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P ’ L@T Polarization measurement and data processing
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Observations at >2 HWP angles to reconstruct the Stokes parameters |, Q, U

Main challenges: control of systematics and detector response, 1/f noise



P % L@T Data processing and map-making

Bolometer

Responses Time
W 2>V  constant

Time [hr]

Data processing before the map-making

Data Calibration: atmospheric response map corrected for time variations using the ICS signal

Atmospheric subtraction

Time constant correction

Two different pipelines for the map-making:
« ROMAXPol [De Gasperis et al 2005] :

Developed for Planck, improved version (with residuals and polar errors)
* ScanamorphosPol :

Based on the Scanamorphos code [H. Roussel, 2013] developed for Herschel



P ‘ L@T Galactic plane and star forming regions

Intensity maps
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P % L@T Current targets of the PILOT data analysis

* The galactic center region (LO): very bright but weakly polarized: challenging!

* The BICEP field: weak emission, polarization fraction ~20 % : challenging!




P % L@T The galactic center region (L0)

[The PILOT Collaboration, Mangilli et al., in prep.]
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4 PILOT observations

Very bright: check data calibration, detector responses and inter-calibration

Unique line of sight to sample the bulk of the galactic emission

Steep dust emissivity in intensity (5 > 2)  [The Planck Coll., PIR XIX 2015]
what about the polarized SED?



P % L 1) T The galactic center region (L0O)

[The PILOT Collaboration, Mangilli et al., in prep.]
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T Polarization fraction in the galactic center
[The PILOT Collaboration, Mangilli et al., in prep.]

N

Average PILOT polarization fraction in the galactic plane : few %



P ‘ L@T LO polarization angles : PILOT vs Planck

[The PILOT Collaboration, Mangilli et al., in prep.]
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*IH@I Comparison with Planck
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[The PILOT Collaboration, Mangilli et al. 2018 in prep.]



*IH@I Comparison with Planck
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[The PILOT Collaboration, Mangilli et al. 2018 in prep.]



P ’ L@T Magnetic field in the LO region

[The PILOT Collaboration, Mangilli et al., in prep.]
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- Pilot analysis on the galactic center confirms a good control of gain inter-calibration
 PILOT finds the orientation of the magnetic field along the galactic plane which is in
agreement with expectations and with Planck at lower frequencies

+ SED polarization study p(V) : comparison with other observations on going



Magnetic field in the LO region
[The PILOT Collaboration

Mangilli et al., in prep.]
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PILOT: link in angular resolution and scales between these observations and Planck
Goal : SED from [00pgm to 2mm

Anna Mangilli - PCMI Conference - Marseille 25th - 29th June 2018



PILOT = “BICEP” region




PILOT = “BICEP” region

* 4.8 h of data during flight2

* BICEP field observed
with 4 tiles, each of
them being observed
at least twice with
2 different HWP
positions

* Goal signal to noise
ratio of ~20 on the
polarized intensity

integrated over the
whole field

* Unique data for
constraining the SED
or for correlation analyses
in CMB observations

Discussion ongoing for an MoU with the BICEP team
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PILOT - Legacy
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* coPILOT: modification of PILOT will allow very accurate measurements of C+ (158 ym)
total intensity. Dark molecular gas distribution in solar neighborhood, nearby galaxies.

Phase A at CNES.

* |IDS (Inflation and Dust Surveyor): CMB B-modes + dust, proposed to NASA 2018.
Contribution to provide PILOT attitude control + internal calibration source

* Bebop (sPICA-Pol): polarized instrument on SPICA. Design and science case strongly
inspired from PILOT. Accepted in pre-phaseA /0.

* BOOST proposal (IRAP) to lower detector temperature to 150 mK. Increase in sensitivity
by 2.7 for PILOT, up to 14 for CoPilot



PILOT — Summary

* Operational and instrumental success of the PILOT two flights

* Unique experiment: observation of the dust polarization at 1.2 THz over large
regions of the sky relevant for galactic science and for cosmology

* The polarization direction measured in the galactic center region is consistent with
expectations and with Planck at lower frequency

* Ongoing work : data processing refinement, uncertainties estimates in map-making,
extend the analysis to L30, Rho-Ophiuchi, Orion, ...

* PILOT legacy for future instruments
* Flight#3 in 2019 from the northern hemisphere?
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What do we know about dust polarization SED ?

We have very little constraints on the dust FIR polarized SED despite the
importance for dust models (and CMB foreground)
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 Accurate FIR Measurements are critically needed, sampling various environments
to link alignment with dust optical properties
+ PILOT :unique observations on large sky regions in the FIR



Detector responses

Precisely measure the detector response variations
is crucial for polarisation

- Temporal detector response variations: Internal Calibration Source (ICS)

|CS response:
The ground calibration tests have shown that the |CS flux is directly proportional to the squared
power dissipated therein

Aon” it Rreslre [ADU], dim=[16,16,8,Nseq_cait]
Ron(<10n>2 - <Ioff>2)>

pics = [

 Spatial detector response variations: Atmosphere
Atmospheric response:
Atmosphere decorrelation from sky-dips or over the whole flight

The response is the slope of this correlation

Flight2 observations are done at varying elevation: redundant scan angle + better constrain
of the detector response variation.

Anna Mangilli - PILOT 05/12/2017



The galactic center region (L0) maps
[The PILOT Collaboration, Mangilli et al., in prep.]




Data Calibration

Current data processing: atmospheric response map corrected for
time variations using the ICS signal

Patmo(xay)
R(x,y,t) =
( Y ) (pICS(xay))normatmo

pics(t)

Sources of response variations:

Change in elevation

Temperature variations

Instrumental background polarization

Anna Mangilli - PILOT 05/12/2017



OUTLINE

* PILOT flight#2 in-flight performances summary
* Flight#2 data analysis & preliminary results

* Conclusions and perspectives




La région BICEP : pourquoi c’est intéressant!?

L'empreinte des ondes gravitationnelles de l'inflation dans le fond diffus cosmologique
€he New Jork Times
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Detector responses

Precisely measure the detector response variations
is crucial for polarisation

- Temporal detector response variations: Internal Calibration Source (ICS)

|CS response:
The ground calibration tests have shown that the |CS flux is directly proportional to the squared
power dissipated therein

Aon” it Rreslre [ADU], dim=[16,16,8,Nseq_cait]
Ron(<10n>2 - <Ioff>2)>

pics = [

 Spatial detector response variations: Atmosphere
Atmospheric response:
Atmosphere decorrelation from sky-dips or over the whole flight

The response is the slope of this correlation

Flight2 observations are done at varying elevation: redundant scan angle + better constrain
of the detector response variation.

Anna Mangilli - PILOT 05/12/2017



Data Calibration

Current data processing: atmospheric response map corrected for
time variations using the ICS signal

Patmo(xay)
R(x,y,t) =
( Y ) (pICS(xay))normatmo

pics(t)

Sources of response variations:

Change in elevation

Temperature variations

Instrumental background polarization

Anna Mangilli - PILOT 05/12/2017



PILOT = In-flight performances

* In-flight good optical quality and nominal
resolution

PSF on JUPITER (matrix 2) PSF on JUPITER (matrix 6)

In-flight Jupiter PSF

cm

Y Offset (ar

Simulations

Y Offset (arcmin

X Offset (arcmin) X Offset (arcmin)

* In-flight measured PSF on Juprteris 2.25" £0.15, sims 2.3 1'+£0.07

[The PILOT Collaboration, Foénard et al. 2018]



PILOT = In-flight performances

* In-flight good optical quality and nominal
resolution 2.3 FWHM

* In-flight background has a similar shape but is a

factor ~2 stronger than ground measurements.
Polarized at 4-10 % level

A measured
— model

* Variation of the detector responses due to
polarized background & atmosphere variations.

Mool vmr'jnmﬁ“u&"wmmﬁ'\«m’?
Modelled and corrected to better than 2 % |

ICS response (ADU)

29 h

[The PILOT Collaboration, Foénard et al. 2018]



PILOT = In-flight performances

* In-flight good optical quality and nominal
resolution

* In-flight background has a similar shape but is a

factor ~2 stronger than ground measurements.
Polarized at 4-10 % level

* Variation of the detector responses due to
polarized background & atmosphere variations.
Modelled and corrected to better than 2 %

* Pointing offset varies during flight. Pointing
model constructed from elevation +

temperatures and Herschel comparison, better
than 1’

* Spurious polarization measured on Jupiter of

~3%

[The PILOT Collaboration, Foénard et al. 2018]

ICS response (ADU)

«—>

2.3 FWHM

A measured
— model

il \J‘vgﬂ;»mﬁ*‘m%'mmﬁ‘\w“{

29 h

Orion
contour = Herschel

o O
&
»



PILOT = In-flight performances

* In-flight good optical quality and nominal
resolution 2.3 FWHM

* In-flight background has a similar shape but is a

factor ~2 stronger than ground measurements.
Polarized at 4-10 % level

A measured
— model

* Variation of the detector responses due to
polarized background & atmosphere variations.
Modelled and corrected to better than 2 %

M e

ICS response (ADU)

* Pointing offset varies during flight. Pointing
model constructed from elevation +

temperatures and Herschel comparison, better Orion
than 1’ contour = Herschel

* Spurious polarization measured on Jupiter of

~3%

* In-flight white noise levels as expected; noise
stability over the whole flight

+ Significant improvements in ongoing analyses

[The PILOT Collaboration, Foénard et al. 2018]



The ROMAXpol map-making

[De Gasperis et al 2005]
» Data: combination of sky signal + correlated noise

1
D; = Atp (I + Q) cos2¢, + U, sin 2gbt) + n;. =

= ApSp Hit

pointing matrix 'sky signal [noise

generic linear algebra problem whose unknown parameters (the map pixel
values) can be constrained by means of the standard Generalized Least Square

solution (e.g. Lupton 1993)

S, =(A'N"A) AN D,

1 (A}, cos2¢,A;, sin2¢,A,)) (<n}nt1> <n}n’;>\
Atp = — . N = <ntnt’> = .
2 . . . . . .

\ A, cos 2¢,AK, sin2¢,AL )  (nfn)) - (nfnk)

+  Optimal map-making, largely validated for polarisation

Anna Mangilli - PILOT 05/12/2017



The Scanamorphos map-making

by Heélene Roussel

Tool inttially developed to subtract low-frequency noise from Herschel-PACS and SPIRE
data both correlated drifts (from thermal fluctuations) and flicker noise

algorithm described in 20 [ 3PASE.125.1 1 26R and [H. Roussel, &013]
principles:

|) assumption that the astrophysical signal is invariant

2) explorting all the avallable redundancy (Flight 2 scanning strategy)
3) no explicit filtering and no noise model !

4) all multiplicative effects (flatfield) must be corrected beforehand

iterative process to subtract the (additive) drifts on successively smaller timescales
recorded signal R = time-invariant sky emission S
+ atmosphere + additive drifts D (low-f noise) + white noise + glitches (high-f noise)

R(t, b, a(t)) =S(p,a) + D, .(t) + D._. (t,b) + HF(t, b)

variables: time t, bolometer b, pixel p, analysis angle a (from HWWP position + parallactic angle)

aver indiv

Anna Mangilli - PILOT 05/12/2017



In-flight optical performances

PSF on JUPITER (matrix 2) PSF on JUPITER (matrix 6)

In-flight Jupiter PSE

Y Offset (arcmin)

Simulations

Y Offset (arcmin)

-4 -2 0 2 4 -4 -2 0 2 4
X Offset (arcmin) X Offset (arcmin)

* In-flight measured PSF on Juprter is 2.25" £0.15, sims 2.31'£0.0/

* In-flight good optical quality and nominal resolution

Anna Mangilli - BXB 09/11/2017



Pointing

Orion A

Pointing & focal plane geometry:

- The Estadius stellar sensor information is corrected for an offset based on comparison

with the Herschel image (250 gm) on compact bright sources

- Pointing+focal plane geometry model (elevation + exapodes temperature) describes

the offset evolution at better then |’ over the whole flight

Anna Mangilli - BXB 09/11/2017



In-flight background

* Dedicated observation to precisely constrain the instrumental background polarization

e o e B | EVANVANNVANV!
(due to the - nm
instrument) 5 Z i I ' \/

Ground :

(due to

atmosphere) 5 : 5 -

* In-flight background has a similar shape but is a factor ~2 stronger with respect to
ground measurements

* The background is polarized (unknown reason) at 4-10%level

Anna Mangilli - PILOT 05/12/2017



Detector responses

Precisely measure the detector response variations
is crucial for polarisation

- Temporal detector response variations: Internal Calibration Source (ICS)

|CS response:
The ground calibration tests have shown that the |CS flux is directly proportional to the squared
power dissipated therein

Aon” it Rreslre [ADU], dim=[16,16,8,Nseq_cait]
Ron(<10n>2 - <Ioff>2)>

pics = [

 Spatial detector response variations: Atmosphere
Atmospheric response:
Atmosphere decorrelation from sky-dips or over the whole flight

The response is the slope of this correlation

Flight2 observations are done at varying elevation: redundant scan angle + better constrain
of the detector response variation.

Anna Mangilli - PILOT 05/12/2017



Data calibration

- Temporal detector response variations: Internal Calibration Source (ICS)
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Step-like variations due to polarized background & atmosphere variations

Linear model parameters: HWE elevation, altitude + temperatures as e.g. the focal planes temperature and
the primary mirror temperature

The model matches the data with good accuracy (2%) over the whole flight

+ Spatial detector response variations:

Atmosphere: extended and not polarized used to determine the detector response
flat-field.

Anna Mangilli - BXB 09/11/2017



Atmospheric response

TRANS

one 8 LS

normalized (to the FP-average) response

REFLEX

Anna Mangilli - PILOT 05/12/2017

from Skydips
atmospheric
correlation slope (p1)

from atmospheric
correlation slope
over the whole flight



Residual polarization

Residual polarization on an unpolarized planet mesures the data calibration accuracy

0.15 -
0.10 -

0.05 -
+ 4

000 12 .

Ay [degrees]

~0.05 2
0.10 —

-0.15 -

C : : 3
0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3
Az [degrees]

The residual polarization measured through aperture photometry on Jupiter is
AP/l ~ 3%

Significant improvement expected, more detailed calibration analysis on-going

Anna Mangilli - BXB 09/11/2017



P ’ L@T Flight2 observations

Sources Nb scenes t obs Map size scene depth total depth
[mn] [deg x deg] [Deg”~2/h]  [Deg”2/h] .
30 . 7 — W 5 - Galactic plane: LO, L30 (1h30)
Lo 4 32 2%5 75 18.8 X .
LMCridge 16 134.4 3.5x1 15.7 1.6 ) Star formmg regions:
LMCridgeBIG 19 232.5 4.0x 2 39.2 2.0

Orion 6 140.8 5x10 127.8 21.3 Orion’ Rho-oph' ’ Musca ( I Oh)

Rho-oph 11 268.8 9x4 88.4 8.0
Musca 14 185.6 2x3 27.0 1.9
JUPITER 5 27.7 3x2 65.0 13.0 - Diffuse region: BICEP ﬁeld (Sh)
SATURN 3 23.5 S5x3.4 130.2 43.0
SkyDip 8 21.3 1x32.0 - Planets: Saturn & Jupiter (| h)
Total: 104 1428.7 (23.8h) -- -- --

Observed Regions + p 353 (Galactic coordinates) Observed Regions + tau3s3 (Galactic coordinates)

0.0 messssm 0.20 p 353 —7.0 n— s —2.0 log10(tau353)

Anna Mangilli - PCMI Conference - Marseille 25th - 29th June 2018



The dust polarization

* Dust grains are elongated and spinning
* Major axis aligned perpendicularly to the magnetic field

Absorption Emission

Galactic Galactic

magnetic i magnetic i
field Unpolarized field
starlight
Dust grain | Dust grain
Line of sight | Line of sight |
Visible Infrared

Measuring the dust polarization allows to measure the magnetic field orientation

Anna Mangilli - PCMI Conference - Marseille 25th - 29th June 2018



