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- Heat transfer in superconducting magnet
- Magnet types and Cooling methods
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- State of the art
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* Propositions
- Design limits and future needs
- Cryogenics R&D at Dapnia
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Heat transfer in SC magnets (1/2)

* To insure stability (T, gnet¢ Teritica) AN protection (Ty,,,) of the magnet
dapnia - Against permanent thermal losses (Qy)
* Thermal radiation (300 K to T, ,;.1)
« Conduction through current leads, structural elements and support
Ce:) * Internal volume dissipation such as "Beam losses” and "AC losses”

- Against transient perturbations (Q;)
* Local Super/Norm transition
* Magnet Quench

saclay

- With cooling power (Qp)
* Qu=h.(T-Tb).p/A with cryogenic fluids
* Qg=Cryocooler power

300 K

- Thermodynamic properties of magnet components .
» Heat capacity C, Thermal conductivity k @

- Cooling power (Qg)
* Thermodynamic properties of cryogen
» Cryocooler performance

C%—I:D.(E*T)+Qp+Qt-QR
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Heat transfer in SC magnets (2/2)
* In operation with fixed H(T) and J(A/m?)

dapnia - Superconductor used impose T, C et k
- Thermal losses : Q, et Q; (W)
Cej - Design impose geometry : A (m?), wetted perimeter, p (m)

- Only one free parameter for cryogenics engineer : h pour T<T,

saclay . h, surface heat transfer coefficient depend on

- Cryogen, Cooling methods (flow, static, boiling), magnet geometry
(confinement), material components of the magnet

* Cryogenics for magnet design is also
- Vacuum technology, Fluids Cryo-distribution and cryoplant
- Team work with magnet designers, mechanical engineer, vacuum engineer...

Maximum horizontal displacements
(red parts):5.7 mm
SIS for ITER
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Magnet Types / Cooling method

"Dry magnet” : No contact between the cryogen and the conductor
- Conduction in the magnet : bath or Cryocooler

dapnia - External flow of cryogen to the coil (CMS, ATLAS, ..)

> @) =

saclay

"Wet magnet” : Contact between the cryogen and the conductor
- Bath : single phase stagnant He II (Tore Supra, ISEULT, LHC, 45 T NHMFL,...)
- Flow : single phase in CICC (W7X, ITER, ..)

Cr' ostable” or "adiabatic” maghets
Cr'yos‘rable" Q> Q+*Q; (Iseul‘r Tore Supraq, ...)
"Adiabatic” (CMS, ..)
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Cooling method : The Baths

+ Saturated bath (P=1 Atm et Tsat)

dapnia - Implementation
- Simple design and operation for cryogenics
* Latent heat cooling (phase change); (He 4.2 K, N, 77.3 K et H, 20.4 K)

Cej « Non uniform cooling due to vapor formation, dry out
— Heat transfer in nucleate boiling : g,,,~10* W/m? for A T~1Ka|
saclay - Large scale magnet or compact system (He ~1 W/m) .
T,
* Pressurized He IT (1.9 K at P=1 Atm) T
- Implemen’ra‘non @«

- Design and operation of cryogenics costly and more compllca'red
* Heat exchanger He IT sat / He IT p
* Design for the heat paths between cable and the HX
- Large Heat transfer : k=10%> W/m.K for A T~0.3 K and y~3 10 Pa.s) o

» Thermal (Kapitza) resistance between solid and He IT
— R=310* K.m?/W for Cu and R,= 10-3 K.m2/W for Kapton

— LHC ~1 W/m, Concept extendable to 50 W/m with proper heat path
(channels and insulation)
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Cooling method : Convection flow

dapnia ° Single phase forced convection

- Implementation
Ce:) * Pressurization system and periodic recooling for operation (series of large magnets)
- Simple design with traditional heat transfer and pressure drop correlations
— Heat transfer (sensible heat with temperature increase) @l
saclay + Supercritical He (~0.1 kg/s and ~1-10 W/m) Px3-8 bar, T~4.4 K, AT~50-150 mK per magnet
* He IT (~1 W/m) Advection effect for Im/s for AT=0.1 K @ 1.8 K, Negative JT coefficient

 Two-phase forced or natural convection

- Implementation
+ Same advantages and inconvenient than bath cooling but lower quantity of cryogen
- Operation needs pressurization system in forced flow and none in natural convection
— Heat transfer due to nucleate boiling but degradation at high mass flow
* Two-phase forced He flow g,,,,~10* Wm for @10 mm m=6 gs'and A T~1 K@
* Two-phase natural helium flow gy, ~10% Wm2 for @10 mm m=20 gs! and A T~0.3 K
— Forced convection : ATLAS (helium)

— Natural convection : CMS (helium), HTS Synchronous Machine (Nitrogen)

P. Bredy, SACM
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Cooling method : Conduction :

» Cryocooler

dapnia - Implementation g
S - Simple design and operation 5 T
Ce:) + Small LTS magnet or HTS magnet ds ;EE&IZM‘M
* Low thermal conductivity and diffusivity of materials e
- Performance T
SaC|ay + Commercial : 1.5 W at 4 K but fast improvements A. Sato, MiMS

* R&D:1Wat18K

- Heat Transfer
+ Conduction through magnet or cryogen

- Examples —

+ 10T magnet class commercialized since 1990 —

+ 18T NbTi and Nb,;Sn magnet (MIMS, Toshiba et TIT)
- Cooledby CRde1Wat 18K

* Magnet cooled with solid cryogen F:ﬁ
- HTsS.. =
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Accelerator magnets

dapnia * "Wet" magnets with "heat exchanger” |
- Large internal losses and smaller stored energy 8-

Cej - Cooling Source : Internal tube flow
- Single phase coolant in contact with conductor
saclay . b N

- Heat transfer between the conductor and the cooling source
determines the temperature margin, AT=T-T

- Electrical insulation constitutes the largest thermal barrier

* Heat transfer R&D on the LHC insulation (90's) (bapnia (€. Meuris) and KEK)
- Permeability increase in the insulation to create heat paths
- Creation of space between the insulations and the conductors
- Removal of epoxy resin impregnation (“dry" magnet)

- Little work on the materials
- Conductive doping, holes or porosity
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Accelerator magnets : LHC

VACUUM VESSEL BEAM PIPE HEAT EXCHANGER PIPE
. - He II COOling SC BUS BARS To 67N SUPERCONDUCTING COILS
dapnia - Two-phase He II for the exchanger . . . A5l G o _
- - STClgnGnT He II for the magneT e [ 4 , d’ oL
Cej + "Beam losses" in LHC :
- 10 mW/cm? or 0.4 W/m (cable) HENVESSEL PeAm soneet
- AT<0.3 K with permeable insulation INSULATION y i NON-MAGNETIC
SaC|ay - AT~4 K with monolithic insulation S s T
SUPPORT POST = : 20 bar

- Electrical Insulation is

- Historically: double wrapping
+ Polyimide with 50% overlap
Fiberglass + epoxy resin with spacing

- LHC Insulation : triple polyimide wrapping
First 2 wrappings without overlap
3rd wrapping with spacing o

0,2

* A thermal Insulation
- Kapton/ Kapton : 120 um thick s

g
— @~10 pm, channel length of ~mm =
01
o @ o
- He II + Conduction Espacement
= I 0105 N
Seconde couche ’ 0 005 Q 0,1 0,15 02 Q025
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Accelerator magnets : Beyznd LHC

» "Beam losses" of LHC upgrade with Nb;Sn Magnets

dapnia  _ 50 1o 80 mW/cm? or 2 to 3 W/m (cable) — AT?

Cej * Innovative ceramic insulation (under development)

- Thermal treatment (insulation+Nb3Sn, easier and less costly construction)
saclay - Fiberglass + ceramic precursor (CEA patent)

- Heat transfer considerations

* Higher heat transfer rate, larger He Volume in the insulation (Cp) and heat
exchange surface increase (matrix participation)

Ceramic Classic (Polyimid)
Pore size d~100 pm (peak) 10 pm at Saclay to 100 pm at KEK
Porosity € 451029 % ~1 %
Conductivity %4 102 W/Km Kiapton©10-2 W/Km @ 2 K

F. Rondeaux, SACM
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Pulsed magnets at GSI

» Cooling
- He two phase flow at 4.2 K & 1 bar
- Supercritical helium flow

C@ * 44 Kat 3barand 5 g/s

saclay AC losses"”
- SIS 300 (UNK)1 T/s — 0.6 W/m
- AT ~ 2 K with impermeable insulation
- AT ~ 200 mK with permeable insulation!

dapnia

- Insulation with Holes?

- 2 layers of Polyimide 25 ym with adhesive (50 % overlap)
- 26% of the surface in contact with He :

- R&D to be done on insulation heat transfer
- Tests at SACM in 2007
- In supercritical, static He (3 bars)

M. Wilson, 6ST
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Detector Magnets

* Large scale magnet

dapnia - Larger stored energy and smaller thermal losses

- Large thermal stabilizer Cross-sectional needed G
Cej - T,.x and OT to minimize the mechanical constraints, 2z G omtms
saclay . pry" magnet = \E /

- Reduced quantity of cryogen W/f' i, “// ’ NS”W

- High purity aluminum stabilized conductor
- Fully impregnated coil with epoxy resin

* Heat transfer
- Cold source : He reservoir / phase separator

- Two-phase flow of He I in external tubes
* Forced flow or natural two-phase flow
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Detector Magnets : CMS |

~ * Two-phase convection in thermosiphon mode
dapnia - Solenoid with "vertical parts”

- Heat transfer

CEJ - 45K at 1.25 bars

- Tests at CERN AT=0.1 Ket 0.2 K

saclay

CEA - Saclay 12/98
DSM DAPNIA STCM

M ass flow (g/s)

» R&D done on "Thermosiphon” flow
- Validation Homogeneous model

F.-P. Juster, SACM

- "Large scale” experimental validation 0w 10 1 2 2 w0 = an
Total deposited power Q (Watt)

14
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Detector Magnets : ATLAS

- Helium two-phase forced convection
- Toroid with long horizontal parts

Ce:] Heat transfer

- 45 Kat 1.5 bars
Saclay - AT=0.15 K et Ap=0.2 bars

dapnia

* R&D done at Saclay on circulator
- 0.1 kg/s—1.2 kg/s
i w [, — Tests of 0.6 kg/s circulators

C. Mayrl SACM
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Magnets for fusion

- Large losses due to plasma and radiation
- Direct cooling with Cable in conduit conductor

G0 . 17er

- Enormous, known and tested technology
saclay - Supercritical helium flow at 4.5 K and 6 bars

dapnia

!

SHe supply 4.5K, 0.58MPa

SHe return 5K, 0.55MPa

[ T T T T W
il ae .5
e \ - A
s =
| 2 E]

!

- W7X
- Supercritical helium at 3.8 K and 6 bars max

- Experimental testing facility at Saclay
* 45 Kto 7.6 K, p=6 to 10 bars and I%18 kA

- Largest experimental data base on CICC cooled
magnet in operation at Saclay
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Magnet for life science \SGUI{

- "Wet" and "cryostable” magnet

dapnia - Cold source : He IT static helium
- - Large He IT bath (volume ~ 1000 I) -
(m - No perturbation of the medical environment!

* Heat transfer
saclay - T=1.8 Kat 1.25 bars
- Insulator/separator of conductors creates channels
- Channel heat transfer know in He IT

» Transient heat transfer and hydraulics?
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Design limits and future needs

~ * "Wet" magnets cooled with single phase submitted to phase change
dapnia - Iseullt ou LHC

- Pressure rise due to magnet quench
Cej Development of experimental and theoretical thermo hydraulics models

saclay ° Next generation of accelerator magnets
Improvement of heat transfer in the magnet (Insulation et design)

* HTS magnets / Single unit magnet
- Cryocooler and fluid coupling

Autonomous cooling device : cryocooler + fluid
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Cryogenics R&D at Dapnia (1/3)

~* Fluid dynamics and heat transfer in a He two-phase thermosiphon (CMS)
dapnia - 1 m Experimental loop (Fundamental flow properties, models 1 PhD)
- 9 m Experimental loop (Large scale ) |

2000 T T T T T
H z/ D=64, 3 L] 1
1800 H s 4
L o ane E
1600 = ® ® -
S &
1400 i:) i
o)
1200 mO .
\g 0O
1000 o -
= Lo
o 800 © i
600 (o Run#l o q, -
= . qun
400 |o i
o Run#2 o q_
200 o ® diun ]
0

0 : A
1 2 3 4 5 6 7 8 s =
P, ey, sacM | I o7 [0sm \Thermaanchor
i Sl l T 1 liquid 428 [0.6m “~ e
 Helium "Heat pipe" development - o
- Internal R&D interne for autonomous system | pesare
@ 5 [0.07m 'w/(b) )

* Cryocooler + fluids
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Cryogenics R&D at Dapnia (2/3)

* He IT Heat transfer in porous media
— Tests on porous “scaled” sample

dapnia

CE0 - Fundamentals on transport properties

saclay - Tortuosity w
17
|||||||||| l
Ler o N
175} D/D/ —
0 T,=1.9K,[3 mm sample AT T ° i
170k > ; 1
- O . IpsdT .
- TN 5 ]
3 160} /O
. .O [~Landau regime 5
Lsr | Ciitica het flux &
I .6 - Darcy regime o
150 [ [—0o—CsSi,e=58% 20 um| -
145k [—o—CSi, e=62%10 um]
1o
14 15 16 17 18 19 20 21

b n I n I n I n I n I n
0.00 0.05 0.10 0.15 0.20 0.25 0.30
AT (K)

Temperature (K)

Ap = HpsﬁTHt oA T
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Cryogenics R&D at Dapnia (3/3)

* Thermal properties of materials

dapnia - Kapitza resistance and thermal conductivity in He IT
- « Kapton, Mylar, Apical, ...

& . » Thermal conductivity and diffusivity (4 K a 300 K)

- Insulators and conductors

.............
o present work

ROT* (Ea(7) A
........ RKD T3 (Eq(8) |

14 15 1.6 17 18 19 2.0

Temperature (K)
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R&D propositions (1/3)

* Pressure rise in magnets due to quench (transient thermo-hydraulics)

dapnia - In the frame work of Iseult and SEHT
* First experimental rig and first results on channel pressure rise in He IT
(m - Analytical work in progress (C. Meuris, Sa

saclay

évolution des pressions maximum en fonction du flux d e
chaleur pour I'hélium superfluide a 1,8K et 16mbars

2500

2000 - = .
n [ ]
L] [ ]
[ ]
im [ ]
© 1500 &
o
c ] « capteur du haut
~ [ ]
s [ = capteur du bas
‘@ 1000 o
g '
Q ..' * *
* o *
500 - . .
¢ ¢ ¢ .
0" 4 PS
0

0 0 410 6o 90 100 10 140 Bredy, Juster, Baudouy, Sacm

flux de chaleur (W)

To be continued... and generalized to accelerator magnet
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R&D propositions (2/3)

* He IT heat transfer through innovative insulation

dapnia - Experimental and theoretical work on "scaled” porous media
- NIFS, IMFT
CE] - Experimental work and modeling on stack of conductors (coil) (NED)

- KEK, CERN, WTU

N. Kimura, KEK

 To be continued in the framework of NED or any another...
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R&D propositions (3/3)

Autonomous loop with cryocooler and fluids

dapnia For small magnet, Targets and magnet for other scientific communities
m Relief Valve  —_
C 4 ——— Small Cooler
Shut Off Valve
. .
1st 3ag§CoId Head \ %

Copper Leads 7

%
Z
Z /
. é
Z Z
Cryostat Neck — | HTS L eads | Z
304 St St | é
7 7
7 7
7 | 7
Z |\ 7
Z . 7
Cu GasTube (any Ienqth) 2nd Stage Cold Head
1

Condensation Plate

/ I %
Cool Down Pipe 7

|
|
304 St St
7 ! .
g | Liquid Hellum
7 %
1 /
7 Cu Liquid Tube(anylength) !
b e m e — — - Mice

T, K
Magnet Vacuum Vessel 50 K Shield

To be started.. to be in the train...
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