# **Brain-Inspired Computing**

An Introduction Into Accelerated Analog Neuromorphic Computing with BrainScaleS

**Johannes Schemmel** 

Electronic Vision(s) Group Kirchhoff Institute for Physics Heidelberg University, Germany



# Electronic Vision(s)

### Kirchhoff Institute of Physics, Heidelberg University

Founded 1995 by Prof. Karlheinz Meier (†2018)

- 1995 HDR vision sensors
- 1996 analog image processing
- 2000 Perceptron based analog neural networks: EVOOPT and HAGEN
- 2003 First concepts for spike based analog neural networks
- 2004 First accelerated analog neural network chip with short and long term plasticity: Spikey





HAGEN: Perceptron-based Neuromorphic chip introduced:

- accelerated operation
- mixed-signal Kernels

igital control logic 8 digital to analog convertes 128 input neurons



64 output neurons analog weight storage bidirectional LVDS IO cell



**SPIKEY:** spike-based Neuromophic chip

introduced:

- fully-parallel Spike-Time-Dependent-Plasticity
- analog parameter storage for calibratable physical model

# $3487 \times 26011 = ?$

© Computer History Museum











### Xherdan Shaqiri bicycle kick EM 2016



#### Xherdan Shaqiri bicycle kick EM 2016



Action

1.

- continuous time
- low latency



![](_page_9_Picture_0.jpeg)

#### Xherdan Shaqiri bicycle kick EM 2016

### 100 – 200 Milliseconds

20 Watt

![](_page_10_Picture_2.jpeg)

![](_page_11_Picture_0.jpeg)

## Computers are becoming more brain-like

![](_page_12_Picture_1.jpeg)

#### Perceptron model (biology of 1950)

- used in Machine Learning
- vector-matrix multiplication

$$f\left(\sum_i w_i x_i + b
ight)$$

 simple non-linear activation function f (ReLU):

![](_page_13_Figure_5.jpeg)

![](_page_13_Picture_6.jpeg)

- Spike-based model (current biology)
  - timecontinuous dynamical system
  - vector-matrix multiplication
  - complex nonlinearities
  - binary neuron output
  - allows to model biological learning mechanisms

## Principles of spike-based neural communication

![](_page_14_Picture_1.jpeg)

- neurons integrate over space and time
- temporal correlation is important
- fault tolerant
- low power consumption  $\rightarrow$  100 Billion neurons: 20 Watts

![](_page_14_Figure_7.jpeg)

### Brain-Inspired Computing Bio-inspired artificial intelligence (Bio-AI)

![](_page_15_Figure_1.jpeg)

#### modeling possibilities:

#### numerical model : digital simulation

represents model parameters as binary numbers : →integer, float, bfloat16

#### physical model : analog Neuromorphic Hardware

represents model parameters as physical quantities :

#### $\rightarrow$ voltage, current, charge

### Spike-based Neuromorphic systems worldwide -State-of-the-art and complementarity

![](_page_16_Picture_1.jpeg)

#### **Biological realism**

#### Ease of use

Many-core (ARM) architecture Optimized spike communication network Programmable local learning x0.01 real-time to x10 real-time

Full-custom-digital neural circuits No local learning (TrueNorth) Programmable local learning (Loihi) Exploit economy of scale x0.01 real-time to x100 real-time Analog neural cores Digital spike communication Biological local learning Programmable local learning x10.000 to x1000 real-time

### BrainScaleS : Neuromorphic computing with physical model systems

![](_page_17_Picture_1.jpeg)

Consider a simple physical model for the neuron's cell membrane potential V:

$$C_{\rm m} \frac{dV}{dt} = g_{\rm leak} \left( E_{\rm leak} - V \right)$$

$$R = 1/g_{\text{leak}} V(t)$$

$$E_{\text{leak}} C_{\text{m}}$$

$$\frac{dV}{dt}_{bio} << \frac{dV}{dt}_{VLS}$$

![](_page_17_Picture_6.jpeg)

### → <u>accelerated neuron model</u>

continuous time

- fixed acceleration factor (we use 10<sup>3</sup> to 10<sup>5</sup>)
   no multiplexing of components storing model variables
  - each neuron has its membrane capacitor
  - each synapse has a physical realization

![](_page_17_Figure_12.jpeg)

### Structure of BrainScaleS neurons: array of parameterized dendrite circuits

photograph of the BrainScaleS 1 neuromorphic chip

![](_page_18_Picture_2.jpeg)

![](_page_18_Figure_3.jpeg)

| <b>Time</b> <i>Scales</i> | Nature + Real-<br>time | Simulation         | Accelerated Model  |
|---------------------------|------------------------|--------------------|--------------------|
| Causality Detection       | 10 <sup>-4</sup> s     | 0.1 s              | 10 <sup>-8</sup> s |
| Synaptic Plasticity       | 1 s                    | 1000 s             | 10 <sup>-4</sup> s |
| Learning                  | Day                    | 1000 Days          | 10 s               |
| Development               | Year                   | 1000 Years         | 3000 s             |
| 12 Orders of Magnitude    |                        |                    |                    |
| Evolution                 | > Millenia             | > 1000<br>Millenia | > Months           |
| > 15 Orders of Magnitude  |                        |                    |                    |

![](_page_20_Picture_0.jpeg)

width: 4µ

pitch: 8.4µm

HICANN V4.1 2015

700µm

spacing: 4.

![](_page_20_Picture_1.jpeg)

### BrainScaleS-1 multi-level architecture

![](_page_21_Picture_1.jpeg)

### BrainScales-1 introduced for the first time

- Accelerated (x10.000) mixed-signal implementation of spiking neural networks
- AdEx neurons with very high synaptic imput count (> 10k)
- Wafer-scale event communication

### (Balanced) Random Network

- "Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons" (Brunel 2000)
- 3000 neurons (> 1 Gevent/s)
- ~700k synapses (> 0.1 Tconn/s)
- 138 HICANN chips
- 800 individual external poisson sources with 50 Hz each -> 40 kHz (bio) (400 MHz wall clock rate)

![](_page_22_Figure_6.jpeg)

### Classification with feed-forward, rate-based network on BrainScaleS-1 Classical machine learning with a physical analog system

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

Neuromorphic Hardware In The Loop: Training a Deep Spiking Network on the BrainScaleS Wafer-Scale System, Schmitt, Klaehn, et al., IJCNN, 2017, https://arxiv.org/abs/1703.01909

![](_page_23_Figure_4.jpeg)

### BrainScaleS-1: Observations leading to second-generation BrainScaleS system

after training:

Non-Turing physical computing system performing autonomously

but

#### Turing-based computing is used in multiple places:

- training
- system initialization
- hardware calibration
- runtime control
- input/output data handling

![](_page_24_Picture_10.jpeg)

### Shortening the hardware – software loop : Analog neuromorphic system as coprocessor

![](_page_25_Figure_1.jpeg)

### BrainScaleS-2 (BSS-2) ASIC

![](_page_26_Picture_1.jpeg)

- 65nm LP-CMOS, power consumption O(10 pJ/synaptic event)
- 128k synapses
- 512 neural compartments (Sodium, Calcium and NMDA spikes)
- two SIMD plasticity processing units (PPU)
- PPU internal memory can be extended externally

- fast ADC for membrane voltage monitoring
- 256k correlation sensors with analog storage (> 10 Tcorr/s max)
- 1024 ADC channels for plasticity input variables
- 32 Gb/s neural event IO
- 32 Gb/s local entropy for stochastic neuron operation

### BrainScaleS-2 supports spike-based and Perceptron operation simultaneously

![](_page_27_Figure_1.jpeg)

# Learning and plasticity

- ✓ biological relevant neuron model
   → Adaptive Exponential Integrate and Fire (AdExp)
- ✓ biological relevant network topologies
   → more than 10k synapses per neuron
- ✓ high communication bandwidth for scalability
   → wafer-scale integration

#### Problem:

#### how to fix millions of parameters

- network topology
- neuron sizes and parameters
- synaptic strengths

#### Trivial solution: everything is pre-computed on the host-computer

- requires precise calibration of hardware
- takes long time (much longer than running the experiment on the accelerated system)
   Better approach: hardware in-the-loop training
- makes use of high emulation speed

#### Biological solution : Integrate some kind of learning or plasticity mechanism

- local feed-back loops, aka *training*, adjust system parameters
- no calibration of synapses necessary  $\rightarrow$  learning replaces calibration
- plastic network topology

### Complexity of synaptic plasticity is key to biological intelligence

![](_page_29_Figure_1.jpeg)

Protein complex organization in the postsynaptic density (PSD)

"Organization and dynamics of PDZdomain-related supramodules in the postsynaptic density" W. Feng and M. Zhang, Nature Reviews NS, 10/2009

- > 6000 genes primarily active in the brain
- high percentage of regulatory RNA
- evidence for epigenetic effects in plasticity

![](_page_29_Figure_7.jpeg)

Protein-protein interaction map (...) of post-synaptic density

"Towards a quantitative model of the post-synaptic proteome"

O Sorokina et.al., Mol. BioSyst., 2011,7, 2813–2823

### BrainScaleS-2: Hybrid Plasticity

analog correlation measurement in synapses

![](_page_30_Figure_1.jpeg)

#### Stabilizing firing rates with spike time dependent plasticity

![](_page_31_Figure_1.jpeg)

### Learning Pong – tech demo using internal PPU only

![](_page_32_Figure_1.jpeg)

- reinforcement learning rule
- learning is calibration
- experiment runs completely on internal PPU
- 5s for 10k iterations
   network time 0.4ms/iteration
   23 μJ total chip energy

![](_page_32_Figure_6.jpeg)

### Training multi-layer networks with Surrogate Gradients

![](_page_33_Picture_1.jpeg)

![](_page_33_Picture_2.jpeg)

![](_page_33_Figure_3.jpeg)

![](_page_33_Figure_4.jpeg)

![](_page_33_Figure_5.jpeg)

# Benjamin Cramer, et.al 2020 preparation, Billaudelle, publication in Sebastian

# Spike-latency coding as basis for fast inference

![](_page_34_Figure_1.jpeg)

- Classification accuracy on test data: 96,7%
- Possible classification rate: 70k images/s
- Energy per image: 4 µJ
- Energy consumption of ASIC during inference (everything active): 285 mW
- Higher-speed possible
  - interleaving of networks
  - spike-based sensor converts fast serial to slow parallel signal, temporal information becomes partially spatial information (like our ears)
  - could pre-process detector data without digitization
    - $\rightarrow$  higher channel density possible

Sebastian Billaudelle, Benjamin Cramer, et.al., publication in preparation, 2020

### What I have learned

- Analog computing is feasible
  - model biology for neuroscience
  - cost and energy efficient inference of DCNNs
  - edge computing (sensor data preprocessing)
- Local learning with closely coupled SIMD CPU
  - Software-based implementation of learning algorithms
    - learning can include calibration
    - supports hyper-parameter learning (L2L)
    - still no solution for deep (i.e. multi-layerd) networks
- Hardware-in-the-loop with backpropagation
  - results comparable to digital systems
  - much better resource efficiency (low cost process)
  - very low latency possible
  - real-time processing of fast sensor data (-> high-energy physics)