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Extragalactic multi-wavelength sky

Jonathan Biteau | DAp | 2020-01-14 |  Page 2/36

Radio band from ground (Parkes, Bank)→ relativistic electrons

Microwave from Planck (2009-2012)→ dust emission, relativistic electrons

Far infrared from AKARI (2006-2011)→ dust emission

Near infrared from ground (2MASS)→ starlight, dust emission

Optical band from ground mosaic→ starlight, dust absorption

X rays from ROSAT (1990-1999)→ relativistic electrons

see http://www.chromoscope.net/

A story to the millennials

http://www.chromoscope.net/


  

Extragalactic multi-messenger sky
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Credit: Murase

Gravitational-wave events  
from LIGO & Virgo (since 2015)
→ motion of compact objects

PeV ν background from 
IceCube & ANTARES (since 2013)
→ relativistic hadrons

EeV cosmic-ray background from
Auger & Telescope Array (since 1999)
→ most relativistic hadrons

Radio band from ground (Parkes, Bank)
→ relativistic electrons

Microwave from Planck (2009-2012)
→ dust emission, relativistic electrons

Far infrared from AKARI (2006-2011)
→ dust emission

Near infrared from ground (2MASS)
→ starlight, dust emission

Optical band from ground mosaic
→ starlight, dust absorption

X rays from ROSAT (1990-1999)
→ relativistic electrons

γ rays from Fermi-LAT (2008-now)
→ relativistic electrons & hadrons

TeV γ rays from IACTs (2005-now)
→ relativistic electrons & hadrons

see http://www.chromoscope.net/

http://www.chromoscope.net/


  

e+/- synchrotron
from active galaxies

EBL
Dust emission &
Direct starlight

Accretion in 
active galaxies

e+/- Compton,
pion decay from 
active & starburst 
galaxies

Lacasa+ (2013)

Extragalactic night sky: electromagnetic spectrum
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All the galaxies in the universe
Emission from star-forming galaxies (e.g. starburst galaxies) & active galaxies (e.g. radio-galaxies, blazars)



  

Extragalactic night sky: electromagnetic & hadronic spectra
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Extragalactic electromagnetic background
Diffuse backgrounds measured 
from radio to γ rays, up to ~ 100 GeV
→ sources: known and (rather well) understood

Beyond ~ 100 GeV, background not measured
→ sources: partly known & understood

Extragalactic hadronic background
Diffuse backgrounds measured in:
• PeV neutrinos (few dozens of events)
• EeV cosmic rays (mostly isotropic sky)

→ sources: unknown & far-from being understood!

Lacasa+ (2013)

Fang+ (2018)



  

Most extreme accelerators in the universe?

Taking man-kind realizations as a reference
LHC energy  / proton:                     ~ 10 TeV ≡ 10^13 eV

“Linear” rate (2 beams x protons / beam x c/2πR):
~ 10^19 protons / sec

Extragalactic UHECR
Energy / UHECR above the ankle: ~10 EeV ≡ 10^19 eV

Production rate density for E ~ 10 EeV (Auger+ 2017):
~ 10^30 UHECR / Mpc³ / sec

“Bright” galaxy number density                      < 0.1 /Mpc³

Production rate per galaxy:           ~ 10^31 UHECR / sec

What are we looking for?
Accelerators trillion times more luminous and reaching 
million times higher energies than the LHC

Where? Among most violent electromagnetic sources.
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Fang+ (2018)



  

Detecting the highest-energy “rays”



  

Extensive atmospheric showers
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Electromagnetic showers

Bremsstrahlung (e+/-) and pair production (γ)

Interaction length ~ 25 g / cm²

Stops after 30-40 generations (ionization losses)
→ hard to distinguish e+/- from γ primaries 
     (1 X

0
 out of 30)

Hadronic showers

Production of pions, π  decay, ⁰ π+/- cascades

π+/- decay in μ/ν after 5-6 generations (< 0.1 TeV)
with π-air interaction length ~ 120 g / cm²

First interaction of proton/iron at ~90/5 g / cm²

→ heavy-light discrimination

Mollerach & Roulet (2017)



  

γ-ray showers
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Stereoscopic imaging of Cherenkov from e+/-

O(10%) duty cycle, ~ 2000m above sea level

Cameras with O(1000) PMTs and ns sampling

Energy resolution ~ 10%. Angular resolution ~ 0.1°.

Lead experiments: H.E.S.S. (Namibia), 
MAGIC (Canary), VERITAS (Arizona)

Sampling the secondary particles
O(100%) duty cycle, ~ 4000m above sea level 

Water-Cherenkov tanks equipped with 3 PMTs  

Energy resolution ~ 50%. Angular resolution ~ 0.5°.

Lead experiment: HAWC (Mexico)

Full-sky flux > 1 TeV ~ few / m² / hour ↔ Effective area: 10^4 – 10 ^5 m²

H.E.S.S. (Namibia) HAWC (Mexico)



  

Cosmic-ray showers

Leading the field: Pierre Auger Observatory
West Argentina, 1,400m above sea level

Full-sky flux > 10 EeV ~ few / km² / year
→ area = 3,000 km² (Luxembourg / Rhode Island!)

Energy resolution ~ 10%. Angular resolution ~ 1°.

Imaging Flurorescence Telescopes
27 PMT cameras in 5 buildings, ~10% duty cycle

4 main sites: 6 eyes / site – 30°×30° FoV 

Sampling Particle (μ/e) Detectors
1600 water-Cherenkov tanks, ~100% duty cycle

spaced by 1,500m, 3 PMTs per tank

+ many other sub-component not discussed here
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> 80 extragalactic sources in TeV γ-rays
• “constant” emitters: starburst galaxies (NGC 253, M82) 
  → likely hadronic accelerators

• “persistent” emitters: radio galaxies (e.g. Cen A) and blazars 
(e.g. Mkn 421). Down to minute-timescale variability measured
   → likely leptonic accelerators (at least during flares)

• “transient” emitters: 3 γ-ray bursts above ~ 100 GeV 
   (in 2018-07 and 2019-01, 2019-08)

Cosmic-ray diffuse emission
Lack of EeV neutrals → top-down scenarii excluded

Precision spectral measurement over > 3 energy decades

Composition measurements (<40 EeV) and spectrum in line with 
acceleration-limited scenarios 

Detection of a dipolar anisotropy beyond the ankle 
→ 1st observational evidence of extragalactic origin

A selection of major results 
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TeVCat, Aug. 2019

Verzi+ for Auger (ICRC2019)

Auger (2017)

ankle

suppression



  

Open questions in extragalactic astroparticle physics
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Origin of Cosmic Particles
• What are the mechanisms for cosmic particle acceleration?

• What are the sites of particle acceleration in the universe?

Extreme Environments
• What physical processes are at work close to neutron stars 
  and black holes?

• What are the characteristics of relativistic jets, winds and explosions?

Propagation and Frontiers in Physics
• What is the charge of the highest-energy cosmic rays?
  How are they affected by magnetic fields? 

• How intense are radiation and magnetic fields in cosmic voids?

• Do quantum gravity or axion-like particles affect propagation of astroparticles?

Farrar & Sutherland (2015)

Alves, Zrake, Fiuza (2018)

adapted from CTA (2019) and Alves Batista, JB+ (2019)



  

Cosmic propagation at the highest energies



  

Hoffman (2009)

Cosmic-ray horizon and γ-ray imprint
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p + γ(EBL/CMB)→ p/n + π (or p + e+/-) 
→ 2m

p
 m

π
 / 4E

EBL/CMB
 ~ 50 EeV x (λ

CMB / EBL
 / 1000 μm)

γ + γ(EBL/CMB) → e+ e-

→ (2m
e
)² / 4E

EBL/CMB 
 ~ 1 TeV x (λ

CMB / EBL
 / 1 μm)

Dole+ (2006)



  

Single
source

nitrogen

ankle suppression

JB

Single
source

protons

ankle suppression

JB

Cosmic-ray horizon
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Energy losses:
e+/- or π production

Absorption:
photo-disintegation

Injection:
source or cascade

# evolution along propagation:
Aloiso, Berezinsky, Grigorieva (2013)

Propagation of protons
No absorption term → sharp wall at ~ 100 EeV for D ~ 100 Mpc, pile-up feature

Propagation of nuclei
Dominated by single-nucleon photo-disintegration → ~ exp. attenuation at ~20/50 EeV for D ~ 100/10 Mpc



  Verzi+ for Auger (ICRC2019)

Cosmic-ray observations

Jonathan Biteau | DAp | 2020-01-14 |  Page 16/36

The dip model: pure protons Berezinki (2006)

Attempt to explain the ankle and suppression 
with a purely proton composition 

→ quite successful at reproducing the spectrum 
    down to ~ 10^18 eV

→ based on pure protons

But mixed composition 
Inference: p → He → CNO sequence

→in line with E
max

 ~ a few EeV x (Z or A)

Bellido+ for Auger (ICRC2017) 

ankle suppression

ankle

suppression



  

Auger 
(2017) ankle suppr.

Cosmic-ray models
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The mixed model e.g. Auger (2017)

Homogeneous source distribution + hard escape spectrum (p<2)

ankle suppression

ICRC2019
Auger



  

Farrar & Sutherland (2015) Hackstein+ (2018)

Primordial seed              Astrophysical seed

Cosmic rays and magnetic fields

GMF ~ 1 μG x (0.1 kpc)0.5

LIGMF ~ 
1 nG x (0.1 Mpc)0.5

EGMF ~ 1 pG x (1 Mpc)0.5

Magnetic fields everywhere
Galactic ~ μG from Faraday/synchrotron (± 0.5 dex)

Local intergalactic ~ nG (± 1 dex) – Extragalactic ~ pG? (± >3 dex)

Impact of charged nature
Spectrum unaffected (propagation theorem)
if Δ(sources) << attenuation/diffusion length

Angular and time spread → transients appear kyr-Myr steady
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JB



  

γ-ray cascades in magnetic fields

Secondary γ rays?

Fate of e+/- pairs:

A) either upscatter 
     CMB photons

B) or heat the intergalactic
     medium through plasma 
     instabilities

B) viability for all/some sources remains discussed 
(Broderick+ 2012; Schlikeiser+ 2012; Miniati & Elyiv 2013; 
Sironi & Gianios 2014; Vafin+ 2018; Alves Batista+ 2019)

If A), reprocessing of all absorbed energy > 10 TeV around ~100 GeV, 
→ amplitude and angular extent depend on magnetic field

Searches for low-energy spectral components and extension beyond the 
angular resolution of the instruments could constrain B in voids!
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CMB photons

e-

e+

B

γ

γ

EBL photons

Neronov & Vovk 2010

“pair echo”



  

Constraints on cosmic magnetic fields
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Constraints from GeV-TeV measurements (assuming no beam instabilities)
→ latest constraints jointly fit the angular extent and the spectral component

Credits: Neronov, adapted from 
Durrer & Neronov (2013)

Fermi-LAT & JB (2018)

Magnetic fields in voids: < nG (CMB constraints) and > fG (Fermi-LAT/HESS/VERITAS)



  

Single source: γ-rays JB

Gamma-ray absorption in photon fields
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Target photons

Absorption, exp(-τ), with:

Target photon field
EBL underconstrained by direct measurements (bright foregrounds)

Single-source γ-ray spectra: inflections trace the EBL spectrum

γ-ray imprint
Local (z < 0.5) EBL measurement with 20-30% accuracy, matches galaxy counts (±20% at most λ)

JB

Cosmology EBL photons Particle physics



  

Fermi-LAT (2018)

Evolution of absorption at z > 0.5 
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Cosmic star-formation history (CSFH)
EBL photon density dictated by luminosity density (emissivity)

For given emissivity per SFR unit and dust extinction
luminosity density traces CSFH (important for CCSNe MeV ν)

Fermi-LAT combined constraints from sources up to z ~ 2:
- UV density at z > 4 ~ lowest values from Lyman-break galaxies
- starts constraining faint end of luminosity function at z > 6 (JWST)

Cosmological parameters
Absorption distance element ~ H

0
¹ & emissivity ~ H⁻

0
³

At z =0, local γ-ray / EBL constraints ~ H
0

¹ ⁻

→ first quantitative γ-ray constraints on h
0
: ± 0.1

For a constrained evolution, γ-ray / CSFH constraints ~ H
0
² 

→ recent LAT constraints on h
0
: ± 0.03 (independent checks needed) JB



  

γ-ray and cosmic-ray sources



  

ra
d
io

JB & Williams (2015)

Inferring the astrophysics of accelerators
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Observations: γ-ray and multi-wavelength bands
GeV-TeV data: harness of the γ-ray emission, location of peak energy

Combined with optical – X-ray data: common or distinct origin

Models: radiative processes, acceleration and environment
Low-energy component: synchrotron from e+/-

High-energy component: Compton from e+/-, p synchroton, pγ / pp

→ R, B, Γ (luminosity + peak location) → shock / magnetic reconnection (B, p/e spectrum)

Costamante (2018)

Urry &
Padovani 
(1995)

Sironi & Spitkovski (2011)



  

Lessons learned on extreme sources’ properties
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Example: extreme blazars

Active galaxies with 1st component peaking > 1 keV (extreme-synchrotron blazars, ~200 known w/o bias) 
                          and/or 2nd component peaking > TeV (extreme-TeV blazars, ~14 known with bias)

Hard TeV emission up to a few TeV → ideal targets for CIB constraints, IGMF studies, as well as exoticas 

Small-amplitude variations 
& slow flux variability: 

→best candidates for 
    hadronic emission
    among blazars 

High synchrotron 
peak frequency: 
fast accelerators 
(low t

acc
 / t

Larmor
) 

→best candidates for 
    UHECR acceleration
    among blazars

JB+ (2020)



  

Lessons learned on extreme sources’ properties
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Modeling extreme TeV blazars

- Spherical cow: SSC conical

  low magnetization → shocks favored 
  but out-of-equipartition: high-jet power

- Two flows spine-layer

  jet power / 10-100 wrt SSC but struggle 
  to produce high peak frequency 
  due to losses

- Mixed flavor: proton synchrotron

  low ν flux beyond IceCube reach; 
  proton break beyond the UHECR ankle 

MAGIC (2019)



  

Only the brightest

What photons tell us
A bestiary of of accelerators:

• pulsars and magnetars: r~107 cm, B>1010 G, Γ~1
...
• jets of active nuclei:       r~1017 cm, B>10-3 G, Γ>10
...
• clusters:                          r~1025 cm, B>10-6 G, Γ~1

Hillas: only the highest energy
Confinement: large B-field, size, and shock velocity

B x (r x Γ) x v
shock

   > (E / Ze)

Hillas-Lovelace-Waxman: only the brightest
In an expanding plasma, magnetic luminosity:

L
B
 > 1045 erg/s x ( E/Z / 10 EV ) x (Γ²c / 100v

shock
 )

Large magnetic luminosity → large synchrotron emission

→ UHECR sources hidden among brightest photon emitters
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Extragalactic beasts

Alves Batista, JB+ (2019)

Extreme 
blazars



  

Only the numerous

What cosmic rays tell us
To reproduce the UHECR flux above the ankle:

number density x luminosity > 10^30 UHECR / Mpc³ / s

No significant self-clustering above flux suppression:

number density > 10^-5 / Mpc³ (if deflections < 30°)

Sorting galaxies and transients
Account for spread in time Δτ ~ 10^5 years:

number density = burst rate x Δτ

luminosity *=  burst duration / Δτ

Seaching for ultra-high-energy accelerators
If scaling of cosmic-ray & electromagnetic luminosities:

→ select the brightest host galaxies within few 100's Mpc

→ check if the all-sky flux patterns match
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Hosted by
active galaxies

Alves Batista, JB+ (2019)

Preferentially 
hosted by

starforming 
galaxies

Extreme 
blazars



  

Starforming and active galaxies in the local universe
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Starburst galaxies
= starforming galaxies with high star formation rate

As more probable hosts of 
transient sources.

Active galaxies
= radio galaxies & blazars 

As hosts of the most powerful, 
persistent relativistic Jets 

Active galaxies from Fermi-LAT
(3FHL, > 10 GeV) within 250 Mpc

more distant (90% of flux < 100 Mpc)

γ-ray luminosity to trace UHECR emission

Starburst galaxies from radio master catalog 
within 250 Mpc, with flux > 0.3 Jy

Mostly nearby (90% of flux < 10 Mpc)

Radio luminosity to trace UHECR emission

JB JB



  

Cosmic-ray anisotropies at high rigidities
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Catalog-based searches
Assumption: UHECR flux  electromagnetic flux 
                                             × propagation effects

Active / starforming galaxies: 3.1 / 4.5σ on θ ~ 15°

Blind searches for self-clustering
Auger-only: 2.0σ at E

Auger
> 38 EeV

Auger + TA: South/North: 2.2/1.5σ at E
Auger

> 40 EeV 

JB for Auger/TA
(UHECR2018)

4σ (ApJ Lett. 2018)

4.5σ (ICRC 2019)

Quite promising excess, stay tuned!
Local σ Global σ



  

The most extreme accelerators
and how to find them



  

The road so far... 
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Origin of Cosmic Particles
• What are the mechanisms for cosmic particle acceleration?

• What are the sites of particle acceleration in the universe?

Extreme Environments
• What physical processes are at work close to neutron stars 
  and black holes?

• What are the characteristics of relativistic jets, winds 
  and explosions?

Propagation and Frontiers in Physics
• What is the charge of the highest-energy cosmic rays?
  How are they affected by magnetic fields? 

• How intense are radiation/magnetic fields in cosmic voids?

• Do exotic processes affect propagation of astroparticles?

Known knowns

Shocks, magnetic 
reconnection

Entire bestiary, from 
pulsars to clusters

Importance of 
magnetosphere

Constraints on size, 
B-field, velocity

Increasing < 40 EeV
~ Galactic with fixed Z

COB, B < nG

Above Planck scale
Not outside DM space

Known unknowns

Which dominates 
where? Others?

UHECR sources
ν sources

Competition of 
acceleration/losses

Favored geometry,
hadronic content

Charge > 40 EeV
LSS, extragalactic

CIB, B > fG

Tighter parameter 
space



  

Charge of the highest-energy cosmic rays
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Known unknowns

Which dominates 
where? Others?

UHECR sources
ν sources

Competition of 
acceleration/losses

Favored geometry,
hadronic content

Charge > 40 EeV
LSS, extragalactic

CIB, B > fG

Tighter parameter 
space

Castellina for Auger (ICRC2019)

Auger Prime
Upgrade of 1,600 surface array detectors

Equipped (in particular) with scintillators

Discrimination of e/μ components

Composition-dependent observables 
with 100% duty cycle



  

Cosmic magnetism

Upcoming multi-wavelength facilities
At all wavelengths, for all messengers

At radio frequencies: SKA
Based in Australia and South Africa

Constraints on magnetic fields
Galactic, clusters and intergalactic (FRBs, Vaza+ 2018)
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Known unknowns

Which dominates 
where? Others?

UHECR sources
ν sources

Competition of 
acceleration/losses

Favored geometry,
hadronic content

Charge > 40 EeV
LSS, extragalactic

CIB, B > fG

Tighter parameter 
space

Credit: SKA Collaboration Farrar & Sutherland (2015)

CTA Consortium (2019)



  

Environment of accelerators
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Known unknowns

Which dominates 
where? Others?

UHECR sources
ν sources

Competition of 
acceleration/losses

Favored geometry,
hadronic content

Charge > 40 EeV
LSS, extragalactic

CIB, B > fG

Tighter parameter 
space

Cherenkov Telescope Array
Upcoming γ-ray observatory

2 sites: Chile & Canary Islands

10-fold increased sensitivity 

Full Galactic-plane and  
¼ extragalactic-sky surveys

Unprecedented quality γ-ray data

Credit: CTA Consortium

CTA Consortium (2019)



  

The key for the future: Synergies
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Fermi-LAT

AugerPrime
TA x 4

Wide-field obs.
also used for GW

GOTO, zPTF, 
LSST, BlackGem

SGWO, 
LHAASO,
HAWC, FACT

KM3Net, IceCube-
Gen2, GRAND,
ARIANNA, ARA

Propagation
EBL, IGMF, hadron beams

 Cen A & M 87

Extragalactic survey

  AGN targets
ATCA

Metsähovi
OVRO
VLBA

ALMA,
SKA

JWST, SPICA

SAM/SOAR, SharCS/Lick
X-shooter/ESO, ESI/Lick

Optical support telescope,
Liverpool, WEBT

HST, adaptative optics
Chandra

e-ASTROGAM/AMEGO
NuStar, HXMT, AstroSAT
Swift-UVOT/XRT, SVOM, 

eROSITA, eXTP, IXPE
Long-term 
monitoring

FlaresRedshift

example of extragalactic synergies of CTA



  

My bet with you:

the 2020's will unveil the sources of all these components
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