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In addition to the nature of dark energy and dark matter,
the standard big-bang has a hard time to explain these:

Why is it that Qpm ~ Qoaryons ? The Weakly Interacting Massive
Particle (WIMPS) 'miracle’ does not seem to be happening.

Why is the baryon to photon ratio n~1e-107?

How does baryogenesis work?



The current paradigm for dark matter is:

-Dark matter is cold, non baryonic and not (or VERY weakly)
interacting with baryons.

-It must be a new type of matter outside the standard model of
particles (there is no sign of interaction between dark matter and
baryonic matter, cross-section must be extremely small)

cosmic microwave background
large scale structures

baryon acoustic oscillations
big bang nucleosynthesis)

WIMPS fulfills all the above criteria



The bullet cluster
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Self-Interacting Dark Matter Spergel & Steinhardt 2000



Dark Matter parameter space and some candidates
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Current constraints on dark matter does not exclude heavy composite nuclear-density objects

consisting of bound quarks or antiquarks over a significant range of masses.




Dark Matter energy landscape
(independent of cross-section)
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Is there anything in common between these
-not fully understood- phenomena?
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The Strong CP problem in Quantum Chromo Dynamics (QCD)

-The lagrangian of QCD, the theory describing the strong force, if one of the quarks has non
zero mass, contains a term that violates the CP (Charge+Parity) symmetry.

-If CP symmetry is violated, the neutron electric dipole should be of order 10-18 e-m

-Experimentally, neutron dipole is ~10 orders of magnitude less, this implies that,
experimentally, QCD does not violate CP symmetry. This is the strong CP problem.

-To resolve this issue one need to, either extremely fine tune QCD (8 ~10-10), or
promote 0 to a physical field, with a potential V(0), that goes through a phase
transition at some temperature T, that can naturally absorb the QCD CP violating term
at T < T¢, when the symmetry is broken (anthropic solution too...).

- B as a field is called the QCD axion. 8=[0,2m] has a U(1) symmetry.
« At T ~ Aacp we have Besf -> 0 (solves CP problem) and the axion field gets a mass

- The axion field interacts with photons (which enables direct detection and
astrophysical effects)



https://en.wikipedia.org/wiki/Elementary_charge
https://en.wikipedia.org/wiki/Metre

QCD Axion mass constraints
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The Axion Quark Nugget model

"Non-baryonic dark matter as baryonic colour superconductor”, E. Zhitnitsky,
JCAP, 2003, 10, 010

Initial axion value after inflation 8o T 1GeV
of order 1: 6o~ [0,21] g

QCD phase transition scale Aacp T
~ 170MeV

S Color Superconductor phase
N N
Hadron | Trorm ~ 41MeV

>

(Phase Unknoan) a

Phase diagram of nuclear matter: From arXiv:1903.05090
Different paths (unknown) for quark nuggets formation (1, 2, 3)



Post big bang sequence of the axion quark nugget generation

-Inflation is over

-As 0 oscillates before the QCD phase transition at Tc ~170 MeV, the vacuum energy
remains the same everywhere, but the phase can vary and form topological

defects because there must be continuity in the [0,211]. Axion domain wall

topological defects Npw=1 start forming.

-Quarks and anti-quarks are trapped inside the domain walls that will form nuggets
and anti nuggets

-Effective 0 is very small when QCD phase transition begins (so QCD does not
violate CP), this results in a slight over production (of order one) of anti-nuggets over
nuggets.

-Matter and anti matter annihilate in the plasma leaving an excess of order one of
baryons compared to nuggets and anti-nuggets.

-Domain wall formation stops at some temperature Tiorm. Various arguments suggest
Tform ~ 40 |\/|eV

-Domain walls shrink until they are stopped by nuclear fermi pressure of the CS phase



The denSitieS Qanti-nuggets; Qnuggets; Qvisible can dlffel‘ by Order ~0ne, Wh|Ch
avoids fine tuning.

Assume that the total baryonic charge of the Universe is zero (no
baryogenesis is needed):

Buniverse =0= Bvisible + Bnugget - Banti-nugget

Obsel’va’[ion SuggeSt that QDM — Qanti-nuggets + Qnuggets ~9 Qvisible




Conjectured mass density budget at the end of nuggets
formation
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Baryogenesis

The baryon to photon ratio scales like n=exp[-my/Tg]
(Mp is ~5 Aqcbp)

In conventional cosmology Ts ~ 22 MeV, which leads to n~10-20

In AQN model Tg ~ Ttorm ~ 40 MeV which leads to n~10-10
which provides a solution to baryon to photon ratio



Primordial nucleosynthesis

Nuggets binding energy per nucleon is of the order of Aqcp ~170
MeV, therefore primordial nucleosynthesis (~1 MeV) cannot destroy
nuggets

In the AQN model, dark matter is composed of regular matter
trapped in the unconventional color superconducting phase.



Free parameter of the model: the axion mass mas

Wall tension 03 ~ ms!
Nugget size R ~ 04

Nugget baryonic charge B ~ 033

Axion mass window: 106 eV <ma< 103 eV
Nugget size window: 106 cm <R <103 cm

Nugget baryonic charge: 1023 < B < 1032

Nugget mass: 0.1 g <Maan < 108g



Observational properties

Dark matter mass density in solar system ppm ~ 0.3 GeV/cm3

Nugget number density: (105 km)-3 < naan < (1000 km)-3

Flux on Earth: b — nyoy o PPMUN g km =2y <ﬁ>
' My (B)

Cannot be seen by high-sensitivity dark matter detectors
(lcecube, ANITA better suited)

‘O'AQN-AQN /Maan ~ 10-10 cm2/g << Oxx /mx

AQN nuggets behave as cold dark matter CDM



AQN nuggets behave as cold dark matter CDM

They interact extremely rarely with baryonic matter because of
their na very low. But when they do, they interact very strongly
with surrounding plasma

Electrosphere
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Antiquark nugget structure. Source of emission
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Generic AQN physics

The AQN model has one free parameter, the Axion mass ma,
but the interaction of the AQN with its environment is characterized by
complicated physics:

-Surounding plasma temperature Tp and densities np, Ne-, Ne+
-Electrosphere statistics ("internal, charged, plasma")

-Nugget internal temperature T,

-Efficiency k of the annihilation with the Color Superconducting phase.



Very hard spectrum at low frequency compared to black body:

dE 3272 a®?(kpTwn)? |
dt dv dA 45 (hc)?

x [ 1+ hw e~ v /ke
kTN
where Ty is the nuggets’ effective radfattr® temper-

ature, me is the electron mass and we have defined
the function,

F(z) = 17—12n (g) r <1, (8)
— 17+12In(2) x> 1

From Lawson & Zhitnitsky 2018

Low frequency photons cannot penetrate the nugget if their frequency is less

than the plasma frequency w, of the electrosphere (described as a Thomas-
Fermi gas theory).




Height above Surface (1000 km)

Heating of the solar corona
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Raza, LVW, Zhitnitsky 2018
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The solar corona problem: EUV/soft Xray from
corona emits ~1027 erg/s not accounted for.



Solar corona: the basic picture
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Mass Loss Profiles for Varying Initial Baryon Charge
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Luminosity Density [10* erg.s™'km™!]

Total Annihilation Luminosity Profile
(Bmin = 3 % 10%*, o0 = 2.0)
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The 511 keV line, y-ray, X-ray, and the WMAP haze

This signal has been ruled out as a signature
of dark matter (WIMPS) annihilation because
it correlates spatially with the galactic disk.
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In the AQN model, the DM-baryons cross-section is given by:

1
BT

b ~ R2 /del[nvisible<l) ) nDMU)] ~

The DM should follow the baryon distribution b x Pvisible PDM



511 keV line over COMPTEL
1-20 MeV excess ratio agrees

>
=
with the emission processes Ng\

from the AQN electrosphere

CHANDRA observes 1-10 keV
excess that is very difficult to explain
by astrophysical sources.

AQN: proton annihilation produces x-
ray emission in keV from hot spots.
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Figure 1. + ray spectrum of inner galaxy for optimized model[24]. Green vertical
bars: COMPTEL data. Heavy solid line: total calculated flux for optimized model.
Heavy black dots: Combination of calculated emission spectrum from electron-nugget
annihilation processes with the optimized model of [24].

Proton annihilation in AQN produces rarely

Gev photons which are consistent with EGRET




Antiquark nugget structure. Source of emission
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The "WMAP Haze"

b WMAP Haze at 23 GHz

k D. P. Finkbeiner, Astrophys. J. 614
(2004) 186
Af*er fnown fOf‘egf‘OUndS ane G. Dobler and D. P. Finkbeiner,

subtracted, an excess appears in arXiv:0712.1038 [ostro-ph]
the residual maps within the inner
~20° around the Galactic Center

In the AQN model, there is a fraction 1-g of the annihilation energy
that can’t escape as keV and GeV and thermalize the
electrosphere, which emits Bremsstrahlung in the 10-4-1 eV range

this is GHz range

dEann
Fiot = (1 — g)Fann — ( — g)m

g ~ 1/10 match the data, this is 12 orders of magnitude difference

in frequency that seem connected.
Forbes & Zhitnitsky 2008



Experiment to Detect the Global Epoch of reionization Signature (EDGES)‘
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Feng and Holder show that a small excess of background radiation (Tr) at early
time can explain the EDGES results:

EDGES limit
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Figure 3. The enhanced global 21cm signal as a function of red-
shift z (top) or frequency v (bottom). The trough located at
v ~ 100 MHz will trace physical signatures in the cosmic dawn

epoch at z > 12.

Feng & Holder 2018

From the AQN model:
Hadron annihilation efficiency k ~ 0.03 leads to € ~ 0.01

Lawson & Zhitnitsky 2012




The Li7 problem ‘ Flambaum & Zhitnitsky 2019
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Conclusion

-Dark matter can be made of regular baryonic matter, but in an unconventional
phase

-Under this condition, dark matter can be baryonic and not violate primordial
nucleosynthesis

-It can behave like CDM and yet strongly interact with the baryonic sector, as
long as it does it *"VERY™ rarely (consequence of very low AQN number density).

-The AQN model leaves predictable, clean, electromagnetic signatures which
can be calculated and searched for

-There are already some very troubling coincidences, over 13 orders of
magnitude in frequency, for very different physical environments, but no
predictions yet: work in progress

-Future directions:

Lensing-baryons cross-correlations is one of the tools that can help.

QCD axion direct search, polarization signal, other direct astrophysical
signatures (e.g. CMB, baryonic-DM correlations in galaxies, Fast Radio Bursts)



