Astroparticles from the extragalactic universe

Séminaire du DAp 2020-01-14

Radio band from ground (Parkes, Bank) → relativistic electrons

Microwave from *Planck* (2009-2012) → *dust emission, relativistic electrons*

Far infrared from AKARI (2006-2011) → dust emission

Near infrared from ground (2MASS) → starlight, dust emission

Optical band from ground mosaic → **starlight**, **dust absorption**

X rays from *ROSAT* (1990-1999) → *relativistic electrons*

A story to the millennials

Radio band from ground (Parkes, Bank) → relativistic electrons

Microwave from *Planck* (2009-2012) dust emission, relativistic electrons

Far infrared from AKARI (2006-2011) → dust emission

Near infrared from ground (2MASS) → starlight, dust emission

Optical band from ground mosaic → starlight, dust absorption

X rays from *ROSAT* (1990-1999) → relativistic electrons

y rays from *Fermi*-LAT (2008-now) → relativistic electrons & hadrons

TeV y rays from IACTs (2005-now)

Gravitational-wave events

PeV v background from IceCube & ANTARES (since 2013) → relativistic hadrons

EeV cosmic-ray background from Auger & Telescope Array (since 1999) → most relativistic hadrons

→ relativistic electrons & hadrons

Extragalactic night sky: electromagnetic spectrum

All the galaxies in the universe

Emission from star-forming galaxies (e.g. starburst galaxies) & active galaxies (e.g. radio-galaxies, blazars)

Extragalactic night sky: electromagnetic & hadronic spectra

Extragalactic electromagnetic background

Diffuse backgrounds measured from radio to y rays, up to ~ 100 GeV

→ sources: known and (rather well) understood

Beyond ~ 100 GeV, background not measured

→ sources: partly known & understood

Extragalactic hadronic background

Diffuse backgrounds measured in:

- PeV neutrinos (few dozens of events)
- EeV cosmic rays (mostly isotropic sky)
- → sources: *unknown & far-from being understood!*

Most extreme accelerators in the universe?

Taking man-kind realizations as a reference

LHC energy / proton: $\sim 10 \text{ TeV} \equiv 10^{13} \text{ eV}$

"Linear" rate (2 beams x protons / beam x $c/2\pi R$):

~ 10**^19** protons / sec

Extragalactic UHECR

Energy / UHECR above the ankle: \sim 10 EeV = 10 19 eV

Production rate density for $\overline{E} \sim 10 \text{ EeV}$ (Auger+ 2017):

~ 10^30 UHECR / Mpc3 / sec

"Bright" galaxy number density < 0.1 /Mpc³

Production rate per galaxy: $\sim 10^{\circ}31$ UHECR / sec

What are we looking for?

Accelerators *trillion times more luminous* and reaching *million times higher energies* than the LHC

Where? Among most violent electromagnetic sources.

Detecting the highest-energy "rays"

Extensive atmospheric showers

Electromagnetic showers

Bremsstrahlung ($e^{+/-}$) and pair production (γ)

Interaction length ~ 25 g / cm²

Stops after 30-40 generations (ionization losses)

→ hard to distinguish e^{+/-} from y primaries
 (1 X₀ out of 30)

Hadronic showers

Production of pions, π^0 decay, $\pi^{+/-}$ cascades

 $\pi^{\text{+/-}}$ decay in μ/ν after 5-6 generations (< 0.1 TeV) with $\pi\text{-air}$ interaction length \sim 120 g / cm²

First interaction of proton/iron at ~90/5 g / cm²

→ heavy-light discrimination

Mollerach & Roulet (2017)

γ-ray showers

Stereoscopic imaging of Cherenkov from e+/-

O(10%) duty cycle, ~ 2000m above sea level Cameras with O(1000) PMTs and ns sampling Energy resolution ~ 10%. Angular resolution ~ 0.1°. Lead experiments: H.E.S.S. (Namibia), MAGIC (Canary), VERITAS (Arizona)

Sampling the secondary particles

O(100%) duty cycle, ~ 4000m above sea level Water-Cherenkov tanks equipped with 3 PMTs Energy resolution ~ 50%. Angular resolution ~ 0.5°. Lead experiment: HAWC (Mexico)

Full-sky flux > 1 TeV ~ few / m^2 / hour \leftrightarrow Effective area: 10^4 - 10 ^5 m^2

Jonathan Biteau | DAp | 2020-01-14 | **Page 9/36**

Cosmic-ray showers

Leading the field: Pierre Auger Observatory

West Argentina, 1,400m above sea level

Full-sky flux > 10 EeV ~ few / km² / year

→ area = 3,000 km² (Luxembourg / Rhode Island!)

Energy resolution ~ 10%. Angular resolution ~ 1°.

Imaging Flurorescence Telescopes

27 PMT cameras in 5 buildings, ~10% duty cycle 4 main sites: 6 eyes / site – 30°×30° FoV

Sampling Particle (μ/e) Detectors

1600 water-Cherenkov tanks, ~100% duty cycle spaced by 1,500m, 3 PMTs per tank

+ many other sub-component not discussed here

A selection of major results

> 80 extragalactic sources in TeV γ-rays

- "constant" emitters: starburst galaxies (NGC 253, M82)
 - → likely hadronic accelerators
- "persistent" emitters: radio galaxies (e.g. Cen A) and blazars (e.g. Mkn 421). Down to minute-timescale variability measured
 - → *likely leptonic accelerators* (at least during flares)
- "transient" emitters: 3 γ-ray bursts above ~ 100 GeV (in 2018-07 and 2019-01, 2019-08)

Cosmic-ray diffuse emission

Lack of EeV neutrals → top-down scenarii excluded

Precision spectral measurement over > 3 energy decades

Composition measurements (<40 EeV) and spectrum in line with acceleration-limited scenarios

Detection of a dipolar anisotropy beyond the ankle

→ 1st observational *evidence of extragalactic origin*

Origin of Cosmic Particles

- What are the mechanisms for cosmic particle acceleration?
- What are the sites of particle acceleration in the universe?

Extreme Environments

- What physical processes are at work close to neutron stars and black holes?
- What are the characteristics of relativistic jets, winds and explosions?

Propagation and Frontiers in Physics

- What is the charge of the highest-energy cosmic rays?
 How are they affected by magnetic fields?
- How intense are radiation and magnetic fields in cosmic voids?
- Do quantum gravity or axion-like particles affect propagation of astroparticles?

Alves, Zrake, Fiuza (2018)

Farrar & Sutherland (2015)

Cosmic propagation at the highest energies

Cosmic-ray horizon and γ-ray imprint

Jonathan Biteau | DAp | 2020-01-14 | **Page 14/36**

Cosmic-ray horizon

evolution along propagation: Aloiso, Berezinsky, Grigorieva (2013)

$$\frac{\partial n_{A_0}(\Gamma,t)}{\partial t} - \frac{\partial}{\partial \Gamma} \left[n_{A_0}(\Gamma,t) b_{A_0}(\Gamma,t) \right] + \frac{n_{A_0}(\Gamma,t)}{\tau_{A_0}^{\rm tot}(\Gamma,t)} = Q_{A_0}(\Gamma,t).$$
 Energy losses: Absorption: Injection:

 $e^{+/L}$ or π production photo-disintegation source or cascade

Propagation of protons

No absorption term → sharp wall at ~ 100 EeV for D ~ 100 Mpc, pile-up feature

Propagation of nuclei

Dominated by single-nucleon photo-disintegration \rightarrow ~ exp. attenuation at ~20/50 EeV for D ~ 100/10 Mpc

Cosmic-ray observations

The dip model: pure protons Berezinki (2006)

Attempt to explain the ankle and suppression with a purely proton composition

- → quite successful at reproducing the spectrum down to ~ 10^18 eV
- → based on pure protons

But mixed composition

Inference: $p \rightarrow He \rightarrow CNO$ sequence

 \rightarrow in line with E_{max} ~ a few EeV x (Z or A)

Jonathan Biteau | DAp | 2020-01-14 | **Page 16/36**

Cosmic-ray models

The mixed model e.g. Auger (2017)

Homogeneous source distribution + hard escape spectrum (p<2)

Cosmic rays and magnetic fields

Magnetic fields everywhere

Galactic $\sim \mu G$ from Faraday/synchrotron (± 0.5 dex)

Local intergalactic \sim nG (\pm 1 dex) – Extragalactic \sim pG? (\pm >3 dex)

Farrar & Sutherland (2015)

Hackstein+ (2018)

Impact of charged nature

Spectrum unaffected (*propagation theorem*) if Δ (sources) << attenuation/diffusion length

Angular and time spread → transients appear kyr-Myr steady

γ-ray cascades in magnetic fields

Secondary γ rays?

Fate of e^{+/-} pairs:

A) either upscatter CMB photons

B) or heat the intergalactic medium through plasma instabilities

B) viability for all/some sources remains discussed (Broderick+ 2012; Schlikeiser+ 2012; Miniati & Elyiv 2013; Sironi & Gianios 2014; Vafin+ 2018; Alves Batista+ 2019)

If A), reprocessing of all absorbed energy > 10 TeV around ~100 GeV,

 \rightarrow amplitude and angular extent depend on magnetic field

Searches for low-energy spectral components and extension beyond the angular resolution of the instruments could constrain **B** in voids!

EBL photons
CMB photons

White Barren

 $[\mathrm{erg}/\mathrm{cm}^2\mathrm{s}]$

Constraints on cosmic magnetic fields

Constraints from GeV-TeV measurements (assuming no beam instabilities)

→ latest constraints jointly fit the angular extent and the spectral component

Magnetic fields in voids: < nG (CMB constraints) and > fG (Fermi-LAT/HESS/VERITAS)

Jonathan Biteau | DAp | 2020-01-14 | **Page 20/36**

Gamma-ray absorption in photon fields

Absorption, exp(-t), with:
$$\tau(E_{\gamma}, z_0) = \int_0^{z_0} dz \frac{\partial L}{\partial z}(z) \int_0^{\infty} d\epsilon' \frac{\partial n}{\partial \epsilon'}(\epsilon', z) \int_1^{-1} d\cos\theta \frac{1 - \cos\theta}{2} \sigma_{\gamma\gamma} \left(E_{\gamma} \times (1 + z), \epsilon, \cos\theta \right)$$

Cosmology EBL photons Particle physics

Target photon field

EBL underconstrained by direct measurements (bright foregrounds)

Single-source y-ray spectra: inflections trace the EBL spectrum

γ-ray imprint

Local (z < 0.5) EBL measurement with 20-30% accuracy, matches galaxy counts (\pm 20% at most λ)

Evolution of absorption at z > 0.5

Cosmic star-formation history (CSFH)

EBL photon density dictated by luminosity density (emissivity)

$$\partial n/\partial \epsilon = (1+z)^3 \int_z^\infty dz' \, \partial t/\partial z' \times j(\epsilon', z')/\epsilon'$$

For given emissivity per SFR unit and dust extinction luminosity density traces CSFH (important for CCSNe MeV ν)

$$\rho(z) = K_{\epsilon} \times 10^{0.4 A_{\epsilon}} \times j(\epsilon, z)$$

Fermi-LAT combined constraints from sources up to z ~ 2:

- UV density at z > 4 ~ lowest values from Lyman-break galaxies
- starts constraining faint end of luminosity function at z > 6 (JWST)

Cosmological parameters

Absorption distance element $\sim H_0^{-1}$ & emissivity $\sim H_0^{-3}$

At z =0, local y-ray / EBL constraints $\sim H_0^{-1}$

 \rightarrow first quantitative y-ray constraints on h₀: ± 0.1

For a constrained evolution, γ -ray / CSFH constraints ~ H_0^2

 \rightarrow recent LAT constraints on h₀: ± 0.03 (independent checks needed)

Jonathan Biteau | DAp | 2020-01-14 | **Page 22/36**

γ-ray and cosmic-ray sources

Inferring the astrophysics of accelerators

Observations: γ-ray and multi-wavelength bands

GeV-TeV data: harness of the γ -ray emission, location of peak energy Combined with optical – X-ray data: common or distinct origin

Sironi & Spitkovski (2011)

Urry & Padovani

Models: radiative processes, acceleration and environment

Low-energy component: synchrotron from e^{+/-}

High-energy component: Compton from e^{+/-}, p synchroton, py / pp

 \rightarrow R, B, Γ (luminosity + peak location) \rightarrow shock / magnetic reconnection (B, p/e spectrum)

Jonathan Biteau | DAp | 2020-01-14 | **Page 24/36**

Lessons learned on extreme sources' properties

Example: extreme blazars

Active galaxies with 1st component peaking > 1 keV (*extreme-synchrotron* blazars, ~200 known w/o bias) and/or 2nd component peaking > TeV (*extreme-TeV* blazars, ~14 known with bias)

Hard TeV emission up to a few TeV → ideal targets for CIB constraints, IGMF studies, as well as exoticas

Small-amplitude variations & slow flux variability:

 → best candidates for hadronic emission among blazars

High synchrotron peak frequency: fast accelerators (low t_{acc} / t_{Larmor})

 → best candidates for UHECR acceleration among blazars

Lessons learned on extreme sources' properties

Modeling extreme TeV blazars

- Spherical cow: SSC conical
 low magnetization → shocks favored
 but out-of-equipartition: high-jet power
- Two flows spine-layer
 jet power / 10-100 wrt SSC but struggle
 to produce high peak frequency
 due to losses
- Mixed flavor: proton synchrotron
 low ν flux beyond IceCube reach;
 proton break beyond the UHECR ankle

Only the brightest

What photons tell us

A bestiary of of accelerators:

• pulsars and magnetars: $r\sim10^7$ cm, B>10¹⁰ G, $\Gamma\sim1$

...

• jets of active nuclei: $r\sim10^{17}$ cm, B>10⁻³ G, Γ >10

...

• clusters: $r\sim 10^{25}$ cm, B>10⁻⁶ G, $\Gamma\sim 1$

Hillas: only the highest energy

Confinement: large B-field, size, and shock velocity

$$B \times (r \times \Gamma) \times v_{shock} > (E / Ze)$$

Hillas-Lovelace-Waxman: only the brightest

In an expanding plasma, magnetic luminosity:

 $L_{\rm B} > 10^{45} {\rm \ erg/s \ x} \ ({\rm \ E/Z} \ / \ 10 \ {\rm \ EV} \) \ x \ (\Gamma^2 c \ / \ 100 v_{\rm shock})$ Large magnetic luminosity \rightarrow large synchrotron emission

→ UHECR sources hidden among brightest photon emitters

Only the numerous

What cosmic rays tell us

To reproduce the UHECR flux above the ankle: number density x luminosity > 10^30 UHECR / Mpc³ / s

No significant self-clustering above flux suppression: number density > 10^-5 / Mpc³ (if deflections < 30°)

Sorting galaxies and transients

Account for spread in time $\Delta \tau \sim 10^5$ years: number density = burst rate x $\Delta \tau$ luminosity *= burst duration / $\Delta \tau$

Seaching for ultra-high-energy accelerators

If scaling of cosmic-ray & electromagnetic luminosities:

- → select the brightest host galaxies within few 100's Mpc
- → check if the all-sky flux patterns match

Starforming and active galaxies in the local universe

Starburst galaxies

= starforming galaxies with high star formation rate

Starburst galaxies from radio master catalog within 250 Mpc, with flux > 0.3 Jy

Mostly nearby (90% of flux < 10 Mpc)

Radio luminosity to trace UHECR emission

Active galaxies

= radio galaxies & blazars

Active galaxies from *Fermi*-LAT (3FHL, > 10 GeV) within 250 Mpc

more distant (90% of flux < 100 Mpc)

γ-ray luminosity to trace UHECR emission

Jonathan Biteau | DAp | 2020-01-14 | **Page 29/36**

Cosmic-ray anisotropies at high rigidities

Blind searches for self-clustering

Auger-only: 2.0σ at $E_{Auger} > 38$ EeV

Auger + TA: South/North: $2.2/1.5\sigma$ at $E_{Auger} > 40$ EeV

Catalog-based searches

Assumption: UHECR flux ∞ electromagnetic flux × propagation effects

Active / **starforming** galaxies: **3.1** / **4.5** σ on $\theta \sim 15^{\circ}$

Quite promising excess, stay tuned!

The most extreme accelerators and how to find them

The road so far...

Origin of Cosmic Particles

- What are the mechanisms for cosmic particle acceleration?
- What are the sites of particle acceleration in the universe?

Extreme Environments

- What physical processes are at work close to neutron stars and black holes?
- What are the characteristics of relativistic jets, winds and explosions?

Propagation and Frontiers in Physics

- What is the charge of the highest-energy cosmic rays?
 How are they affected by magnetic fields?
- How intense are radiation/magnetic fields in cosmic voids?
- Do exotic processes affect propagation of astroparticles?

Known knowns

Shocks, magnetic reconnection

Entire bestiary, from pulsars to clusters

Importance of magnetosphere

Constraints on size, B-field, velocity

Known unknowns

Which dominates where? Others?

UHECR sources

Competition of acceleration/losses

Favored geometry, hadronic content

Increasing < 40 EeV ~ Galactic with fixed Z

COB, B < nG

Above Planck scale Not outside DM space Charge > 40 EeV LSS, extragalactic

CIB, B > fG

Tighter parameter space

Charge of the highest-energy cosmic rays

Auger Prime

Upgrade of 1,600 surface array detectors Equipped (in particular) with scintillators Discrimination of e/µ components Composition-dependent observables with 100% duty cycle

Castellina for Auger (ICRC2019)

Known unknowns

Which dominates where? Others?

UHECR sources

Competition of acceleration/losses

Favored geometry, hadronic content

Charge > 40 EeV LSS, extragalactic

CIB, B > fG

Tighter parameter space

Cosmic magnetism

Upcoming multi-wavelength facilities

At all wavelengths, for all messengers

At radio frequencies: SKA

Based in Australia and South Africa

Constraints on magnetic fields

Galactic, clusters and intergalactic (FRBs, Vaza+ 2018)

Credit: SKA Collaboration

Which dominates where? Others?

UHECR sources

Competition of acceleration/losses

Favored geometry, hadronic content

Farrar & Sutherland (2015)

Charge > 40 EeV LSS, extragalactic

CIB, B > fG

Tighter parameter space

Jonathan Biteau | DAp | 2020-01-14 | **Page 34/36**

Environment of accelerators

Cherenkov Telescope Array

Upcoming γ-ray observatory
2 sites: Chile & Canary Islands
10-fold increased sensitivity
Full Galactic-plane and
¼ extragalactic-sky surveys
Unprecedented quality γ-ray data

Known unknowns

Which dominates where? Others?

UHECR sources
v sources

Competition of acceleration/losses

Favored geometry, hadronic content

Charge > 40 EeV LSS, extragalactic

CIB, B > fG

Tighter paramete

Tighter parameter space

Jonathan Biteau | DAp | 2020-01-14 | **Page 35/36**

The key for the future: Synergies

example of extragalactic synergies of CTA

My bet with you: the 2020's will unveil the sources of all these components

