

CaLIPSO Un nouveau détecteur en vue de TEP (plus) efficaces

Haut rendement, Résol. Spatiale 1mm³, Uniforme en 3D

P. Verrecchia, D. Yvon, + (A. Lepomme, V. Reithinger) (IrfU/SPP)

G. Tauzin, JP.Bard, D. Desforge, A. Marcel, JP. Mols, M. Riallot,

D. Attié, F. Jeanneau, L. Liszkay, P. Starzynski, C. Jeanney (IrfU/SEDI) + JM. Reymond

JP. Renault (DSM/IRAMIS)

C. Comtat, S. Jan, R. Trébossen (DSV/I2BM) + A. Amadon M. Porchet (DSM/Valo), I. Buvat (CNRS/INMC)

29/08/11

D.Yvon, SPP, Semin. Instru.

Principe de la détection TEP Rappel de Physique de base

L'idée CaLIPSO

Enjeux autours des détecteurs TEPs Intérêt du milieu médical

Progrès récents

Mesures des propriétés physiques du TMBi

Vers une démonstration technologique

Validée sur une imagerie Rat (au SHFJ).

29/08/11

D.Yvon, SPP, Semin. Instru.

Diffusion Compton: Collision d'un photon avec un électron au repos

Interaction Gamma – Electron Un Photon énergétique en entrée Un Electron et un Photon toujours énergétique en sortie Conversion Partielle de l'Energie du photon Poison de l'imagerie TEP

29/08/11

D.Yvon, SPP, Semin. Instru.

Effet Photoélectrique varie ~ $Z^5 E_{Ph}^{-3/5}$, domine si Z grand.

29/08/11

D.Yvon, SPP, Semin. Instru.

matériaux actifs de grand Z et de grande densité volumique.

Irfu CEC saclay

Comparatif des milieux de détection

	LSO	CdTE	Xénon liquéfié	ТМВі
Longueur d'atténuation	95% (2,2cm)	95% (5cm)	95% (10cm)	85% (5cm)
Rapport photoélectrique	30%	15%	21%	57%
$^{ au}$ scin	40 ns	Lent (porteurs)	4 ns	< 1 ns
Résolution énergie (FWHM)	15%	1%	5%	<10%
Localisation des interactions	~1 - 0.2 cm Fraction.	1 – 5 mm Fraction.	150 μm	150 μm
Utilisateur	Facile	Facile	Difficile	Facile

Motivant !

29/08/11

D.Yvon, SPP, Semin. Instru.

Bilan - Enjeux autour des TEPs

Efficacité d'une TEP

Effet Compton dans les organe	S						
Fond irrécupérable, à rejeter, Résolution en énergie, CaLIPSO!							
Effet Compton dans le détecte	JL						
Meilleur détecteur, Rap PE,	CaLIPSO!	Facteur 4					
Ou double interaction, Perte e	n résolution spatiale						
Couverture de l'angle solide							
Détecteur continu, meilleure h	erméticité, CaLIP	PSO!					
Résolution Spatiale							
Reconstruction d'événement au	u mm.						
Fractionnement des cristaux,	Cher!						
Ou pixellisation du plan de col	llection de charge	CaLIPSO!					
Reconstruction d'événement 3	D	CaLIPSO					
Résolution spatiale uniforme s	sur le volume des orga	anes					

29/08/11

D.Yvon, SPP, Semin. Instru.

15

TEP clinique (Hospitalière, Oncologie):

Enjeux: Efficacité de détection ~ 1 %, bruit de fond, résolution spatiale.
Détection précosse de tumeurs. Irradiation du personnel hospitalier.
Potentiel CaLIPSO: Gain en Efficacité, 2 à 8 selon la résolution spatiale désirée

TEP petit animal (souris-rat, utilisation pharmacologique): Enjeux: Résolution spatiale (mm) et efficacité Accès à la cinétique de fixation des médicaments Potentiel CaLIPSO: Gain en résolution, >8 en volume.

Intérêt d'un TEP CaLIPSO (2)

TEP Cerveau (Neurologie fonctionnelle)

Enjeux: Résolution spatiale (mm) en 3D, Rendement, Efficacité vs Compton,

Potentiel CaLIPSO:

Résolution au mm 3D, Rendement Photo-Electrique, Résolution en énergie, Couverture Angulaire

Résolution spatiale optimisée et uniforme en volume, naturelle.

Rejet du fond et résolution spatiale optimisés sans compromettre le rendement de détection

Rendement de détection~3: Doses injectées, durée de l'examen, cinétique des processus neurologiques.

Prototypes plus petits

Mais aussi Multi-Rongeurs.....

Soutien du Neuropole de Recherche Francilien (NERF) 🙂

Merci à tout ceux qui nous ont soutenus/guidés dans ces démarches.

29/08/11

D.Yvon, SPP, Semin. Instru.

17

Intérêt pour le milieu médical

S'assurer de l'intérêt médical de l'approche (les améliorations apportées par le nouveau détecteur sontelles perçues comme importantes pour les médecins)

Imagerie de modèles animaux

Modèle Rongueur + Traceur ([18F]FDG, autres). Mes. activité des Cibles. Mais Variabilité des radio-traceurs.

Acq. Simultannée de multi-animaux: =>Variabilité des résultats réduite + Gain de temps.

Dispositif d'acquisition 29/08/11

Ph. Hantraye, MIRCEN + R. Trébossen, SHFJ

ET résolution spatiale ++ Efficacité de détection ++ => Concent. Cibles + précise

HR+

D.Yvon, SPP19emin. Instru.

Cibles basses concentrations +Vers imagerie TEP « Vidéo »

HRRT

saclay

L'imagerie cérébrale TEP haute résolution spatiale

Neuro-transmetteurs travaillent à faible concentration

> Meilleure récupération de contraste

Meilleure quantification des régions d'intérêt et des paramètres biologiques.

> Meilleure définition des structures d'intérêt

- > Accès à des structures fines: la substance noire (SN), noyaux gris
- > Etude fine des circuits dopaminergiques sur des populations de patients: (Maladies de Parkinson, de Huntington, troubles psychiatriques, addiction....)
- C. Leroy, J Nucl Med 48 (4), 2007 ;FC Sureau, J Nucl Med 49 (6), 2008.

E. Artiges, Psychiatre R. Trebossen, SHFJ


```
Irfu
```

saclay

Hadronthérapie, TEP « en ligne »?

Aveuglé pendant l'irradiation (qq s?).?Après?Emetteur β+ produits en hadronthérapie:(K. Parodi)6.86 10⁴ pour 10⁶ protons, 6.25 10⁵ pour 10^{6 12}C

Isotope	demi-vie (s)	λ (mm)	Fais. Proton Abondance (%)	Fais. ¹² C Abondance (%)
¹⁵ O	122	~ 2.	30	27
¹¹ C	1223	~ 1.2	66.6	68
¹⁰ C	19	?	3.2	4.8

Ordre de grandeur de flux, cas ¹²C

5 à 10 Gy, tumeur de 2 cm, ==> 10^{9} ¹²C. (S. Jan, SHFJ) 1.5 10^{8} ¹⁶O, en deux minutes, 1 à qg MHz => validation faisceau rapide

4 10⁸ ¹¹C en 40 minutes, 170 kHz => Dosimétrie tumeur à postériori Enjeux : Efficacité, résolution spatiale

Plus généralement: Radiologie

Tumeurs cérébrales ou autres:

Suivi post-opératoire Recherche de métastases.

L'hyper-insulinisme du Nourisson

Diagnostique de l'épilepsie

Et plus généralement des hypo-métabolismes (efficacité, résolution mm³!)

Souvent Image IRM Normale:

=> Accès à l'activité métabolique indispensable.

Prof. Boddaert (Radiologie Pédiatrique, Hopital. Necker)

29/08/11

D.Yvon, SPP, Semin. Instru.

23

Irfu CCCC saclay

Vers le concret

Progrès Récents

Banc de Purification:

Outil de base

Dégazage, Distillation,Validé, Opérationnel en routineTamis Moléculaire,En cours de montage

Mesures Optiques

Absorbance, Fluorimétrie *Cellule Optique* Rendement de Scintillation *Banc de Rend. Scin. Liquide: TMSi, TMBi, LAB, LAB-PPO (DRT/DETEC)*

Mesures d'ionisation

Gfi		Cellule Gfi, Banc Gfi,
$ au_{\it Vie}, V_{\it deriv}$		Cellule TVie, Acq. Charge en Impulsion
Liquide:	TMSi, TMBi	

29/08/11

D.Yvon, SPP, Semin. Instru.

D.Yvon, SPP, Semin. Instru.

Mesures d'absorbance et fluorimétrie

29/08/11

D.Yvon, SPP, Semin. Instru.

29/08/11

D.Yvon, SPP, Semin. Instru.

Principe: Ph. Cassette, LNHB

Dessins, D. Desforges

Banc de Rendement de Scintillation En situation

29/08/11

D.Yvon, SPP, Semin. Instru.

33

Temps de décroissance scintillation LAB ~ 5 ns Temps de décroissance scintillation TMBi et TMSi *Rapide! < 1.5 ns*

Rendement de Scintillation (Lab-Pb + PP0)

Rd Scint LAB: PicEm PPO: Eff PhEl LAB:	(NbPhot/MeV) (nm) (ss dimm)	10000 375 0,28		Ape (nb/MeV)	2800			
Source: NbCoinc1-2 6119	57Co 57Co NbCoinc1-3 6497	165 EDepMoy: NbCoinc2-3 5875	2,33E-02 NbCoinc1-2- 2764	(MeV) 3	NbCoinc1-2 5381	NbCoinc1-3 5642	NbCoinc2-3 5117	NbCoinc1-2-3 2063
Rap12 2,21382055	Rap13 2,35057887	Rap23 2,12554269			Rap12 1,94681621	Rap13 2,04124457	Rap23 1,85130246	
CoupOpt1 9,74E-03	CoupOpt2 8,49E-03	CoupOpt3 9,21E-03			<i>CoupOpt1</i> 1,19E-02	<i>CoupOpt2</i> 1,03E-02	<i>CoupOpt3</i> 1,10E-02	
PicEm TMBi: Eff PhEl TMBi: RapCplOptTM	(nm) : (ss dimm) Bi/LAB:	420 0,26 1						
Run Etalonn Source: NbCoinc1-2 3203	1age LABPb 22Na NbCoinc1-3 3709	167 EDepMoy: NbCoinc2-3 3078	3,00E-01 NbCoinc1-2- 1290	(MeV) 3	NbCoinc1-2 2923	NbCoinc1-3 3257	NbCoinc2-3 2780	NbCoinc1-2-3 1141
Rap12 2,482945736	Rap13 2,8751938	Rap23 2,38604651			Rap12 2,26589147	Rap13 2,5248062	Rap23 2,15503876	
APE _1 185,799224	APE_2 167,735527	APE_3 186,515012			APE _1 1,75E+02	APE_2 1,63E+02	APE_3 1,76E+02	
A_1 (NbPhot/MeV) 7,15E+02	A_2 (NbPhot/MeV) 6,45E+02	A_3 (NbPhot/MeV) 7,17E+02			A_1 (NbPhot/MeV) 6,71E+02	A_2 (NbPhot/MeV) 6,27E+02	A_3 (NbPhot/MeV) 6,76E+02	
			650	ph/N	1eV			

Exploitation BPRS LABPb Run 165-167

29/08/11

D.Yvon, SPP, Semin. Instru.

35

Irfu CCCC

saclay

Rendement de Scintillation TMBi

Explotation BPRS, TMBi Run 168-169

Rd Scint LAB: PicEm PPO: Eff PhEl LAB:	(NbPhot/MeV) (nm) (ss dimm)	10000 375 0,28		Ape (nb/MeV)	2800		Note IF	RFU UB/	'DY/292/2	2010
Bun Etaloni		160								
Sourcou	Tage LAD:	169	2 225 02	(Ma)/)						
NbCoinc1-2 2269	NbCoinc1-3 2301	2106	2,332-02 NbCoinc1-2-3 1046	(MeV) 3	NbCoinc1-2 1987	NbCoinc1-3 1980	NbCoinc2-3 1821	NbCoinc1-2-3 780		
Rap12 2,169216061	Rap13 2,1998088	Rap23 2,01338432			Rap12 1,89961759	Rap13 1,89292543	Rap23 1,74091778			
CoupOpt1 1,05E-02	CoupOpt2 9,29E-03	CoupOpt3 9,47E-03			CoupOpt1 1,31E-02	<i>CoupOpt2</i> 1,15E-02	<i>CoupOpt3</i> 1,15E-02			
PicEm TMBi: Eff PhEl TMBi: RapCplOptTM	(nm) (ss dimm) Bi/LAB:	420 0,28 1								
Run Etalonr	age TMBi:	168								
Source:	60Co	EDepMov:	8.36E-01	(MeV)						
NbCoinc1-2 3994	NbCoinc1-3 7665	NbCoinc2-3 3346	NbCoinc1-2-3 411	3	NbCoinc1-2 3898	NbCoinc1-3 6079	NbCoinc2-3 3257	NbCoinc1-2-3 381		
Rap12 9,717761557	Rap13 18,649635	Rap23 8,14111922			Rap12 9,48418491	Rap13 14,7907543	Rap23 7,92457421			
APE _1 14,89764289	APE_2 7,0945989	APE_3 13,7118952			APE _1 1,53E+01	APE_2 9,01E+00	APE_3 1,41E+01			
A_1 (NbPhot/MeV) 5,32E+01	A_2 (NbPhot/MeV) 2,53E+01	A_3 (NbPhot/MeV) 4,90E+01			A_1 (NbPhot/MeV) 5,48E+01	A_2 (NbPhot/MeV) 3,22E+01	A_3 (NbPhot/MeV) 5,02E+01	1		
	F	as de	scintill	ation:	Effet (Cerent	(OV			

Rendement scintillation: ~130 ph/MeV

irfu				
saclay	Cellules Gfi: Rei	ndement d'ionis	ation	HV
			Electrodes Stainless steel	Ceramic
Fac	e interne			
		Face externe	E	
	Electrodes	ОК		
29/08	5/11 D	D.Yvon, SPP, Semin. Instru.	2	37
CeCl	Mobilité des éle	ectrons dans TN	lBi et TM	Si
saclay	Cellule sous tensior sous/hors irradiati Note	n, 5 kV/cm. Mesure de ion ⁶⁰ Co: Mobilité TME IRFU UB/DY/292/2010	e courant ~p/ 3i ~ au TMSi	A.
	Cu	rrent history + irradiation		P. Verrecchia,
	-67.2 -67.4 -67.4 -67.6 -67.8 -68.2 -68.2	odes HV = 10 rodes	00 Volts	+ à la demande
	-68.4			

-69⁶0

80 90 time (mn)

Irfu

Faisceau e-, énergie étalonnée

P. Verrecchia JP. Bard

Largeur dominée par l'électronique et le piègeage lors de la dérive de charge Résolution 5.4 %, 1 σ , à 976 keV

29/08/11

D.Yvon, SPP, Semin. Instru.

41

5 k	bancs d	le test 4	fonctionnels	et exploités	☺, 1	en cours.
-----	---------	-----------	--------------	--------------	------	-----------

3 configurations d'éprouvette. 2 montées, 1 en cours

+ 2 en préparation (Mesure d'indice optique + Tscint).

Puis un démonstrateur technologique

- Un démonstrateur optique
- Banc Ultrapurification
- Un démonstrateur ionisation
- Assemblage en un détecteur, duplication détecteur.

Investissement humain important anticipé. De l'aide sera la bienvenue

Puis validation imagerie TEP au SHFJ

6 mois de plus..... sur rats vivants

Financement du démonstrateur

Soutien du Neuropole de Recherche Francilien (NERF), 53%, 200 k€, 2 ans Merci à tout ceux qui nous ont soutenus/guidés dans ces démarches.

Il nous faut aussi trouver 200 k€ et CDD => Demande ANR SVSE5 D.Yvon, SPP, Semin. Instru.

I	r	f	u
$\left(\right)$	X	Ň	C

Projet de Détecteur CaLIPSO

saclay

Réaliser « Un Plan »: un détecteur de photons au MeV 10x10 cm² Aborder tous les points clefs *novateurs* du détecteur: *rapidement*

- Maitrise de la purification du milieu de détection
- Maitrise de l'ultra propreté des mécaniques et instruments.
- Maitrise des hautes tensions nécessaires à la dérive des charges.
- Détection en scintillation des liquides organométalliques.
- Maitrise de la densité d'électronique de lecture nécessaire
 - Conception soignée de l'intégration électronique au détecteur.
 - Recours à des technologies d'ASIC.

Critères de Réussite						
Résolution en temps	< 2 ns					
Reconstruction spatiale	$2x1x1 \text{ mm}^3$, $3D$					
Rendement Photo-Electrique	57%					
Résolution en énergie (FWHM)	10%,					

Valider le détecteur en imagerie TEP

Réaliser l'imagerie TEP d'un rat de laboratoire

29/08/11

D.Yvon, SPP, Semin. Instru.

43

Gros effort « Ultra-propreté »

saclay

Gros progrès depuis un an, mais pas encore suffisant. Aussi:

- Protocole de nettoyage révisés et optimisés (Merci au SACM, SAp et P. Salin)
- Installation salle grise sous flux au labo CaLIPSO
- Dégazages en étuve: Sas salle blanche.
- Manipulations et montages

Pièces critiques en salle Blanche classe 10000 ou 100.

Remplissages détecteurs

En salle Grise, sous flux.

- Test de performances
 - En direct lors des nettoyages. Sur cellules Gfi, puis Tvie.

Avant-Projet

- Cahier des charges SHFJ, OK.
- Paramètres physiques, OK
- Prototype Mécanique UHV: Discussions avec les sous-traitants en cours.

29/08/11

D.Yvon, SPP, Semin. Instru.

45

Détecteur « Hi-Tech »

Corps Céramiques Fenêtre optique verre Joints vides métalliques Ultra-propreté.

	S	Simula	ation C	Optiqu	e ZEN	IAX		
File Ed	ditors System Analysis Tools Report	ts Macros Extensions	Window Help					
New C	Ope Sav Sas Upd Upa G	àen Wav Chk	L3n LSn Obv	Dcl Dvr Rdb	Gla ABg Pre			Maraià
Non	n-Sequential Component Editor	ools View Help						
Edit St	Object Type	Tilt Nout V	Tilt Mbout 7	Material	X1 Half Width	V1 Half Width	Z Length	D Dub
1	Rectangular Volume	0.000	0.000	AL203	15.000	15.000	50.000	D. D. 00
2	Rectangular Volume	0.000	0.000	TMBI	14.000	14.000	50.000	
3	Rectangle	0.000	0.000	ABSORB	15.000	15.000		
4	Rectangular Volume	0.000	0.000	SAPPHIRE	15.000 P	15.000 P	5.000	
5	Rectangular Volume	0.000	0.000	BK7	15.000 P	15.000 P	0.100	
6	Rectangular Volume	0.000	0.000	BK7	13.100	13.100	1.000	
7	Source Volume Rectangle	0.000	0.000	-	1	10000	1.000	
8	Detector Rectangle	0.000	0.000	ABSORB	11.800	11.800	124 🗸	
			0.4936 0.4442 0.3949 0.3455 0.2961 0.2468 0.1974 0.1461 0.9867 0.0987	6 2: NSC Shaded. Update Settings Pri	Andel k Window Text Zoom	Spn		
04/03/ Detect Size 2 Peak I Istal	Detector Image: In ac 8, MSCG Sucface 1: 3.000 W X 23.600 A Killimetecs, Fixels 1 Ccadiance : 4.935% 2001 Walts/cm ² Proce: 2.1020-1005 Walts	ncoherent Irradiance 24 W X 124 M, Istal Mits	- 2102					

5 à 10 Photo-Electrons => vers une conception de détail

29/08/11

D.Yvon, SPP, Semin. Instru.

47

Pré-Etudes pour guider nos choix de conception

La question est posée.....

29/08/11

D.Yvon, SPP, Semin. Instru.

49

Merci de votre attention.

I	r	f	u
	~	~	_

saclay

Découpage Budge, NERF

Labo	Investissement	Main d'Oeuvre
DSM/IrfU	315 k€	1.5 – 2 M€
DSV/SHFJ	35 k€	3 mois ETP
DSM/IRAMIS	13 k€	Nn mois ETP
Demande:	373 k€	Sur deux ans

Etuve Dégazage sous vide 300°C Banc de purification Tamis Moléculaire	25 k€ 40 k€
Chambre à ionisation pixellisée	
Mécanique et interfaces (Optiques et ionisation)	100 k€
TMBi 4+4 kg	50 k€
Electronique (IDeF-X)	25 k€
Détection de photons de scintillation fin	30 k€
Duplication démonstrateur	35 k€
Manipulateur Rat, fantôme de résolution Spatiale	35 k€
Analyseur de gaz résiduel	13 k€

29/08/11

D.Yvon, SPP, Semin. Instru.

51

Découpage projet

Banc de purification par Tamis Moléculaire

Ultra-propreté. $\tau_{vie} e^{-} \sim 100 \ \mu s.$

Chambre à ionisation pixellisée:

Haute tension - Ultra-propreté

Interface détection de photons de scintillation

Interface + Intégration électronique de détection de charge

Etude du détecteur de photons de scintillation

Choix de technologie. Optimisation du seuil et résolution en temps

Intégration finale du détecteur de démonstration

Caractérisation – Performances

Duplication démonstrateur

Validation en Imagerie + Etude en simulation

29/08/11

D.Yvon, SPP, Semin. Instru.

53

Etudes de sécurité

Bien étudier tous les aspects de sécurité liés à l'utilisation du TMBi qui pourraient compromettre l'acceptabilité du projet.

Note IRFU/SIS/1916-.09./TV.AL, « Dossier global expérience CaLIPSO CLS 315 R »,

53 pages. Au CEA, pour un labo, tout est clair.

Dans un contexte hospitalier:

Mener un tel dossier est un travail de professionnel. Il faut disposer d'un prototype pour être constructif.

Financement

Fournir un descriptif précis des moyens nécessaires à la mise en œuvre du projet.

5 demandes de financement élaborées en 2010 et début 2011.

- DGA/REI. (M. Duchaussoy) • DIM/NeRF, lle de France.
- ANR Emergence.
- LabEx Interface Physique Médecine.
- ANR Blanc SVSE5.

(Ph. Vernier)

(Non soumis, projet trop amont)

(J. Bittoun)

(A-S. Belmont)

Soutien du DIM NeRF lle de France, Investissement

CaLIPSO 2eme classé / 12 projets financés © 50% de l'investissement, 200 k€. Mais Deadline 4 ans.

En attente de réponse pour LabEx et ANR SVSE5

29/08/11

D.Yvon, SPP, Semin. Instru.

55

lrfu

Demande à l'ANR Blanc SVSE5

saclay

Partenaire CEA-IRFU	Nom	Prénom	Emploi actuel n	Discipline	Personne. mois*	Rôle/Responsabilité dans la proposition de projet 4 lignes may
Responsable Scientifique	Yvon	Dominiqu e	Physicien, Directeur de Recherche au CEA	Physique expérimen- tale	32.4	Détenteur du brevet. Coordination de la conception/réalisation et des tests sur les prototypes CallPSO.
Chef de Projet	Tauzin	Gérard	Ingénieur CEA	Mesures Physiques	29	Gestion du projet. Responsabilité du banc d'ultrapurification
	Verrecchi a	Patrice	Physicien, Directeur de Recherche au CEA	Concep. mesures sur det. Liq. Chaud.	32.4	Physicien des détecteurs liquide chaud. Responsabilité du démonstrateur lonisation
	Jeanneau	Fabien	Physicien CEA	Phys. détecteur	7.2	Expert-Simul détecteur lonisation
	Starzynsk i	Pierre	Technicien au CEA	Mécanicien vide.	12	Expert Vide et Ultravide.
	Mols	J-Phillipe	Projeteur au CEA	CAO, mécanique et détecteur	7.2	Conception mécanique et des interfaces détecteurs
	CDD Ingé		Ingénieur à recruter		24	Electronique analogique et digitale de proximité des détecteurs
	Ingénieur		Ingénieur CEA		2	Encadrement CDD ingé et logiciel d'Acquisition
	Bard	J-Pierre	Technicien au CEA		7.2	Technicien labo: électronique
	Marcel	Alain	Technicien au CEA		7.2	Montage mécanique
	Desforge	Daniel	Technicien au CEA	Mesures Optiques	3.6	Mesures Optiques
	CDD-Post Doctoran t		Post-Doc à recruter		24	Post-Doc instrumentation physique
	Renault	Jean- Philippe	Chercheur au CEA	Chimie sous rayonneme	3	Chimie du milieu de détection. Co- détenteur du Brevet

Complément du financement DIM NeRF

- 2 ans CDD Ingé. Elec.
- 2 ans Post-Doc Instru. Phys. (/Thésard)
- +
- 18 mois Post-Doc, au SHFJ/INMC.
- +
- 200 k€ investissement.

Total : 550 k€ sur 3 ans.

+ 1 bourse CFR à l'IRFU

Instrumentation à l'IRFU

Purification et ultrapropreté:Projet WALIC, Détecteur Argon, Zénon Liq.Détecteur dérive ionisation:Techno Micromegas. Calo. Micro-structuréElectronique Intégrée:Lab. Micro-Elec à l'IrfU/SEDI, IntégrationInstrumentation autour des détecteurs: tout l'IRFU

TEP au CEA/SHFJ

Mesures et Imagerie TEP sur modèle animal. Méthodologie et applications cliniques de l'imagerie TEP. Simulation, Caractérisation, Cahier des charges instrument.

Mais aller vite: Eviter le développement d'ASIC

Long, cher et moins attractif pour les industriels. On utilise le chip IDeF-X (Spatial), résolution 2x2 mm²

29/08/11

D.Yvon, SPP, Semin. Instru.

57

Projet de brevet. Cellule de valo. du CEA/DSM (M. Porchet)

- Détecteurs de photon de scintillation « optiquement minces »; Développement de labo, non industriel. Techno labo Micromegas (ForFire) si UV
- Assembler les deux technologies Une reconstruction de la position de l'interaction 3D, Principe jamais été proposé
- Performances anticipées des CaLIPSO sont uniques:

Un détecteur rapide : résolution en temps 1 ns.

- Position des interaction en 3D : précision 1 mm.
- Efficacité photo-électrique de 57%
- Résolution en énergie ~ 10% FWHM

lrfu (A)

Recherches de Financement

Proposition REI à la DGA - Déposée le 2 Février.

+ Cofinancement Thèse CEA-DGA

C. Bossuet, JPh. Nicolai, JL. Zimmerman (CEA) et H. Duchaussoy, B. Azais (DGA)

Programme Transversal TechnoSanté - Présentations Mars 2009 - Février 2010

Proposition DIM IdF NERF (Neurosciences) - Déposée, Mars 2010

Soutien de: Ph. Vernier (Prés.), Ph. Hantraye (DSV), R. Vidal (C. Région.)

P. Chagvardieff, L. Henrion, F. LeThimonnier, JL. Martinot

+? demande de financement CDD ?

Proposition ANR – Emergence - Juin 2010

M. Porchet (DSM/Valo), P. Chagvardieff, E. Kamph (DSV),

Medicen - A discuter

Programme Imagerie. Ph. Hantraye (DSV/Mircen), P. Chagvardieff(DSV/DIR)

29/08/11

D.Yvon, SPP, Semin. Instru.

29/08/11

D.Yvon, SPP, Semin. Instru.

61