Caractérisation Neutronique de MEGAPIE

Une cible de spallation au PbBi liquide à haute puissance

Franco Michel-Sendis

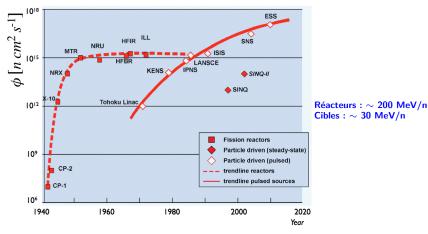
CEA Saclay, Irfu/SPhN

9 octobre 2009

Les application des sources intenses de neutrons

Sources de neutrons : essentielles à l'étude de la physique!

- ▶ Physique avec les neutrons (SINQ, SNS, ESS)
- Sonde Neutron (Matériaux, Biologie...)
- ► Faisceaux radioactifs, neutrinos (*EURISOL*...)


 Aujourd'hui cibles de spallation (recherche) : puissances de 1 MW
- Transmutation des actinides mineurs dans ADS dedié (XT-ADS/MYRRHA)

Futur : pas technologique supplémentaire ; puissance $> 100 \text{ MW}_{th}$

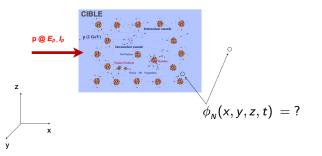
Le dévelopement des sources de neutrons dans le monde

irfu

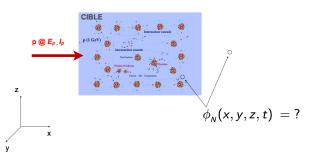
saclav

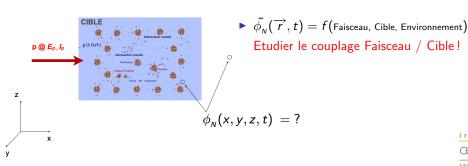
Cibles de spallation : Défis technologiques

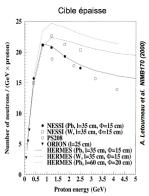
- ► Évacuation de la puissance (type de cible; liquide/solide)
- ► Tenue de la cible à l'irradiation (dommages (dpa), choix des matériaux)
- ► Fonctionnement haute puissance (contrôle, diagnostic et fiabilité)
- Gestion du démantélement : (bilan de résidus, produits d'activation, effet sur l'environnement)
- Couplage Faisceau / Cible (caractérisation des flux)


L'expérience MEGAPIE permet de répondre à plusieurs de ces questions

irfu

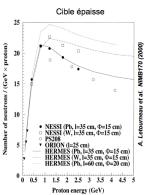

Comment convertir des protons en neutrons?

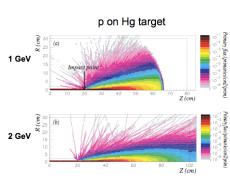

Comment convertir des protons en neutrons?



Comment convertir des protons en neutrons?

Quelle énergie, quelle géométrie?


Noyaux lourds,
Optimum vers 1 GeV proton


irfu

Quelle énergie, quelle géométrie?

Noyaux lourds,
Optimum vers 1 GeV proton

A. Herrera-Martinez et al. CERN-AB-2006-013 ATB

Optimisation de la Géométrie

Quelle matériau choisir?

Le choix dépend de l'application finale!

Bon compromis: PbBi (LBE)

- Température de fusion basse
- Bonne transparence aux neutrons thermiques
- Eutectiques : pas de dommage de structure sur le liquide

		Pb	Bi	PbMg	PbBi	Hg
				(97.5% Pb)	(45% Pb)	
ρ	(g/cm ³)	11.35	9.75	10.6	10.5	13.55
T_{fusion}	(C)	327.5	271.3	250	125	-38.87
С	(J/gK)	0.14	0.15	0.15	0.15	0.12
$\overline{\sigma_{abs}}$	(barn)	0.17	0.034	0.17	0.11	389

Le projet MEGAPIE @ SINQ (PSI)

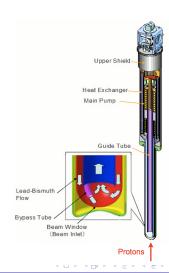
MEGAwatt Pllot Experiment:

Première cible de spallation au PbBi liquide à haute puissance (1MW), concept avec fenêtre.

Initiative lancée en 1999 pour

- Concevoir
- Construire
- Opérer
- Démanteler

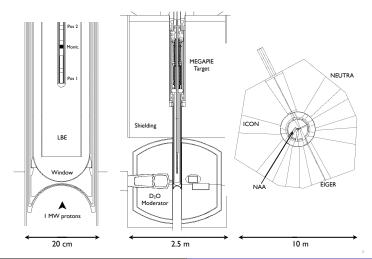
La cible MEGAPIE Le détecteur de neutrons Chambres à fission Feuilles d'activation Caractérisation neutroniqu


Le projet MEGAPIE @ SINQ (PSI)

MEGAwatt Pllot Experiment:

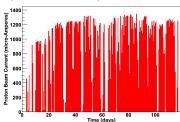
Première cible de spallation au PbBi liquide à haute puissance (1MW)

Initiative lancée en 1999 pour la


- Concevoir
- Construire
- Opérer
- Démanteler

La cible MEGAPIE Le détecteur de neutrons Chambres à fission Feuilles d'activation Caractérisation neutroniqu

Simulation MEGAPIE sous MCNPX


irfu

Performance de MEGAPIE

MEGAPIE a fonctionné avec succès pendant 4 mois en 2006 :

$$\triangleright$$
 $E_p = 575$ MeV, $\overline{I_p} = 960 \mu A$

▶ 80 % de neutrons en plus par rapport aux anciennes cibles solides de SINQ.

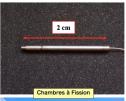

La cible MEGAPIE Le détecteur de neutrons Chambres à fission Feuilles d'activation Caractérisation neutronique

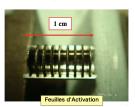
Cibles solides de SINQ

Responsabilité de l'Irfu : caractériser le flux neutronique à l'intérieur de la cible

Conception d' un détecteur de neutrons innovant dans des conditions difficiles ('central rod"):

- ▶ Flux γ , n (10¹³ /s/cm²)
- Perturbations EM
- ► Température (200 / 400 °C)
- Corrosion
- Espace confiné (diamètre= 1.3 cm)

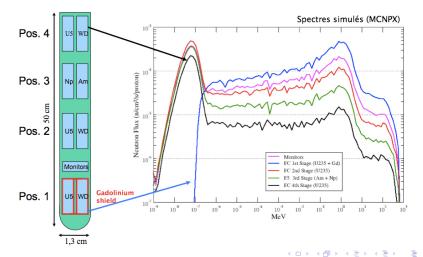

La cible MEGAPIE

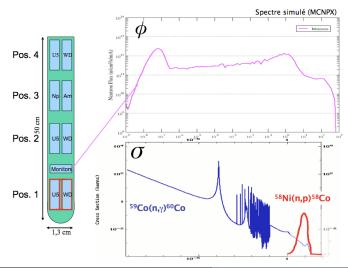

Le détecteur de neutrons
Chambres à fission
Feuilles d'activation
Caractérisation neutroniqu

Le détecteur de neutrons

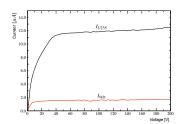
2 techniques différentes :

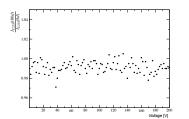
- Chambres à fission micrométriques : évolution temporelle du flux
- Feuilles d'activation métalliques ultra pures : normalisation absolue du flux, forme du spectre

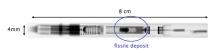




Le détecteur de neutrons

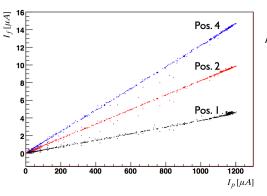



Le détecteur à neutrons



Fonctionnement des chambres à fission

*S. Chabod et al., Nucl. Intr. And Meth. A 562 (2006) 618-620


$$I_f = (I_{U235} - I_{WD})$$

$$I_f = \frac{1}{\Gamma} N_f \ \overline{\sigma_f} \tilde{\phi_N} \times I_p$$

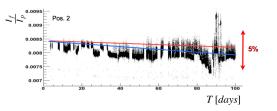
Mesure du taux de fission

Au début de l'irradiation :

$$I_f = \frac{1}{\Gamma} N_f \ \overline{\sigma_f} \widetilde{\phi_N} \ \times I_p$$

- ▶ Pas d'évolution du dépôt fissile
- Composition du LBE non altérée
- Mesure de $\tau_f = \overline{\sigma_f} \tilde{\phi_N}$

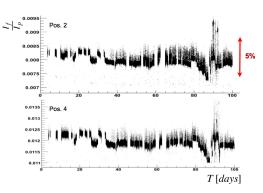
Comparaison taux de fission mesurés / simulés


Position	1 (Gd)	2	4
$ au_f$ mesuré	$3.04 \ 10^{-10} \ (3\%)$	$2.35 \ 10^{-9} \ (3\%)$	$9.76 \ 10^{-10} \ (3\%)$
$ au_{\it f}$ simulé	$5.80 \ 10^{-10} \ (2\%)$	$6.92 \ 10^{-9} \ (2\%)$	$2.53 \ 10^{-9} \ (2.5\%)$
C/E	1.9 (3.6%)	2.9 (3.6%)	2.6 (3.9%)

$$[\tau] = \mathsf{fiss} \; / \; \mathsf{s} \; / \; \mathsf{at} \; / \; \mathsf{mA}$$

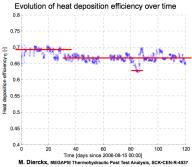
irfu

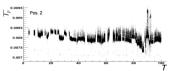
Réponse des chambres à fission avec le temps



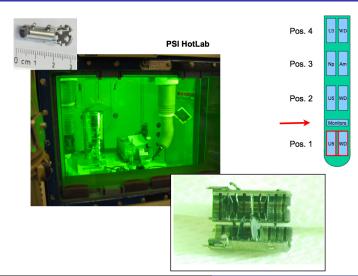
$$\frac{I_f}{I_p} = \frac{1}{\Gamma} N_f \; \overline{\sigma_f} \tilde{\phi_N} \mathrm{e}^{-\int_0^t \tilde{\phi} I_p(t') \overline{\sigma_a} dt'}$$

Réponse des chambres à fission avec le temps

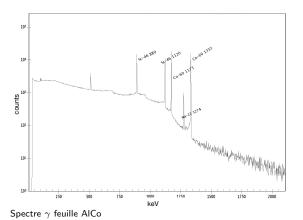



$$\frac{\mathit{l_f}}{\mathit{l_p}} = \frac{1}{\Gamma} \mathit{N_f} \; \overline{\sigma_f} \tilde{\phi_N} e^{-\int_0^t \tilde{\phi} \mathit{l_p}(t') \overline{\sigma_s} dt'}$$

Réponse des chambres à fission avec le temps



- Information sur I_p seule n'est pas suffisante pour décrire complétement I_f
- Fluctuations de la "Configuration faisceau" :
 Profil, divergence, I_p ...
- Effet de l'évolution des dépôts fissiles masqué

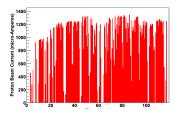


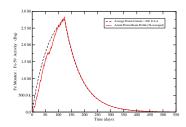
Récupération des feuilles d'activation

Spectrométrie γ

Feuille Co : Mesure de l'activité *A* du ⁶⁰ *Co*

 Réaction de référence : ⁵⁹Co(n,γ)⁶⁰Co

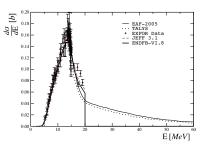

Mesure du taux d'activation

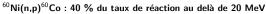

Taux moyen d'activation mesuré :

$$\tau_{A} = \sigma_{A}\overline{\phi} = \frac{A}{N(1 - e^{-\lambda T_{irr}})e^{-\lambda T_{cool}}\overline{I_{p}}}$$

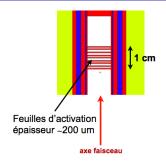
Où:

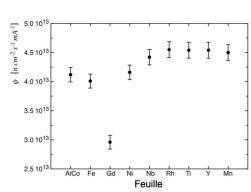
$$\overline{I_p} = 960 \mu A$$
 $T_{irrl} = 123 \text{ j}$
 $T_{cool} = 406 \text{ j}$



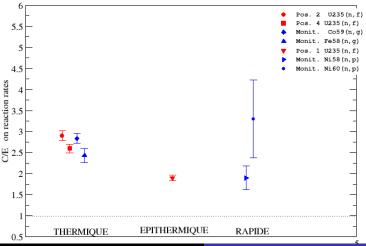


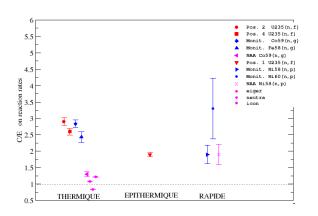
Comparaison taux d'activation calcul / mesure

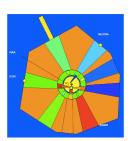

Réaction	59 Co(n, γ) 60 Co	58 Fe $(n,\gamma)^{59}$ Fe	⁵⁸ Ni(n,p) ⁵⁸ Co	⁶⁰ Ni(n,p) ⁶⁰ Co
$\overline{ au}_{meas.}$	$2.10 \ 10^{-10} \ (2.1\%)$	$7.0 \ 10^{-12} \ (8.2\%)$	$3.70 \ 10^{-13} \ (3.2\%)$	$3.70 \ 10^{-14} \ (2.45\%)$
$\overline{ au}_{\sf simul}$	$4.4 \ 10^{-10} \ (5\%)$	$1.22 \ 10^{-11} \ (6\%)$	$7 \ 10^{-13} \ (15\%)$	$1.2\ 10^{-13}*\ (28\%)$
C/E	2.1 (5.4%)	1.7 (10%)	1.9 (15%)	3.3* (28%)
	$[\tau] - fiss/s/at/mA$			



Effet d'ombre de la feuille Gd




La cible MEGAPIE Le détecteur de neutrons Chambres à fission Feuilles d'activation Caractérisation neutronique


Caractérisation neutronique MEGAPIE

F. Michel-Sendis et al. *Neutronic performance of the MEGAPIE spallation target under high power proton beam*, submitted to NIM-B, 2009.

Caractérisation neutronique MEGAPIE

L. Zanini et al. *Neutronic and Nuclear post-test analysis of MEGAPIE*, PSI-Bericht 08-04

Etudes de sensibilité

1. Production de neutrons :

Etudes de sensibilité

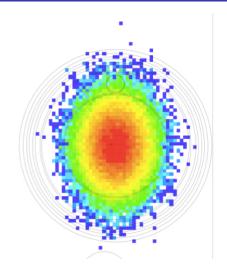
1. Production de neutrons :

Modèles Bertini/Dressner, INCL4/ABLA, ISABEL/ABLA, CEM2K:

 \blacktriangleright Dispersion de 2% à 8% sur $\tilde{\phi}$ calculée dans le détecteur .

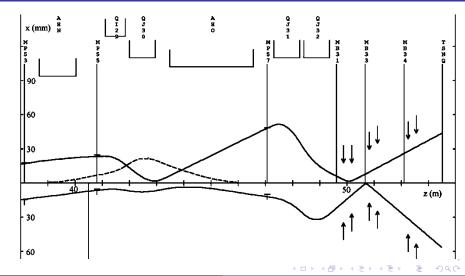
Etudes de sensibilité

1. Production de neutrons :

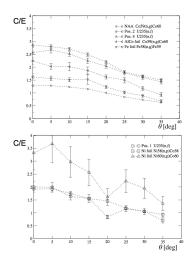

Modèles Bertini/Dressner, INCL4/ABLA, ISABEL/ABLA, CEM2K:

- \blacktriangleright Dispersion de 2% à 8% sur $\tilde{\phi}$ calculée dans le détecteur .
- Impact de la description du faisceau

Modélisation du profil faisceau



- Nécessité de préserver la fenêtre : éclatement du faisceau
- Description de la tâche faisceau basée sur l'analyse des cibles solides irradiées
- Impact de la description : variations de 10 à 15 % sur le flux
- Simulation : protons en trajectoires parallèles, pas de divergence angulaire.



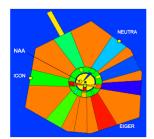
Transport du faisceau jusqu'à SINQ

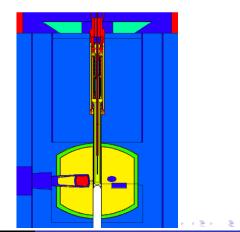
Modélisation du profil faisceau

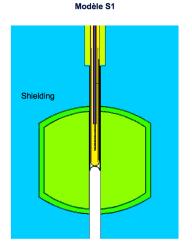
 Sensibilité du flux à la dispersion angulaire des protons incidents

Etudes de sensibilité

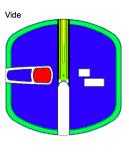
- 2. Transport des neutrons
 - ► Effet de la Température
 - Du modérateur (300 K au lieu de 310K) : biais de 2%
 - Du LBE (entre 700 K et 300K): pas d'effet observé.
 - Dilatation différentielle des structures
 - (central rod, +1.4 cm) : effet de 2%


Etudes de sensibilité

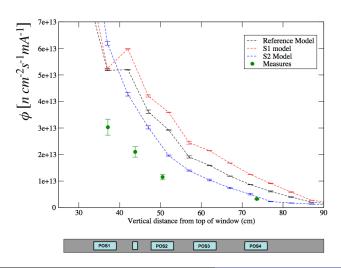

- 2. Transport des neutrons
 - ► Effet de la Température
 - Du modérateur (300 K au lieu de 310K) : biais de 2%
 - Du LBE
 - (entre 700 K et 300K) : pas d'effet observé.
 Dilatation différentielle des structures
 - (central rod, +1.4 cm) : effet de 2%
 - Description de la géométrie



Géométrie de référence



Modèles géométriques simplifiés


Modèles géométriques simplifiés

Modèles géométriques simplifiés

Conclusion étude des sensibilités

Neutrons rapides : directement sensibles à la production de neutrons

```
Modèles de spallation (< 8\%)
Caractéristiques Faisceau
Profil (XY) (10\% - 15\%)
Divergence angulaire (jusqu'à un facteur 2)
```

► Neutrons thermiques et épithermiques : très sensibles au transport

```
Modèles géométriques ( jusqu'à 30%) 
 Température (D<sub>2</sub>O, LBE) (< 3%) 
 Evolution du LBE (poisons neutroniques) (< 5%)
```


Conclusions

1. Caractérisation neutronique dans la cible :

- Premières mesures d'un flux de neutrons à l'intérieur d'une cible liquide de spallation
- Sensibilité à la description faisceau (outil diagnostique pour futurs sources de neutrons?)
- Simulation surestime les flux à l'intérieur de la cible

2. Performances générales

- Bonne fiabilité / opérabilité du système (tenue de la fenêtre)
- ightharpoonup Rendement neutronique SINQ : MEGAPIE / cibles solides ~ 1.8
- ▶ Demantèlement commencé : cible decoupée
- Validation cible PbBi liquide haute puissance

irfu

Perspectives

- 1. Post-Irradiation Experiment (PIE)
 - Analyse d'echantillons PbBi (projet ANDES) :
 Bilan radiologique, comparaison avec modèles
 - Analyse fenêtre (dommages dpa)
 - Test mécaniques post-irradiation (structures et systèmes)
 - Validation matériaux
 - Validation du processus de démantèlement
- 2. Mise à profit des acquis de MEGAPIE
 - ightharpoonup Cibles HLM comme technologie standard SINQ (\sim 2013)
 - XT-ADS/MYRRHA : Actualisation du design
 - Communauté Métaux louds liquides
 (Cible de spallations, Gen IV) : MEGAPIE = manip de référence

