

Machine

Learning

Physics

Particle

Sergei

Seminar at Saclay November 24, 2017

Outline

- What is Machine Learning
- in Particle Physics
- in Theory
- In Practice

Machine Learning Basics

What is Machine Learning?

 Study of algorithms that improve their <u>performance</u> P for a given <u>task</u> T with more <u>experience</u> E

Sample tasks: identifying faces, Higgs bosons

General Approach:

Given training data $T_D = \{y, x\} = (y,x)_1...(y,x)_N$,

function space {f} and a
constraint on these functions

Teach a machine to learn the **mapping** y = f(x)

UF In Computer Science

Already the preferred approach to:

- Speech recognition, natural language processing
- Computer vision, Robot control
- Medical outcomes analysis

Growing fast

- Improved algorithms
- Increased data capture
- Software too complex to write by hand

Examples

0	0	0	1	7	(1	7	1	г
Э	Z	2	æ	9	2	7	3	ゝ	3
3	4	4	9	4	4	5	5	2	G
4	4	7	2	٦	7	1	ટ	8	8
в	8	8	9	9	4	9	q	9	

Saclay Seminar

Machine Learning

Choose

UNIVERSITY of **FLORIDA**

Method

Find f(x) by minimizing the empirical risk R(w)

$$R[f_w] = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i, w)) \qquad \text{subject to the constraint} \\ C(w)$$

*The loss function measures the cost of choosing badly

Saclay Seminar

F

UF Machine Learning

Many methods (e.g., neural networks, boosted decision trees, rule-based systems, random forests,...) use the quadratic loss

$$L(y, f(x, w)) = [y - f(x, w)]^2$$

and choose $f(x, w^*)$ by minimizing the

constrained mean square empirical risk

$$R[f_w] = \frac{1}{N} \sum_{i=1}^{N} [y_i - f(x_i, w)]^2 + C(w)$$

History

1950s: First methods invented

1960-80s: Slow growth, focus on knowledge

1990s: Growth of computing power, new learning methods, data-centric

2000-10s: Wider use in research and industry

2010s: Deep learning improvement, specialized hardware

Diving Deeper

In Particle Physics

UF ML in HEP Today

Machine learning already at forefront of what we do:

- Physics object identification
- Event type classification
- Object properties regression

Expanding quickly to more areas

Higgs Boson Discovery

UF Higgs to di-photons

ATLAS

11/24/17

Saclay Seminar

CMS

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

UF In Higgs Discovery

Improvement in analysis from all four areas

Applications

I. Classification

- Par
 Pat
 Sea jet
- ^ification
 gnition (tracks)
 New Physics

II. Function estimation

- Particle Properties
- Regression

Challenges

Orders of magnitude between signals and backgrounds

Fast Event Simulation

Object Identification

Tracking

Event Filtering

Imaging Techniques

Simulation

23

Generative Models, Adversarial Networks

FCN, Recurrent, LSTMs

Convolutional DNN Multiobjective Regression

Deep Kalman Recurrent, LSTMs

Deep ML +FPGA

Can we fully exploit the detectors?

• Raw data, low-level variables

Images: D. Whiteson, K. Cranmer

Saclay Seminar

"End-to-end learning"

By-passing traditional reconstruction

Photon-Induced EM Shower mean energy distribution over 10k events

Electron-Induced EM Shower

mean energy distribution over 10k events

ResNet-23

Test Set ROC AUC

0.997

Saclay Seminar

UF Defining the Problem

If a problem can be expressed as a known problem

- Apply existing algorithms
 - Example: convolutional neural networks from computer vision

If a problem has not been solved

Push the knowledge boundary forward

Jet images with convolutional nets

L. de Oliveira et al., 2015

Neutrinos with convolutional nets

Sergei V. Gleyzer

Saclay Seminar

Tracking with recurrent nets (LSTM)

Time dimension (state memory)

Projected Output with Uncertainty

UF Meaningful Physics

Can we extract features with meaningful physics? Background Rejection vs. Signal Efficiency

from low-level variables

Are we able to understand ML models

physics interpretations

Pile-up removal with CNN

Pile-up removal with CNN

What is learned?

- Train a single 4×4 filter and inspect it.
- \blacksquare Pixel-wise: $p_T^{N,LV} \approx p_T^{N,tot} \frac{1}{2} p_T^{C,PU}$
- This is linear cleansing with $\bar{\gamma}_0 = 2/3!$

$$p_T^{N,LV} = p_T^{N,tot} + (1-rac{1}{ar{\gamma}_0})p_T^{C,PU}$$

UF Deep Learning Regression

Deep learning improvements apply to regression as well

UF Defining the Problem

How to best use domain knowledge we have accumulated?

in designing the algorithms

Decision making

Bayesian connection: Deep neural networks with drop-out approximate variational inference of Bayesian NNs: *Gal and Ghahramani, 2016*

Additional Uses

UF **Simulation GANs** UNIVERSITY of **FLORIDA**

Dataset: 5°; Net: soft sparsity, multiplied E, Conv. attn. and layers

L. de Oliveira et al., 2017

Flavor Tagging

e.g. up to ~50% more signal for 15% more bkg

Sergei V. Gleyzer

light jet

Saclay Seminar

UF INVERSITY OF Real Time Application

Can we do ML in real-time?

- ML: live video analysis, medical, selfdriving cars
- HEP **Trigger Systems** (software and hardware)

Sergei V. Gleyzer

Saclay Seminar

Unsupervised learning (no labels)

Anomaly detection, unexpected physics

Generative models

• Simulation and better training

Optimization and tuning

• Bayesian optimization etc.

Inter-experimental LHC Machine Learning Working Group <u>iml.cern.ch</u>

- Exchange between particle physics and machine learning communities
- Sharing of expertise among LHC experiments
- Software development and maintenance
- Forum and Education

All very exciting directions

with many challenges to overcome

Opportunity to re-examine how we have done things until now

from R&D to physics results

Challenges

Intepretability, scalability and real-time inference