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Electronic Vision(s)
Kirchhoff Institute of Physics, Heidelberg University
Founded 1995 by Prof. Karlheinz Meier (†2018)

1995 HDR vision sensors

1996 analog image processing

2000 Perceptron based analog neural networks: 
EVOOPT and HAGEN

2003 First concepts for spike based analog neural 
networks

2004 First accelerated analog neural network chip with 
short and long term plasticity: Spikey

HAGEN: Perceptron-based 

Neuromorphic chip

introduced:

• accelerated operation

• mixed-signal Kernels

SPIKEY: spike-based Neuromophic

chip

introduced:

• fully-parallel Spike-Time-
Dependent-Plasticity

• analog parameter storage for 
calibratable physical model
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3487 x 26011 = ?
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• several seconds

• 20 Watt

• 1 Trillion 
calculations 
per second

• 5 Watt
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• 0.2 seconds

• 20 Watt
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Prediction

Perception

Action

• continuous time

• low latency
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> 100 Watt

20 Watt

100 – 200 Milliseconds
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Computers are becoming more brain-like

• one year training

• energy consumption: 500 kW

→182500 kWh (36500 €)

• learning is expensive and slow

• applying the learned knowledge, 

aka inference,

is much cheaper and faster 13



how is this done?

compute more like the brain:      neural networks

output patterninput pattern

inner layers

ca
t

• used in Machine 

Learning 

• vector-matrix 

multiplication

• simple non-linear 

activation

function f (ReLU): 

• trained with 

backpropagation

Perceptron model (biology of 1950) Spike-based model (current biology)
• time-

continuous 

dynamical 

system

• vector-matrix 

multiplication

• complex non-

linearities

• binary neuron 

output

• allows to 

model 

biological 

learning 

mechanisms
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Principles of spike-based neural communication

action potential (“spike”)

neurons

synapses

output spike

neuron threshold voltage

membrane voltage

• neurons integrate over space and time

• temporal correlation is important

• mixed-signal system:   action potential ↔ membrane voltage

• fault tolerant

• low power consumption → 100 Billion neurons: 20 Watts 

(digital)                        (analog)
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Brain-Inspired Computing
Bio-inspired artificial intelligence (Bio-AI)

future computing based on 
biological information 

processing

understanding biological 
information processing

numerical model : digital simulation

represents model parameters as binary numbers :

→integer, float, bfloat16

physical model : analog Neuromorphic Hardware

represents model parameters as physical quantities :

→ voltage, current, charge

need model system to test ideas

Neuromorphic computing : 
implementation of model networks with neurons and synapses

modeling possibilities:
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Spike-based Neuromorphic systems worldwide –
State-of-the-art and complementarity

Many-core (ARM) architecture

Optimized spike

communication network

Programmable local learning

x0.01 real-time to x10 real-time

Full-custom-digital neural circuits

No local learning (TrueNorth)

Programmable local learning (Loihi)

Exploit economy of scale

x0.01 real-time to x100 real-time

Analog neural cores

Digital spike communication

Biological local learning

Programmable local learning

x10.000 to x1000 real-time

TrueNorth

Biological realism

Loihi

Ease of use
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BrainScaleS : Neuromorphic computing with physical model systems

Consider a simple 
physical model for the 
neuron’s cell 
membrane potential V:

( )VEg
dt

dV
C −= leakleakm

Cm

R = 1/gleak

Eleak

V(t)

→ accelerated neuron model
dt

dV

dt

dV

VLSIbio



continuous time
• fixed acceleration factor (we use 103 to 105)

no multiplexing of components storing model
variables
• each neuron has its membrane capacitor
• each synapse has a physical realization
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Structure of BrainScaleS neurons: array of parameterized dendrite circuits

photograph of the BrainScaleS 1 
neuromorphic chip

• 180 nm (generation 1) or 65 nm 
(gen. 2)

• 24 calibration parameters per 
neuron

• modular structure
• full set of ion-channel circuits 

for each dendrite
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Nature + Real-
time

Simulation Accelerated Model

Causality Detection 10-4 s 0.1 s 10-8 s

Synaptic Plasticity 1 s 1000 s 10-4 s

Learning Day 1000 Days 10 s

Development Year 1000 Years 3000 s

12 Orders of Magnitude

Evolution > Millenia
> 1000 

Millenia
> Months

> 15 Orders of Magnitude

TimeScales
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Wafer-Scale Integration : 

BrainScaleS-1

114.000 
dynamic 
synapses 

512 neurons 
(up to 14k inputs)
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BrainScales-1 introduced for the first time

- Accelerated (x10.000) mixed-signal implementation of spiking neural networks

- AdEx neurons with very high synaptic imput count (> 10k)

- Wafer-scale event communication

single chip wafer module hybrid system

BrainScaleS-1 multi-level architecture
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32

(Balanced) Random Network

● “Dynamics of Sparsely Connected 
Networks of Excitatory and Inhibitory 
Spiking Neurons” (Brunel 2000)

● 3000 neurons (> 1 Gevent/s)

● ~700k synapses (> 0.1 Tconn/s)

● 138 HICANN chips
● 800 individual external poisson sources 

with 50 Hz each -> 40 kHz (bio) (400 MHz 
wall clock rate)
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Classification with feed-forward, rate-based network on BrainScaleS-1
Classical machine learning with a physical analog system

Feed-forward, rate-based, spiking network, MNIST classification,  hardware in-the-loop learning

Neuromorphic Hardware In The Loop: Training a Deep Spiking Network on the 

BrainScaleS Wafer-Scale System,

Schmitt, Klaehn, et al., IJCNN, 2017, https://arxiv.org/abs/1703.01909 35



Hardware

Software

BrainScaleS-1 : 
Observations leading to second-generation BrainScaleS system

after training:

Non-Turing physical 
computing system 
performing autonomously

but

Turing-based computing is 
used in multiple places:

• training

• system initialization

• hardware calibration

• runtime control

• input/output data 
handling
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Shortening the hardware – software loop :
Analog neuromorphic system as coprocessor

memory
controller

high-bw link

NOC high-bandwidth link:

vector unit → NM core

• weights

• correlation data

• routing topology

• event (spikes) IO

• configuration

processor
vector unit

analog 
core

high-bw
link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

special function tile:

• memory controller

• SERDES IO

• purely digital function unit

Network-on-chip:

• prioritize event data

• unused bw for CPU

• common address space 
for neurons and CPUs
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• 65nm LP-CMOS, power consumption O(10 pJ/synaptic event)

• 128k synapses

• 512 neural compartments (Sodium, Calcium and NMDA spikes)

• two SIMD plasticity processing units (PPU)

• PPU internal memory can be extended externally 

• fast ADC for membrane voltage monitoring

• 256k correlation sensors with analog storage (> 10 Tcorr/s max)

• 1024 ADC channels for plasticity input variables

• 32 Gb/s neural event IO

• 32 Gb/s local entropy for stochastic neuron operation

BrainScaleS-2 (BSS-2) ASIC
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BrainScaleS-2 supports spike-based and Perceptron operation simultaneously

N
M

D
A

Ca

Na
NMDANMDA

• sequential processing of all 
layers

• analog vector-matrix 
multiplication

• ReLU activation function
with 4 to 8 bit resolution

• speed mostly limited by
external memory

6 bit direct readout
of activations

input data BSS-2 ASIC

DCNN example : Alexnet
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Learning and plasticity
✓ biological relevant neuron model

→ Adaptive Exponential Integrate and Fire (AdExp)

✓ biological relevant network topologies
→ more than 10k synapses per neuron

✓ high communication bandwidth for scalability
→ wafer-scale integration

Trivial solution: everything is pre-computed on the host-computer

• requires precise calibration of hardware

• takes long time (much longer than running the experiment on the accelerated system)

Better approach: hardware in-the-loop training

• makes use of high emulation speed

Biological solution : Integrate some kind of learning or plasticity mechanism

• local feed-back loops, aka training, adjust system parameters

• no calibration of synapses necessary → learning replaces calibration

• plastic network topology

Problem:
how to fix millions of parameters

• network topology

• neuron sizes and parameters

• synaptic strengths
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Complexity of synaptic plasticity is key to biological intelligence

Protein-protein interaction map (…) of 

post-synaptic density

“Towards a quantitative model of the post-synaptic 

proteome”

O Sorokina et.al., Mol. BioSyst., 2011,7, 2813–2823

Protein complex organization in 

the postsynaptic density (PSD)

“Organization and dynamics of PDZ-

domain-related supramodules in the 

postsynaptic density”

W. Feng and M. Zhang, Nature Reviews NS, 

10/2009

• > 6000 genes primarily

active in the brain

• high percentage of 

regulatory RNA

• evidence for epigenetic

effects in plasticity
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BrainScaleS-2: Hybrid Plasticity
• analog correlation measurement in synapses

• A/D conversion by parallel ADC

• digital Plasticity Processing Units can access
– synaptic weights (𝜔)

– configuration data (adr)  → structural plasticity

– neuron voltages and firing rates

analog

physical model

digital

numerical model

plasticity takes 

place at the 

synapse

processor

vector unit

analog core

high-bw
link

cacheNOC
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Stabilizing firing rates with spike time dependent plasticity

Wall-time per trace: 200ms 

→ acceleration factor of 1000

David Stöckel, Master Thesis, 
Heidelberg University, 2017

presynaptic membrane potential

Dt = tpost – tpre

postsynaptic membrane potential

time
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• reinforcement learning rule

• learning is calibration

• experiment runs completely on 
internal PPU

• 5s for 10k iterations

network time 0.4ms/iteration
23 µJ total chip energy

Learning Pong – tech demo using internal PPU only
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Training multi-layer networks with Surrogate Gradients
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Spike-latency coding as basis for fast inference

• Classification accuracy on test data: 

96,7%

• Possible classification rate: 70k images/s

• Energy per image: 4 µJ

• Energy consumption of ASIC during

inference (everything active): 285 mW

• Higher-speed possible

• interleaving of networks

• spike-based sensor converts fast 

serial to slow parallel signal,

temporal information becomes

partially spatial information

(like our ears)

• could pre-process detector data

without digitization

→ higher channel density possible

Sebastian Billaudelle, Benjamin Cramer, et.al., publication in preparation, 2020 66



• Analog computing is feasible

• model biology for neuroscience

• cost and energy efficient inference of DCNNs

• edge computing (sensor data preprocessing)

• Local learning with closely coupled SIMD CPU

• Software-based implementation of learning algorithms

• learning can include calibration

• supports hyper-parameter learning (L2L)

• still no solution for deep (i.e. multi-layerd) networks

• Hardware-in-the-loop with backpropagation 

• results comparable to digital systems

• much better resource efficiency (low cost process)

• very low latency possible

• real-time processing of fast sensor data (-> high-energy physics)

What I have learned
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