest scale
R=0.3 pc

o Test of several methods for 13CO(1-0) velocity dispersion estimates
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o Profiles of m(R), σ(R), 𝛂vir(R) for every individual cloud

o In simple cases all three methods provide consistent values 
and transition between small and large scales is continuous 
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o Putting it altogether

Peretto et al., to be subm.

o Discontinuities in the dense (purple) and diffuse (green) parts of the 
profiles: What is the origin of these?
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o 1D modelling of observed cloud profiles

Peretto
et al., to b
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o N2H+(1-0) observations only trace the inner part of the model
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o Can the model, once projected on the sky and convolved at the 
resolution of the observations, explain the observed profiles?



o Modelled Profiles of m(R), σ(R), 𝛂vir(R) for every individual cloud

o Models do reproduce most observed features 
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o Overall comparison

Peretto
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o The dense clumps are dynamically decoupled from their parent, 
gravitationally bound, molecular clouds. 
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o What is the physical origin of such decoupling? Working on it.
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o Our IRAM 30m sample 
compared to the global 
population using Miville-
Deschenes+ (2017)  cloud 
properties from the 12CO(1-0) 
Dame et al. (2001) survey

Peretto et al., to be subm

o Our sample is clearly biased 
towards low virial ratio values

Sample bias compared to MW cloud population

o But what about complete samples of  clouds showing that the 
majority are unbound? 
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o Combined with single data: Infall velocity of ~ 0.7 km/s, only 1.6 times 
slower than the expected freefall velocity: Rapid collapse!!!
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Structure and dynamics of hub filament systems
o ALMA observations of the SDC335 hub (MH2=5500Msun in D=2.4pc)



o A OB star cluster is currently forming at the centre of SDC335 
(Avison+2015, Avison+ submitted.)

o A  500 Msun protostellar core at the centre of a globally collapsing clump 
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o Characterisation of  the SDC13 hub (M=1200Msun in D=3pc) 

Peretto
et al. 2014

Structure and dynamics of hub filament systems

o Consistent with longitudinal free-fall collapse of large aspect ratio 
filaments (Pak+2019 propose alternative scenario)

o “Massive” cores at 
the junction

o Velocity gradients 
in all filaments

o Increased velocity 
dispersion at 
junction



Structure and dynamics of hub filament systems

o NH3 JVLA observations of SDC13

W
illiam

s , Peretto
et al. 2018

Acceleration	mapH2 column	density	map Acceleration	profile

o Junction is a favored location for the formation of massive cores



Structure and dynamics of hub filament systems

o ALMA mapping of 5 IRDC with narrow distance range (2.1kpc to 2.9kpc) 
and large mass range (~200 to 2000 Msun)
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Structure and dynamics of hub filament systems

o Comparing core / clump masses as a function of cloud IR darkness and 
morphology – Csengeri et al. (2017) sample used for statistics

o No correlation between core and clump masses, but hubs concentrate 
more of the clump mass into the most massive core
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o Feedback from massive stars is responsible for  dispersing their host 
clouds and limiting the cloud SFE (e.g. Whitworth 1979; Elmegreen
1983; Williams & McKee 1997)

o But what type dominates? Ionisation, radiation pressure, winds (see 
Krumholz et al. 2014 for a review). 

During	erosion After	erosion
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o Large number of simulations that investigate the impact of certain type 
of feedback on their host cloud (e.g. Dale+2005 to 2017; 
Peters+2010/2011; Geen+2016/2018; Kim+2018; and many others)

K
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o The spatial mass distribution is key (see also Thompson & Krumholz 2016)
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o The G316.75 ridge: A O star-forming 20,000 Msun ridge, half IR bright 
half IR dark

The impact of OB stars on their parent cloud
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Herschel	 NH2 (x1020 cm-2) Herschel	 dust	temperature	 (K)

o Use the IR dark gas properties as initial conditions for IR bright part

RED:				 Herschel	250	μm
GREEN: Herschel	 70	μm
BLUE:			 Spitzer	24		μm
PINK:				 	Spitzer	8	μm

4-colour	image	with	radio	cont.	contours



The impact of OB stars on their parent cloud

o Use of 13CO(1-0), NH3(1,1) N2H+(1-0) archive data to probe gas 
kinematics at different density regime (from ~102 to 105 cm-3)
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o Velocity fields are similar 

o Velocity dispersions are 
larger for lower density 
tracers

o Localised peaks of very large 
(6km/s) velocity dispersion in 
the  active part of the ridge



The impact of OB stars on their parent cloud

o Computing the energy balance of the G316.75 ridge

o The vast majority of the gas is bound, in all tracers (i.e. densities), and 
little differences between the active and quiescent parts of the ridge

N2H+(1-0) NH3(1,1) 13CO(1-0)

:Virial ratio along the ridge

Watkins, Peretto +, submitted
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The impact of OB stars on their parent cloud

o Computing the escape velocity, and escape  mass fraction of the 
G316.75 ridge

o 5% to 10% of the dense gas is currently escaping, 20% of the more 
diffuse. Far from numerical predictions after 2Myr (~70%).
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The impact of OB stars on their parent cloud

o Testing radiation pressure
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o Gas should be blown away if:          
Lstar > LEdd

o Equivalent to (Thompson & 
Krumholz 16):

Σgas < Σcrit(Lstar)          

o Suppose a fully sampled IMF, 
with 2 to 4 O stars, that we 
randomly place

o The ridge is super-Eddington
nearly everywhere



The impact of OB stars on their parent cloud

o Testing ionisation feedback

o Only 8% of the G316.75 ridge mass 
has been ionised

o The  erosion of the ridge by the 
ionising photons of an embedded 
star

o Erosion stalls very quickly for the ridge density: Ionisation from O stars do 
not manage to disperse the ridge.
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Summary & conclusions
o Dense clumps are dynamically decoupled from their 

parent, self-gravitating, molecular clouds. Is that a 
result from clump collapse? Rotational support? 
Removal of B field support? 

o Massive hub filamentary systems are rapidly collapsing 
clumps in which the converging point of filaments 
represent a favored location for the formation of massive 
cores/stars. Is that true across all hub masses?

o The impact of O star feedback is rather to limit the 
formation of more dense gas onto the ridge. How does 
feedback impact gas properties as a function of cloud 
morphology?


