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Outline 
•  What is Machine Learning 
•  in Particle Physics 
•  in Theory 
•  In Practice 
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Machine Learning 
 Basics 
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Machine Learning 
What is Machine Learning? 
•  Study of algorithms that  

 improve their performance P 
 for a given task T  
 with more experience E 

 
Sample tasks: identifying faces, Higgs 
bosons 
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General Approach:	

Machine Learning 

 
   Given training data TD = {y, x} = (y,x)1…(y,x)N,  
 
   function space {f} and a 
   constraint on these functions 
 
   Teach a machine to learn the mapping y = f(x) 
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In Computer Science 

•  Speech recognition, natural language processing  
•  Computer vision, Robot control  
•  Medical outcomes analysis  
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Already the preferred approach to:	

Growing fast  
•  Improved algorithms  
•  Increased data capture 
•  Software too complex to write by hand 
	

 
 



Examples 
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•  Algorithms capable of 
recognizing us from the digital 
“traces” we leave behind 
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Choose 
 Function space  F = { f (x, w) } 
 Constraint   C 
 Loss function*  L 

Method 
 Find f (x) by minimizing the empirical risk R(w) 
      subject to the constraint 

     C(w) 

   

F 

f (x, w*) 
C(w) 

  
R[ fw] = 1

N
L( yi , f (xi , w))

i=1

N

∑

*The loss function measures the cost of choosing badly 

Machine Learning 
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Machine Learning 
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Many methods (e.g., neural networks, boosted decision trees, 
rule-based systems, random forests,…) use the  

 quadratic loss 

and choose f (x, w*) by minimizing the  
 constrained mean square empirical risk 

  L( y, f (x, w)) = [y − f (x, w)]2

  
R[ fw] = 1

N
[yi − f (xi ,w)]2

i=1

N

∑ + C(w)



History 
1950s:      First methods invented 
1960-80s: Slow growth, focus on knowledge 
1990s:      Growth of computing power, new  

          learning methods, data-centric 
2000-10s: Wider use in research and industry 
2010s:      Deep learning improvement, 

       specialized hardware 
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Diving Deeper 
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Huge 
Progress 



In Particle Physics 
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ML in HEP Today 
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Machine learning already at forefront 
of what we do: 
•  Physics object identification 
•  Event type classification  
•  Object properties regression 
 
Expanding quickly to more areas 

 

 
 



Higgs Boson 
Discovery  
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July 4, 2012  
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Higgs to di-photons 
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ATLAS CMS	
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•  Identification of particles 
•  Identification of interactions 
•  Energy regression 
•  Event selection 

Improvement in analysis from all four areas 

in Higgs Discovery 
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•  Particle Properties  
•  Regression 

	

 
 

•  Particle Identification   
•  Pattern Recognition (tracks) 
•  Searches for New Physics 
•  Data Quality Monitoring 

	

 
 

Applications 
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I. Classification 

Identifying boosted objects 

15'

vs'

Identifying boosted objects 

15'

vs'

II. Function estimation 

Mauro Donegà: Data Science @ LHC 2015 13

Photon Energy regression
How to improve the corrections ? Add more variables in the description :  

- difficult to model correctly the correlations  
- curse of dimensionality  

Move to a multivariate approach: BDT (Gradient Boosting)

Use many more variables (first try O(80) then down to O(20) ) 
correct treatment of the correlations by the BDT.
Basically add whatever variable makes sense to describe 

the photon 
“photon shape” variables 
photon coordinates (eta, phi) 
median energy density ρ in the event 

Target Variable: Erec/Etrue  
10-30% improvement on resolution depending 
on the energies and region of the detector

Training sample: again single particle gun MC 
(uniform energy spectrum [3-300] GeV and 
uniform in the detector volume (η,φ)

H→γγ MC 
Illustration only

parametric

BDT

Still we get one value per bin of the input space 



Challenges 
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Challenges 
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 Orders of magnitude 
 between signals and 
 backgrounds 
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Event Complexity 
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Event Filtering 
108 sensors 



 Imaging Techniques 

Object 
Identification 

Interesting areas 
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Tracking 
Fast Event 
Simulation 

Event Filtering 
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Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

The maxpooling layers performed a 2⇥2 down-sampling with a stride length of 2. The dense

layer consisted of 128 units.

All neural network architecture training was performed with the Python deep learning

libraries Keras [47] and Theano [48] on NVidia Tesla K40 and K80 GPUs using the NVidia

CUDA platform. The data consisted of the 100k jet images per pT -bin, partitioned into 90k

training images and 10k test images. An additional 10% of the training images are randomly

withheld as validation data during training of the model for the purposes of hyperparameter

optimization. He-uniform initialization [49] was used to initialize the model weights. The

network was trained using the Adam algorithm [50] using categorical cross-entropy as a loss

– 8 –

Simulation 



Deep ML +FPGA 

FCN, Recurrent, 
LSTMs 

 Convolutional DNN  

Interesting areas 
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All neural network architecture training was performed with the Python deep learning

libraries Keras [47] and Theano [48] on NVidia Tesla K40 and K80 GPUs using the NVidia

CUDA platform. The data consisted of the 100k jet images per pT -bin, partitioned into 90k

training images and 10k test images. An additional 10% of the training images are randomly

withheld as validation data during training of the model for the purposes of hyperparameter

optimization. He-uniform initialization [49] was used to initialize the model weights. The

network was trained using the Adam algorithm [50] using categorical cross-entropy as a loss
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Deep Kalman 
Recurrent, LSTMs 

Generative Models, 
Adversarial Networks 

Multiobjective Regression  



Questions 
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Can we fully exploit the detectors?  
•  Raw data, low-level variables 

 

 

 
Images: D. Whiteson, K. Cranmer 



Example 
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“End-to-end learning”  
•  By-passing traditional reconstruction 

 

 

 



Defining the Problem 
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If a problem can be expressed as a 
known problem 
•  Apply existing algorithms 

– Example: convolutional neural networks 
from computer vision 

 
If a problem has not been solved  
•  Push the knowledge boundary forward 

 

 
 



Examples 
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Jet images with convolutional nets 
 
 

L. de Oliveira et al., 2015 



Examples 
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Neutrinos with convolutional nets 
 

 
 

Aurisiano et al. 2016 

µBooNE 
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Tracking with recurrent nets (LSTM) 
 

 
 

HEPTrkX Project 

Time dimension  
(state memory) 

Examples 



Meaningful Physics 
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Can we extract features with 
meaningful physics? 
•  from low-level variables        
 
Are we able to understand 
ML models 
•  physics interpretations 
 
 



Meaningful Physics 
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  Pile-up removal with CNN 
 
 
 
 
 
 

E. Metodiev et al., 2017 



Meaningful Physics 
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  Pile-up removal with CNN 
 
 
 
 
 
 

What is learned? 



Deep Learning Regression 
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Higher 
is better Shallow 

Deeper 

Deep learning improvements apply to regression as well 



Defining the Problem 
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How to best use domain knowledge 
we have accumulated?  
•  in designing the algorithms 

 

 

 
 

Krefl, 2017 Louppe et al., 2017 

Jet Clustering Jet Images Strings 

de Oliveira et al., 2015 



Uncertainties 
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•  Decision making 
 
 



Uncertainties 
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G. Louppe et al., 2016         NNPDF Collaboration 
 
 
 
 
 
Bayesian connection:  Deep neural networks 
with drop-out approximate variational inference 
of Bayesian NNs:    Gal and Ghahramani, 2016 

Uncertainties matter 



Additional Uses 
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Simulation GANs 
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L. de Oliveira et al., 2017 



Flavor Tagging 
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Multi-Task Model 
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Real Time Application 

11/24/17			 Sergei V. Gleyzer                                                Saclay Seminar	 42	

Can we do ML in real-time? 
•  ML: live video analysis, medical, self-

driving cars 
•  HEP Trigger Systems (software and 

hardware) 
 
 



Trigger Applications 
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Belle II 

CMS L1 



Trigger Applications 
	

11/24/17			 Sergei V. Gleyzer                                                Saclay Seminar	 44	

 
 
 

LHCb 



Other Applications 
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Unsupervised learning (no labels) 
•  Anomaly detection, unexpected physics 
Generative models 
•  Simulation and better training 
Optimization and tuning 
•  Bayesian optimization etc. 
 
 



IML 

•  Exchange between particle physics and machine 
learning communities 

•  Sharing of expertise among LHC experiments 
•  Software development and maintenance 
•  Forum and Education 
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Inter-experimental LHC Machine Learning 
Working Group iml.cern.ch 



Summary 
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All very exciting directions 
•  with many challenges to overcome 
Opportunity to re-examine how we 
have done things until now 
•  from R&D to physics results 
Challenges 
•  Intepretability, scalability and real-time 

inference 
 
 
 
 


